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Introduction: Trails are ubiquitous and far-reaching, but research on the impact trails

have on physical activity is limited by the lack of resource-efficient, accurate, and practical

systematic observation tools. Commonly used infrared trail sensors count trail use and

may broadly differentiate activity (i.e., bicyclist vs. pedestrian), but cannot detect nuances

needed for outcomes research such as frequency, intensity, time, and type of activity.

Motion-activated passive infrared cameras (PICs), used in ecological research and visitor

management in wildlife areas, have potential applicability as a systematic observation

data collection tool.

Materials and Methods: We conducted a 7-month field test of a PIC as a systematic

observation data collection tool on a hiking trail, using photos to identify each trail user’s

physical activity type, age, sex, and other characteristics. We also tallied hourly trail

use counts from the photos, using Bland–Altman plots, paired t-tests, Concordance

Correlation Coefficient, Kendall’s Tau-b, and a novel inter-counter reliability measure to

test concordance against concurrent hourly counts from an infrared sensor.

Results: The field test proved informative, providing photos of 2,447 human users of

the trail over 4,974 h of data collection. Nearly all of the users were walkers (94.0%) and

most were male (69.2%). More of the males used the trail alone (44.8%) than did females

(29.8%). Concordance was strong between instruments (p < 0.01), though biased (p <

0.01). Inter-counter reliability was 91.1% during the field study, but only 36.2% when

excluding the hours with no detectable trail use on either device. Bland–Altman plots

highlighted the tendency for the infrared sensor to provide higher counts, especially for

the subsample of hours that had counts >0 on either device (14.0%; 694 h).

Discussion: The study’s findings highlight the benefits of using PICs to track trail

user characteristics despite the needs to further refine best practices for image coding,

camera location, and settings. More widespread field use is limited by the extensive

amount of time required to code photos and the need to validate the PICs as a trail

use counter. The future potential of PICs as a trail-specific PA research and management

tool is discussed.
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INTRODUCTION

The many physical and mental health benefits of daily physical
activity (PA) are well-documented (1). Increasing population-
level PA by “creating or improving places for physical activity”
has for decades been recommended by the Community
Preventive Services Task Force as an evidence-based community-
level intervention (2). Despite the important contribution that
trails may serve as public spaces for PA, “places for physical
activity” has been narrowly defined in the scholarly literature
as “public open spaces” such as parks or green spaces to the
exclusion of trails (3, 4). In addition, Koohsari et al. (4) suggest
that the correlational evidence between public open spaces and
PA is mixed and due, in part, to insufficient measurement of
PA in specific environmental contexts, reiterating a measurement
deficiency acknowledged in the original Guide to Community
Preventive Services (2).

Trails are vital, far-reaching places for achieving daily PA
that should be considered in a more inclusive definition of
public open space. Moreover, trails are a diverse and valuable
community asset, accommodating many types of users and
extending throughout much of the US. For instance, the trail
network established by the National Trails System Act of 1968
is over 88,600 miles in length and extends to within 60 miles
of 230 million residents (5). Rails-to-trails, spurred by a 1983
amendment to the National Trails SystemAct that allowed for the
repurposing of abandoned rail-beds as multipurpose trails, now
cover over 24,300 miles (6). There are also 52,600 miles of trails
in the state parks system (7), and many more miles managed by
city and county parks and recreation agencies.

Research of the effect of trails on users’ PA is limited because of
the lack of an efficient systematic observation method, however.
Instead, most studies focus exclusively on trail usage—“traffic” —
as the primary outcome. Methods most often used to collect trail
usage include: (a) infrared sensor counters (8), (b) survey self-
report of nearby residents (9–13), and (c) in-person systematic
observations (14). Like vehicular traffic counts, trail usage counts
are used to estimate annual volume of traffic on trails based
on a sample of daily counts, resulting in an estimated average
annual daily traffic (AADT) on a trail (15, 16). While requiring
few resources, infrared sensors are limited in the output they
produce to counts or “uses,” systematically undercount groups
of users as a single “use,” may mistakenly count animals, and—
importantly for public health researchers—cannot identify trail
user characteristics or PA type (15, 17, 18).

Trail usage counts lack the specificity needed to assess
and quantify PA frequency, intensity, time, and type (FITT)
(19) of each trail use and user. Systematic observation is
generally considered the “gold standard” for collecting place-
based PA data in public open spaces. Applied conceptually to
the context of a trail, a systematic observation would allow for
the identification of specific trail users so that the PA type of
each user could be assessed at an observation location (i.e., trail
access point), in addition to the quantification of total trail use,
or traffic counts. A systematic observation can also be used to
quantify each user’s characteristics (e.g., age, sex, group usage,
helmet use) for research and management purposes. However,

in-person systematic observation studies require substantial
human and financial resources (18). For example, systematic
observations require a long data collection period—or a sample
with extrapolation to a longer period to estimate AADT. Using
in-person observation to assess the PA time and intensity of a trail
user further requires the capability to identify and track specific
individual users while on the trail, exacerbating the resource
needs and making such an observation untenable, particularly on
longer distance trails and/or trails with numerous access points.

Because of the resources required to conduct in-person
systematic observations, most trail-based PA studies to date have
used cross-sectional surveys to capture samples of residents living
near a trail (9, 11, 13, 20) or individuals intercepted while using
the trail (21–23). Surveys are beneficial for gathering trail-based
PA data that are needed to quantify individual-level impacts
such as sociodemographic information of users and details of the
PA FITT. However, cross-sectional surveys are often subject to
recall, selection, and temporal biases. Moreover, implementing
in-person surveys often requires more time and coordination
to ensure fidelity to research protocols which may lead to
higher costs. In an attempt to bridge research gaps, studies have
combined trail use sensor count data with trail user intercept
survey responses to estimate population-level impacts. However,
these methods rely heavily on assumptions about frequency of
trail use to calculate user-specific PA (24). These efforts highlight
the need to identify and test a resource-efficient solution that
can be used over an extended period of time to simultaneously
quantify trail use and each individual user’s trail-specific PA FITT.

An accurate assessment of PA type, time, and intensity of each
trail user requires the ability to observe each user’s entry and
exit from the trail. For example, a 24-h systematic observation at
every access point of a trail could be used to track the time each
individual user spends on a trail and the PA type and intensity
at each observation point. Additionally, assessing PA frequency
requires repeating this observation over multiple days or weeks.
Thus, an accurate assessment of all dimensions of FITT requires
the ability to track each uniquely identified trail user at each trail
use and determine if each trail user returns, but raises scalability,
ethical, and data processing concerns as noted in the literature
(25). Even if accomplished, assumptions that each user’s time on
the trail was spent on one PA type and at a consistent intensity
would still need to be made. Conducting an in-person systematic
observation at every minute of every day over multiple weeks
would further intensify the resource needs, but it may be possible
with technological advances.

Remote cameras have been used as a systematic observation
data collection tool in ecological research and visitor
management in wildlife areas to: (1) quantify animal and
human visitors and/or interactions (26–28), (2) protect wildlife
(29, 30), and (3) monitor for park policy violations (31).
These passive infrared cameras (PICs)—also known as wildlife
cameras, game cameras, or camera traps—take photos and/or
videos when activated by motion or a heat source, providing
details in each photo that could be used to detect individual
users’ PA type (26, 27). While PICs eliminate the need for
humans to conduct in-person counts, coding of images or videos
to glean information is still required. Only recently, however,
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have researchers attempted to demonstrate the applicability
of using the photos from PICs to quantify PA of human users
of trails (27, 32). Developing best practices has been difficult
because there have been very few studies, protocols vary, there
are numerous PIC brands and models, and PIC technology
and device features are constantly improving. Despite such
limitations, PICs may be an efficient and practical data collection
tool for systematic observation over long periods at multiple sites
on a trail. A key initial step is to field test PICs to determine the
feasibility and dependability of PICs as a data collection tool for
assessing PA type of trail users. Thus, the purpose of this study
was to field test a PIC on a hiking trail and evaluate its use as a
tool for identifying the PA type and characteristics of individual
trail users. A secondary purpose of this study was to field test
a PIC as a trail usage counter by comparing it with concurrent
counts from an infrared sensor.

MATERIALS AND EQUIPMENT

Instruments
Data for this study were collected using a PIC concurrently with
an infrared trail count sensor at the main entrance to a hiking
trail in a newly established urban woodland park. The protocol
was reviewed by the West Virginia University Institutional
Review Board (protocol number 1905572292) and deemed Non-
Human Subjects Research because it was an observation of
public behavior.

Passive Infrared Camera

A Moultrie M-888i Mini Game Camera, mounted in a
camouflaged protective case (CAMLOCKbox) and secured with
adjustable (Python) cable lock, was tested. The M-888i triggers
with motion or heat within a 15-m range using a passive infrared
sensor. It has the capability to capture photos or videos. For
this study, it was used to take photos. It captures night images
by using an infrared flash. This M-888i uses eight AA batteries,
intended to capture and store up to 17,000 images on a removable
SD-card (33). This camera is no longer manufactured (retail
$126) but has been replaced by the M-40i model (retail $160).
The cost of the case, cable lock, SD-card and initial set of batteries
added $78 to each camera setup.

For this study, important camera settings included: (1)
detection delay and (2) multi-shot option. Detection delay refers
to the amount of time between pictures when an object is detected
and remains in range. Options are 0, 10, or 30 s, or 1, 5, 10, or
30min.Multi-shot refers to howmany pictures are captured once
the camera is triggered. Options are: (1) “off” for a single photo
per triggered event; (2) “burst” for three photos within 1 s per
triggered event; or (3) “triggered” for up to three photos, with
a slight delay between each (if the subject continues to move
in view of the camera after the first photo triggering event).
To protect anonymity of trail users photographed in a public
space, faces were obscured in images selected as illustrations,
and we only selected photos of trail users from whom we had a
media release.

Infrared Trail Count Sensor

For our comparison, we used a TRAFx infrared trail counter,
which detects the “infrared wavelength that people emit” (34).
The sensor uses an infrared scope connected to hardware inside
a weatherproof case. The unit runs on three AA batteries, with
an estimated battery life of up to 3 years. Settings for the infrared
counter include the: (1) Period and (2) Delay. Period allows the
user to choose between timestamps for each triggering event
(“sensor hit”) or a summary count of sensor hits per hour or
per calendar day. The Delay setting establishes the minimum
time between each triggering event in 0.25-s increments. When
purchased in 2015, this counter and weatherproof case cost $520.
A dock to download the data cost an additional $550 and optional
online software to view and manage the data can be added
for approximately $100 per year. Batteries and a steel electrical
disconnect box ($15) in which to lock the equipment cost extra.

METHODS

Data Collection
Data were collected from November 19, 2016 to June 30, 2017
at the main entrance of a hiking trail accessing the West
Virginia University (WVU) Falling Run Greenspace/Organic
Farm, a 60-acre wooded park in Morgantown, West Virginia,
USA (Figure 1). This trail is designed for foot traffic only; bicycles
are not allowed but were observed occasionally in the present
study. Preliminary instrument set up and mounting angle tests
were conducted prior to full data collection to ascertain that
photos captured bi-directional walking and jogging along the
trail concurrently with infrared sensor timestamps. The PIC was
cable-locked within a metal security box, mounted to a 10-cm
diameter grapevine 3m from the edge of a 0.6-m wide hiking
trail. The camera had an unobstructed view perpendicular to the
trail from the uphill slope at roughly 1.8m above the trail surface.
The camera was angled downward to parallel the steep hillslope
(59%) to capture trail users’ full-body lengths (Figure 2). These
specifications are slightly different than the recommendations
suggested by Miller et al. (32), but were found to most accurately
capture walkers and runners of different heights and different
speeds during preliminary tests, accounting for the width of the
trail and topography, where prevailing hillslopes are often 30%
or more. The camera was set to 10-s delay with a “burst” of
three exposures per triggering event. Images contained a date
and timestamp, and were downloaded to a password-protected
laptop from the removable SD card monthly. Batteries needed to
be replaced roughly every 2–4 weeks.

The TRAFx infrared sensor was mounted to a tree in a locked
metal box about 1m from the trail’s edge with an unobstructed
view (Figure 2). The Delay option was set at 1.5 s and the Period
option was set to provide hourly trail usage counts. Hourly
trail usage counts were downloaded monthly through a wired
connection to a password-protected laptop as text files and
converted to a Microsoft Excel spreadsheet. Batteries did not
need to be replaced during our data collection period. The date
and time were synchronized on the PIC and infrared sensor at
initial setup, and verified during each visit to the instruments to
download data.
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FIGURE 1 | Map of the Falling Run Greenspace/WVU Organic Farm, study site and trail count location in Morgantown, West Virginia, USA.

FIGURE 2 | Image depicting the field test location, looking toward the trail entrance, with the location of the PIC (A) and infrared trail sensor (B) noted. The PIC was

3m from the trail edge and the sensor was 1m from the trail edge. The inset photo is an image of the PIC mounted to sturdy grape vine at location (A). PIC, passive

infrared camera. Bold line shows cross section of topography at infrared sensor location (foreground). Horizontal lines denote 0.6-m contours.
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Analysis
The second author reviewed all photos from the PIC to code
the characteristics of each user. Codes included: (1) the type of
PA being performed (running, walking, bicycling) based on body
lean, stride length, and equipment (NB: bicycling not permitted,
but was detected); (2) biological sex (male, female) based on
cultural cues such as dress and hair style, and/or by visible
physical features such as facial hair or body proportions; (3) age
group (child or adult) based on individual height and features and
accompanying caregivers; (4) dog walking (yes, no); (5) mobile
phone use, either viewing the screen or holding it up to the
ear; and (6) date and time of day from the timestamp on the
photo. Group size was coded by counting the number of unique
trail users photographed during the multiple photos for each
triggered event. Photos triggered by animals (unaccompanied
pets, wildlife) were coded, but excluded from our analyses. When
some distinguishing item of clothing, a distinctive pet, or other
features made it possible to recognize a unique human trail user,
the duration of that persons’ visit was noted and incidents of their
repeat trail use were noted as was feasible. The date and time
from the timestamp of each photo were used for aggregation into
hourly trail user counts for comparison with the hourly counts
from the infrared sensor data.

Descriptive analyses included frequencies with valid
percentages for categorical or count indicators and measures
of central tendency with variance for continuous indicators.
To explore the agreement or consistency (i.e., concordance)
between the hourly counts from the infrared sensor and hourly
user counts derived from the PIC photos, this study followed
methods outlined by Johnson and Waller (35) and similar to
those used in studies of systematic observation methodologies
of PA in park spaces (36, 37). Specifically, Bland–Altman
plots (38), paired t-test, Concordance Correlation Coefficient
(CCC) (39, 40), and Kendall’s Tau-b (41) were used to test
for agreement and bias between instruments. Bland–Altman
plots are a visual tool used to evaluate bias between the mean
differences of the infrared sensor and PIC hourly counts (42).
CCC interpretations are: small (≤0.40), moderate (0.41–0.60),
large (0.61–0.80), and very large (0.81–1.0) (36, 43). Kendall’s
Tau-b ranges from −1 to +1, or from perfect negative to perfect
positive relationship. Measures were checked for non-normality
and logarithmically transformed where appropriate based on
guidance from Giavarina (42). Kendall’s Tau-b was selected as a
non-parametric alternative for comparisons as recommended by
Johnson and Waller (35). Statistical significance was determined
with an alpha-level set to 0.05 using a two-tailed distribution.
Sensitivity analyses were performed to compare statistical
inferences between the full sample of hourly counts and those
hours when the count on at least one device was not zero. All
statistical analyses were performed using SAS 9.4 R© (44).

In addition, an inter-counter reliability (ICR) was used to
calculate the percent agreement between the hourly user counts
derived from coding of PIC photos and infrared sensor hourly
counts. This method, albeit exploratory, was chosen as an
equivalent to interrater reliability measurement that is used
to assess agreement for observational measures in qualitative

research (45). To calculate ICR, hourly counts were first
matched by date and hour from each device and coded as
either agreement (sensor count = PIC count) or disagreement
(sensor count 6= PIC count) for each hour. Then, the percent
of hourly trail use counts in agreement (number of hourly
agreements/[number of hourly agreements + number of hourly
disagreements]) was calculated. An agreement of 80% or higher
was considered “acceptable” using the ICR method based on
standards from content analysis and other qualitative coding
methodologies (46–49).

RESULTS

In sum, 4,974 h of matched data from both instruments were
collected during the field test, excluding an interval when the
PIC’s batteries expired (384 h from January 26 to February 11,
2017). Coding the PIC images (see examples, Figure 3) took
roughly 30 s per triggering event. The camera also capturedmany
photos with no discernible trail user, many of which we attributed
to wildlife, wind-induced movement in background vegetation,
and insects triggering the camera at close range. Some unknown
triggers could have been due to high-speed users, such as runners
or cyclists.

Trail user PA and demographic characteristics derived from
the photos are presented in Table 1. The PIC recorded 2,447 trail
users and 253 animals. Nearly all of the 2,447 human users were
walkers (94.0%), 3.6% were children, 2.4% were using a mobile
phone, and 59.6% were in a group of two or more. The majority
of trail users were male (69.2%). Females had a lower rate of solo
trail use (29.8%) than did males (44.8%).

Comparison statistics between infrared sensor and PIC are
available in Table 2. Counts demonstrated a substantial number
of hours matched with zero counts on both devices (86.1%).
With zero count hours included, the infrared sensors recorded
a summary count of 3,022 and a mean of 0.6 (SD = 4.4) per
hour. The PIC recorded a sum of 2,447 users and a mean
of 0.5 (SD = 2.9) trail users per hour. The test for minimal
bias using a paired t-test was significant (t4973 = 3.64, p <

0.01), revealing bias between the counts. The concordance test
showed very large agreement between counts (rc = 0.93, 95% CI:
0.92–0.94, p < 0.01). Kendall’s Tau-b demonstrated a significant
relationship between counts (τ b = 0.89, p < 0.01). The inter-
counter reliability with zeros included was 91.1% (ICR= 0.91).

For the subset of hours that excluded the hours with matched
zero counts (n = 694) the infrared sensors recorded a summary
count of 3,022 and a mean of 4.4 (SD = 11.1) per hour. The PIC
recorded a sum of 2,447 users and a mean of 3.5 (SD = 6.9)
users per hour. The test for minimal bias using a paired t-test
was significant (t693 = 3.67, p < 0.01), revealing bias between the
counts. The concordance test showed large agreement between
counts (rc = 0.77, 95%; CI: 0.74–0.80, p < 0.01). Kendall’s Tau-
b demonstrated a significant relationship between counts (τ b
= 0.60, p < 0.01). The inter-counter reliability for this subset
of hours with zero counts excluded was 36.2% (ICR = 0.36).
Lastly, the Bland–Altman plots (Figure 4) show the error and
bias, outliers, and difference trends relative to the mean for the
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FIGURE 3 | Example images from passive infrared camera field test.

TABLE 1 | Trail user characteristics based on coding of images from a PIC on a hiking trail.

Total (n = 2,447) Male (n = 1,600) Female (n = 711)

Sample characteristic n % n % n %

Activity type

Walking 2,299 94.0 1,512 94.5 677 95.2

Running 116 4.7 78 4.9 35 4.9

Bicycling 31 1.3 18 1.1 5 0.7

Trail users

Groups 606 *214 *62

Users in groups 1,457 59.5 482 30.1 133 18.7

Solo 989 40.4 717 44.8 212 29.8

Walkers

Groups 578 *205 *57

Users in groups 1,391 56.8 464 29.0 123 17.3

Solo 908 37.1 660 41.3 199 28.0

Runners

Groups 17 *7 *5

Users in groups 36 1.5 14 0.9 10 1.4

Solo 68 2.8 50 3.1 15 2.1

Bicyclists

Groups 4 – –

Users in groups 8 0.3 *n/a *n/a

Solo 21 0.9 14 0.6 3 0.1

PIC, passive infrared camera; *unique number of groups composed exclusively of a single biological sex.

full sample and for the subsample of hours with non-zero counts
on at least one device. These plots visually represent the finding
that the infrared sensor had higher counts for 34.9% of the hours
of non-zero counts.

DISCUSSION

Among the research needs for public open spaces, Koohsari
et al. (4) identified the need to establish “open space-specific
measures of physical activity” (p. 80). Based on an extensive

review of the literature, this appears to be the second field test
of PICs as a systematic observation data collection tool for trail-
specific PA (32). We were able to collect 4,974 h of concurrent
data with one period of missing data due to battery expiration
in the PIC, highlighting a logistical concern to consider in the
field. Newer versions of the camera can be connected to a
cellular network for a monthly fee that also allows users to use
a smartphone application to get low battery, low storage space,
and other warning notifications. Regardless, peripheral expenses
such as batteries and storage space should be accounted for when
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TABLE 2 | Comparison of hourly count data from passive infrared camera and infrared sensor on a hiking trail.

Full sample (n = 4974) Hours with counts >0 on at least one device (n = 694)

IS PIC Diff Mean IS PIC Diff Mean

Count, sum 3,022 2,447 575 2,735 3,022 2,447 575 2,735

Count, per hour, M (SD) 0.6 (4.4) 0.5 (2.9) 0.1 (1.9) 0.5 (3.6) 4.4 (11.1) 3.5 (6.9) 0.8 (5.0) 3.9 (8.9)

Hours with 0 count, n (%) 4,354 (88%) 4,315 (87%) 74 (11%) 35 (5%)

t (df) 3.64 (4973)* 3.67 (693)*

rc (95% CI) 0.93* (0.92, 0.94) 0.08* 0.77* (0.74, 0.80) 0.02

τb 0.89* 0.60*

ICR 0.91 0.36

*p < 0.05. PIC, passive infrared camera; IS, infrared sensor; Sum, summation of hours, M, sample mean of device counts; SD, standard deviation of device counts; t, paired t-test; rc,

concordance correlation; τb, Kendall’s Tau-b; ICR, inter-counter reliability; Diff, (IS—PIC); Mean = (IS + PIC)/2.

FIGURE 4 | Bland–Altman plot of infrared sensor hourly counts and hourly counts derived from passive infrared camera photos for full sample of hours (A) and the

hours with count > 0 on at least one device (B).

budgeting. Photos provided detailed information about trail users
and allowed for the removal of animals from counts, so that we
were able to discern that the vast majority of trail users were
walkers and males more often used the trail alone than females.
These advantages over hourly usage counts from infrared sensors
came at a cost—the time required and potential bias of coding
images by hand—that should be addressed in future studies.

Our findings highlight the benefits of using PICs to track
trail user characteristics despite the need to further refine best
practices for camera location and image coding. For example,
Miller et al. (32) recommended that cameras be placed 1–2m
from the trail edge at a 20◦ angle to the trail, and at knee-height
(0.5m) to capture the average mountain biker between 8 and
16 kph. During the preliminary setup, we made the decision to
place the PIC farther from the trail, at a right angle to the trail,
and at a higher location than Miller et al. (32) recommendation
for three reasons: (1) the steeply sloping topography of the
study location, (2) the trail in this study is not intended for use

by people on bicycles, and (3) we wanted to capture as many
identifying characteristics of the trail users as possible. For future
PIC installations, we recommend multiple and extended periods
of in-person testing at the site to identify the optimal mounting
location and camera settings to capture a wide range of trail
user speeds.

This study’s field test demonstrated the potential of PICs as a
trail-specific PA research tool. Discernable from the photos were:
(1) PA type using the lean, stride length, and visible equipment
(e.g., bicycle); (2) the directionality of users; (3) demographic
characteristics for most users; and (4) diverse purposes of trail use
based on visible equipment (e.g., cameras, hula hoops, juggling
pins). As tested, this single-camera setup is useful for identifying
trail usage by type, sex, time of day, and day of week, and
whether dog walking, group usage, and/or disallowed uses (i.e.,
bicycling) are occurring at a single location. With methodological
creativity and technological innovation, PICs could be used in
a long-term, multi-location setup to estimate: (1) the number
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and characteristics of each distinct trail user; (2) the PA intensity
and time of each user while on the trail; (3) the PA type
and trip type of each user (round-trip or one-way); and/or (4)
demographic differences in PA FITT and use preferences. For
example, with cameras located at every entry point of a trail
system, it becomes possible to track each user and estimate PA
FITT in that setting by using unique features (e.g., facial features,
clothing) to distinguish individual trail users. Identifying specific
people and coding images will require technological innovation,
such as using computer vision algorithms (36, 37). By achieving
this capability, researchers could answer Koohsari et al. (4) call
for evidence of causal inferences. That is, researchers could track
setting-specific PA over a period of time when trail improvements
occur such as building additional trailheads or installing lighting,
during a specific event on a trail (e.g., National Trails Day), or as
a result of a specific intervention that encourages trail use among
a demographic group (e.g., children, females, people of color).

Despite limitations in coding based on superficial
characteristics in photos that may introduce coder bias,
such as age and sex, our field test also demonstrated the potential
that PICs have for trail and park management through the
identification of particular user and group characteristics
including trail use preferences. Future studies of inter-coder
reliability are necessary to overcome coder bias and help develop
image recognition capabilities for fast, accurate coding using
emerging technologies. While demographic characteristics such
as age and sex of users were not always discernable from the
photos, we observed in the codable images that the majority
of users were male, and females tended to use the trail more
often in groups. Such details about user characteristics, possibly
in combination with trail user survey data, could help land
managers identify programming or infrastructure improvements
to promote inclusivity for users.

There are three important barriers to overcome to make it
feasible to use PICs as a systematic observation data collection
tool to quantify trail-based PA and trail usage. First, is the
time required to do the manual coding of the images. This
could be informed by the evolution that has occurred in the
systematic observation instrumentation of PA in public spaces
and parks/recreation areas. The methods for assessing pedestrian
and bicyclist usage of public spaces such as plazas and on-street
transportation infrastructure could be particularly informative.
Through progressive studies using the Archive of Many Outdoor
Scenes (AMOS) project (50), researchers have used historical
webcam images to quantify pedestrian/bicyclist use over time at
plazas or as street infrastructure changed. Originally a laborious
process of manually counting and coding behavior in crowd-
sourced photographs (51, 52), AMOS has evolved to now use
machine learning to reduce the labor required to code data (53).

Second, is the need to reduce the burden of collecting
the data. Systematic observation to assess PA in parks and
recreation areas has evolved through the often-used System for
Observing Play and Recreation in Communities (SOPARC) (54–
57). Initially reliant on in-person observers using hand-written
forms, SOPARC has evolved to incorporate iPads (iSOPARC)
(58), wearable video detection devices (37), wide-angle cameras

mounted on an elevated tripod (36), and remotely controlled
aerial vehicles (drones) for data collection (59).

Third is the need to determine the validity of the PIC as a
trail usage counter. Although this field test has limitations, our
series of analyses suggest a moderate to strong concordance and
agreement between the instruments. However, the significant
paired t-tests suggest there is bias between the infrared sensor
and PIC, with the infrared sensor demonstrating higher hourly
counts. This bias is shown in the Bland–Altman plots (Figure 4),
especially by the wide variance of the mean hourly differences
(±10.0) in Figure 4B relative to the overall mean difference
(Bias line; 0.82). This shows that for about one third of the
observed hours when counts weren’t zero, the PIC and sensor
differed by 5–10 counts in an hour, with the sensor generally
registering higher counts. For example, if a count of 15 was
registered by the sensor, the count from the PIC could vary from
5 to 25. Also worth noting in Figure 4 is that the difference
between the senor and camera counts (y-axis) increased as traffic
increased on the trail (x-axis). Thus, even though the difference
between measures for entire sample was small (mean bias of 0.8),
individual-level (hourly) accuracymay need to be improved. This
may be due to the detection delay settings of the instruments
that may have led to a count of multiple uses on the infrared
sensor from what would be coded as a single count of one user
in PIC photos and/or an animal that is only detectable through
PIC photos. An interesting finding, albeit exploratory, was the
crude calculation of the ICR (percent agreement). We adapted
agreement measures from SOPARC studies (36, 37) to fit our data
collection methods which are continual over a period of time
rather than snapshots of scanned target areas of a larger setting
(i.e., park) (54). With limited guidance on the “best practice” of
how to establish agreement and concordance among the devices,
this study’s findings suggest there is a need to establish a method
to assess the validity of PIC counts against infrared sensor
with concurrent in-person counts in controlled and real-world
scenarios, following guidance of similarly purposed SOPARC
studies (32, 36, 37). Calculating agreement based on a modified
technique often used in qualitative methods demonstrated to
be insufficient. Future studies should also consider a cadre of
equivalence tests for evaluatingmeasurement agreement between
instruments [see (60)].

There are limitations to this study worth noting, including
the use of only one type of PIC. Comparisons between camera
models and manufacturers will be important to identify the “best
performer” for trail use counts; however, this will change as
new models become available. Secondly, we used hourly counts
from the infrared sensor. Timestamp data from the sensor would
have provided more precise information about each sensor hit
to compare with the camera photos’ timestamp, though in-
person systematic observation is necessary to determine the
true accuracy of both methods. We recommend this timestamp
comparison between instruments and in-person observation in
any future validation study. The use of the PIC photos, while
taken in a public park where trail users anticipate potential
observation, also poses potential ethical issues (25, 53). Lastly,
camera theft, battery or storage malfunction, and tampering are
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also a potential concern thatmay disrupt the research process and
increase cost.

CONCLUSIONS

The impact of new or improved trail infrastructure is fertile
ground for acquiring insights on PA pattern and usage changes.
Dependable, user-friendly, resource-efficient instruments for
measuring PA frequency, intensity, time, and type (PA FITT)
are critical to influence what is known about the benefits of trail
infrastructure improvements. For example, natural experiment
studies that explore changes in PA as a response to changes
in the built environment often are restricted to self-reported
measures of PA which may lack the objectivity and specificity
to accurately assess on-trail PA FITT (61–63). This study
suggests PICs may be a viable solution to (1) overcome many
of these measurement limitations listed above, (2) provide a
tool for trail-specific systematic observation of PA FITT, and
(3) observe trail usage patterns over time in lieu of resource
heavy research designs. Although slightly speculative, PICs may
provide opportunities for community engagement by providing
virtual public feedback, which may help planners prioritize
trail improvement based on actual trail use and behaviors.
In addition, PICs may also be applicable to other setting-
specific natural experiments such as Open Streets events (64)
or temporary street closures such as those enacted during the
COVID-19 pandemic (65). Future studies that focus on the
reliability of camera settings, installation criteria, and improved
analysis of data are critical to establish a best practice for
future research.
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