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Four‑limb wireless IMU sensor 
system for automatic gait 
detection in canines
Xiqiao Zhang1,2, Gregory J. Jenkins1,2, Chady H. Hakim1, Dongsheng Duan1,2,3,4* & 
Gang Yao2*

This study aims to develop a 4-limb canine gait analysis system using wireless inertial measurement 
units (IMUs). 3D printed sensor holders were designed to ensure quick and consistent sensor 
mounting. Signal analysis algorithms were developed to automatically determine the timing of 
swing start and end in a stride. To evaluate the accuracy of the new system, a synchronized study 
was conducted in which stride parameters in four dogs were measured simultaneously using the 
4-limb IMU system and a pressure-sensor based walkway gait system. The results showed that stride 
parameters measured in both systems were highly correlated. Bland–Altman analyses revealed a 
nominal mean measurement bias between the two systems in both forelimbs and hindlimbs. Overall, 
the disagreement between the two systems was less than 10% of the mean value in over 92% of the 
data points acquired from forelimbs. The same performance was observed in hindlimbs except for one 
parameter due to small mean values. We demonstrated that this 4-limb system could successfully 
visualize the overall gait types and identify rapid gait changes in dogs. This method provides an 
effective, low-cost tool for gait studies in veterinary applications or in translational studies using dog 
models of neuromuscular diseases.

Canine models of neuromuscular diseases have played a critical role in translating findings made in rodent 
models to human patients1. For example, Duchenne muscular dystrophy (DMD) is a lethal X-linked muscle 
wasting disease2. Results from canine DMD models have paved the way for ongoing micro-dystrophin gene 
therapy trials3–6. While canine models have a number of advantages in terms of body size, pathogenesis, immune 
responses, and clinical presentations, there are also challenges in using the canine model. Among these is the 
shortage of functional assays that can be used to accurately quantify physiological changes. Gait alterations are 
commonly seen in patients suffering from neuromuscular diseases7–9. Although the gait pattern of quadrupedal 
canines is different from that of bipedal humans, gait abnormalities are also a typical feature in canines affected 
by neuromuscular diseases1. Methods that can reliably evaluate gait changes in dogs are in need when canine 
models are used in preclinical studies.

In general, gait describes the specific form or pattern of the repeated limb movements during locomotion. 
Although the gait features in dogs are different from humans due to different anatomy, they still consist of 
periodic limb movements. One complete gait cycle of a limb is referred to as a “stride” which is classified into 
two separate phases: swing and stance. The swing phase describes the period when a paw is in the air, and the 
stance phase describes the period when the paw is on the ground. A fundamental task in gait study is to precisely 
determine the temporal profiles of the swing and stance, which requires the measurement of the time points 
when a paw steps on (swing end or stance start) or takes off (swing start or stance end) from the ground. By 
analyzing the temporal gait profiles from all four limbs, a specific gait type (such as walk, trot, canter, or gallop) 
can then be determined.

Several techniques have been used for the quantitative evaluation of canine gait. Surface electromyography 
was previously applied to measure gait cycles based on muscle activation patterns10. But the limb’s movement is 
intricately coordinated by multiple muscles, and electromyography’s accuracy can be compromised by off-target 
muscle activation. 2D and 3D video-based motion capture systems are capable of obtaining comprehensive 
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kinematics of limb/body motion in dogs11,12. Unfortunately, the high cost of a complete 3D video motion system 
limits its wide adaptation in canine studies, and 2D video-based methods may lead to inaccurate results due to 
their limited view in capturing entire 3D limb movement. The pressure-sensor (aka force-plate) based “walkway” 
gait system is another method used to study dog gait. The “walkway” system provides an accurate 2D mapping 
of on-ground foot placement and vertical pressure readings but it cannot measure off-ground limb motion13–15.

In recent years, gait measurement using wearable wireless inertial measurement units (IMUs) has drawn a sig-
nificant interest16–30. A typical IMU sensor can acquire multichannel motion data provided by one or more built-
in microsensors, including an accelerometer, gyroscope, magnetometer, and sometimes the global positioning 
system (GPS)31. Due to their compact size, low cost, and fast 3D motion acquisition, wearable IMU sensors are 
ideal for free-roaming gait studies. In most previous canine gait studies16–25, a single IMU sensor was mounted on 
a dog’s main body, such as the neck, back, or sternum, which only allows assessment of general body movement. 
We reasoned that a sensor placed on dogs’ limbs would allow for a more precise evaluation of the gait pattern. 
Hence, we recently developed a canine gait detection method in which a single IMU sensor was mounted on 
dog’s forelimbs30. To fully determine a dog’s gait type, it is necessary to detect the locomotion of all four limbs.

In this study, we extended our previous forelimb IMU system into a 4-limb IMU system that can automatically 
characterize the complete quadrupedal gait profiles in dogs. A 3D-printed sensor holder was developed to ensure 
reliable and consistent mounting of the IMU sensor. New signal analysis algorithms were developed to detect 
the gait pattern in both forelimbs and hindlimbs. Finally, we validated the performance of the new 4-limb IMU 
system with a commercial pressure-sensor based walkway gait system in carefully designed synchronized tests. 
The results showed that our system could accurately detect the gait profiles in all four limbs of a dog.

Methods
Animals.  All animal experiments for the study were approved by the University of Missouri Animal Care 
and Use Committee and were conducted according to National Institutes of Health guidelines. The proposed 
IMU system was tested on four 2 ~ 4 years old, mixed-breed dogs in a synchronized validation study with a 
pressure-sensor based canine walkway gait system (GAIT4Dog, CIR Systems, Inc., Franklin, NJ, USA). The 
canines used in this study were derived from cross-breeding of golden retriever, Labrador retriever, beagle, and 
Welsh corgi. All dogs were first trained to walk comfortably in the testing area using a leash and halter vest one 
month before the test. The same walk training was conducted again one week before their scheduled gait tests. 
All gait tests were conducted in the canine housing facility at the University of Missouri.

Four‑limb IMU sensor system.  The IMU sensor (LPMS-B2, LP-Research Inc., Tokyo, Japan) has a built-
in 3-axial accelerometer, gyroscope, and magnetometer in a small package of 39 × 39 × 8 mm3 and weights 12 g. 
The measurement range was set to ± 16 g (1 g = 9.81 m/s2) for the accelerometer and ± 2000°/sec for the gyro-
scope, both with 16-bit precision. The sensor sampling rate was set at 100 Hz, and acquired data was transmitted 
in real-time via Bluetooth to a laptop computer for processing. Only the raw data from the 3-axis accelerometer 
and 3-axis gyroscope were used in our signal analysis algorithm to determine the time when a paw was on and 
off the ground.

To achieve consistent sensor mounting in tests, we designed lightweight (19 g, 55 × 24 × 42 mm3) sensor hold-
ers that can be 3D printed (Fig. 1a). A cushion pad (Dr. Scholl’s Air-Pillo Insole) was attached to the side of the 
mount in touch with the animal’s limb to make the sensor mounting comfortable to the animals (Fig. 1b). The 
sensor holders were mounted directly above the carpal joint at the forelimb and the tarsal joint at the hindlimb 
using the attached Velcro straps (Fig. 1c). Both joints are easy to identify in dogs. Sensor holders were mounted 
on each limb by tightening the Velcro strap while the dog stands still before the gait study (Fig. 1d).

To facilitate IMU data interpretation, a coordinate system was established to describe each sensor’s position 
as illustrated in Fig. 1c. The x-axis of all sensors was inclined toward the heading direction (the longitudinal 

Figure 1.   Illustration of sensor mounting and sensor/laboratory testing coordinates. (a) 3D-printed IMU 
sensor holder; (b) IMU sensors in holders with attached cushion and Velcro strap; (c) Mounting positions 
on the forelimb and hindlimb; (d) A dog with 4-limb sensors mounted; (e) Four IMU sensors placed in a 
synchronization board for heading direction synchronization.
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axis of the body). The y-axis of the sensors on the forelimbs was roughly aligned with the direction of gravity, 
whereas the hindlimb sensor had a slight angle in relation to the horizontal plane (ground). The z-axis is aligned 
with the transverse axis of the body (left–right). The sensors mounted at the left and right limbs had mirrored 
coordinates, which was considered during the data processing process. Our tests showed that these mounts were 
well accepted by the dogs and provided consistent IMU readings.

Before inserting the IMU sensor in the holders, all four IMU sensors were first placed in a tightly fitted syn-
chronization board (Fig. 1e), turned on, and connected to the recording laptop computer via Bluetooth. After 
approximately aligning the synchronization board with the dog walking direction, the heading orientations of 
all sensors were synchronized by resetting from the control program provided by the sensor manufacturer (LP-
Research Inc., Tokyo, Japan). The data streaming was started thereafter. The synchronization board was then 
given a quick finger tap. This quick tap left a clear signal spike in the recorded IMU signal that can be used later 
to check and align time bases in all four IMU sensors. After these preparation procedures, the IMU sensors 
were taken out from the platform and inserted into each sensor holder to start the gait tests. The recorded IMU 
readings were analyzed offline using a customized software to determine the time points of swing start and end 
events during each stride of all four limbs.

Synchronized IMU and GAIT4Dog tests.  To validate the swing/stance detection accuracy of the four 
limb IMU system, we conducted a synchronized test with a commercially available GAIT4Dog walkway system 
(CIR Systems, Inc., Franklin, NJ, USA). The GAIT4Dog system uses embedded pressure sensors inside the walk-
way to determine when a foot is on or off the ground. The sampling frequency of the GAIT4Dog system was set 
at 180 Hz in the study.

In order to align steps detected in GAIT4Dog with those identified in IMU recordings, a 120 fps GoPro 
camera (GoPro Hero 3 + , GoPro, Inc., San Mateo, CA, USA) was used to film the entire test. The GoPro cam-
era was turned on before streaming the IMU sensor data. The camera recorded the finger tapping event of the 
synchronization board (Fig. 1e). After inserting the IMU sensors into each sensor holder on the limbs, the dog 
was led to stand at the starting line of the GAIT4Dog walkway. Meanwhile, the GoPro camera was positioned 
on a tripod behind the dog. The dog was led by the handling person to walk along the GAIT4Dog walkway at 
their own pace, and the leash was kept loose during the walk. The GoPro camera was positioned to capture the 
dog’s first hindlimb stepping event on the active area of the walkway while the GAIT4Dog kept recording the 
dog’s foot placement in its own system.

After the test, the recorded GoPro videos were manually analyzed to locate the image frame when the syn-
chronization board was finger tapped. The finger tapping event was also identified in the recorded accelerometer 
signals of the IMU based on the signal spikes. From the GoPro video sequence, the total number of the dog’s 
steps was counted between sensor mounting and when one of the dog’s hindlimbs first touched on the walkway 
mat (referred to as “swing end” event). Using this step count, the stride corresponding to the first hindlimb 
“swing-end” event recorded in GAIT4Dog was identified in IMU signals.

Validation and statistical analysis.  To quantitatively evaluate the detection accuracy of swing start and 
end events, the following gait parameters were calculated for each identified stride:

where the subscription N indicates the Nth stride in a single test. SSN and SEN represent the time points (in 
seconds) of the corresponding swing start and swing end, respectively. Each stride of a limb consists of a swing 
phase and a stance phase. The stride duration can be calculated from the swing start to the next swing start (SDS) 
or from the swing end to the next swing end (SDE). These four parameters in Eq. (1) were calculated using both 
the 4-limb IMU and Gait4Dog systems for all four limbs.

Pearson’s linear correlation was used first to evaluate the correlation between the results obtained in the two 
systems. In addition, the Bland–Altman analysis 32 was used to investigate the agreement between the measure-
ments from IMU and Gait4Dog. Measurements from both the left and right limbs were used in the statistical 
analysis. Because different signal markers were used to analyze the IMU signals from the forelimb and hindlimb, 
these statistical evaluations were applied to evaluate the forelimb and hindlimb results separately.

All IMU signal analysis and stride phase detection algorithms used in this study were implemented in Matlab 
(The MathWorks Inc., Natick, MA, USA).

Detection algorithms
Stride detection.  The first thing to analyze IMU signals was to accurately identify all strides of each limb, 
which are cyclic or periodic in nature. Figure 2 shows representative raw 6-channel IMU signals from all tests 
recorded in this study which include 3-channel accelerometer readings (Ax, Ay, Az) and 3-channel gyroscope 
readings (Rx, Ry, Rz). The x, y, and z directions were determined by the sensor orientation illustrated in Fig. 1. 
The accelerometer measures the acceleration of the sensor along the corresponding axis in units of gravity (g), 
whereas the gyroscope measures the sensor rotation around the corresponding axis in units of degrees per sec-
ond (º/s).
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Stance Duration of Nth Stride: STDN = SSN+1 − SEN
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Stride Duration of Nth Stride by Swing End: SDEN = SEN − SEN−1
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Figure 2 shows clear cyclic signals in all six IMU channels for both forelimbs and hindlimbs. In comparison 
with the forelimb IMU signals reported in Jenkins et al.30, the Ax, Az, Ry, and Rz signals had similar profiles. 
The different appearance in Ay and Rx was largely due to the different coordinates systems used (both Ay and 
Rz had opposite directions). However, the hindlimb IMU signals were noticeably different from the forelimb. 
For example, hindlimbs had much higher Ax amplitudes, whereas their Az and Ry signals were generally smaller 
(Fig. 2). As discussed in Jenkins et al.30, the Rz peaks were also used in this study to identify each stride because 
the Rz signals were most consistent among all six channels for both forelimbs and hindlimbs. The strong posi-
tive Rz peaks represented the limb’s “swing” forward movement as the limb rotated around the transverse axis 
(the z-axis in Fig. 1).

To detect stable markers on Rz peaks, our algorithm first identified all significant peaks in Rz using the “find-
peaks” function in Matlab as in the previous study30. From each identified Rz peak, the algorithm detected the 
time points when the Rz curve crossed zero on the left and right sides of the peak. The mid-point between the 
left and right zero-crossing was used as a timestamp marker (TN) of a stride, and the duration from the left and 
right zero-crossing was used to present the full width of the Rz peak. For the convenience of further algorithm 
explanation, the following two variables were defined based on the above discussion:

Occasionally, abnormal strides may occur when a dog takes a sudden change of movement. Such strides did 
not follow typical gait and thus were removed in our data analysis. A stride was considered abnormal if both the 
width (HWN) and the Rz amplitude at TN were outliers. A measure was determined as an outlier if its value was 
more than three scaled median absolute deviations (MAD) away from the median of all measurements. During 

(2)

{

TN : time marker of the Nth stride (middle of Rz peak)

HWN : half - width of the Rz peak at Nth stride
.

Figure 2.   Representative IMU signals (3-axis accelerometer readings Ax, Ay, and Az and 3-axis gyroscope 
readings Rz, Ry, and Rz) acquired from a forelimb and a hindlimb of a dog. Vertical dashed lines mark the 
center of the Rz peak, and horizontal dashed lines indicate the width of the Rz peak.
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a typical gait test, a typical dog would move at a relatively constant pace, then took a short pause or transition 
before moving again. The pausing or transitional strides were also considered abnormal. To determine such 
strides, all normal steps were clustered into groups by analyzing the stride duration TN+1−TN, which was the 
duration between two strides. A movement group ended when the next stride duration was long enough to be 
considered an outlier using the same MAD criterion described above. If the number of strides inside a movement 
group was less than three, this group was considered as transitional and thus removed from further analysis.

Swing start and end detection.  To determine the “swing start” and “swing end” time points of a stride, 
the six-channel raw IMU signals (Ax, Ay, Az, Rx, Ry, Rz) and their corresponding first-order time derivatives 
(Ax′, Ay′, Az′, Rx′, Ry′, Rz′) were analyzed to identify potential signal markers. The raw signals were interpolated 
to 1 kHz using spline interpolation, filtered using a 3rd order Savitzky-Golay filter (with a 0.051 s frame size) 
before calculating the derivatives. The Savitzky-Golay filter greatly suppressed noise in signal derivatives while 
preserving all significant signal features used in our feature detection algorithms. Only selected IMU signals 
were found useful in detecting the stride phase timings. The performance of all useful signal markers was evalu-
ated by comparing the detection results against the references from the synchronized GAIT4Dog tests. Different 
signal markers were identified for forelimb and hindlimb IMU sensors due to their different IMU signal profiles 
(Fig. 2).

Table 1 describes the IMU signal markers with corresponding search windows. As explained in “Stride detec-
tion” section, the stride marker TN was located in the middle of the corresponding Rz peak, which represented 
part of the swing phase of the stride. We confirmed that the swing start always occurred before TN, and swing 
stop occurred after TN. To assist in determining IMU signal markers for swing start and end, search windows 
were used in the algorithm to ensure correct markers were identified. For each phase time point, two markers 
(M1 and M2) were identified to accommodate signal variations observed in strides. The second marker (M2) 
was used only when the first marker (M1) was not successfully detected. In regular cases, the two marker loca-
tions were very close to each other.

Figure 3 shows examples of using the IMU markers (Table 1) to detect the time points of swing start and end 
events. In forelimbs, the swing start event always occurred between the left boundary of the Rz peak (TN – HWN) 
and Rz center (TN), as indicated as the search window W1 in Fig. 3c. The best signal marker for swing start (SSM) 
was the strongest negative peak in Rz′ corresponding to a positive Ax (Fig. 3d, M1 in Table 1). A negative Rz’ with 
positive Ax indicated that the dog’s forelimb was accelerating in the forward direction. In rare cases when M1 was 
not detected, the second marker (M2) was used by finding the midpoint time between maximal Ax and Ax = 0.

The forelimb swing end event occurred after the Rz peak boundary (TN + HWN) and before the start of the 
next Rz peak estimated using TN+1 – 1.5 × HWN-1 (search window W2 in Fig. 3c). The Ax signal approached 
minimal negative values at the beginning of this search window, suggesting a deceleration of the forelimb. Likely 
due to forces produced during deceleration, an oscillation pattern appeared in Ax and its derivative Ax′. The 
Ax′ peak with the highest prominence, excluding the first Ax′ peak, was a reliable marker for swing end (SEM 
in Fig. 3, M1 in Table 1). In rare cases when a valid M1 was not identified, the algorithm used the time point of 
maximal Rz′ outside the Rz peak boundary as the alternative marker (M2 in Table 1).

For hindlimbs, the swing start event of the current stride occurred after the end of the previous stride (esti-
mated using TN-1 + 2 × HWN-1) and before the left boundary of the current Rz peak TN-HWN (search window W1 
in Fig. 3g). A reliable swing start marker (SSM) was identified as the time when Ax crossed zero from negative 
to positive values (Fig. 3e, M1 in Table 1). Such a zero-crossing event suggested the limb started to accelerate 
forward. We found that a valid M1 marker had to be before the last negative Rz′ peak inside the Rz peak (Fig. 3h. 
If no valid M1 was detected, the algorithm used an alternative marker (M2) at the time when Ay started to 
decrease significantly (the rate of change: Ay′ > 50 g/s).

The search window for the hindlimb swing end was defined as [TN, TN + 2 × HWN] (W2 in Fig. 3g). The time 
point when Ay decreased to -g following a peak Ay was identified as a consistent signal marker (M1) for swing 
end (SEM in Fig. 3f). It is interesting to note that the Ay signal reading was -g due to gravity when the IMU sen-
sor stayed still on the ground. This M1 marker suggested an effective upward force produced by the touchdown 
impact. If no valid M1 markers were detected, the algorithm used the location of the negative Rz peak after the 
right Rz boundary TN + HWN as the alternative M2 marker.

Table 1.   IMU signal markers and search windows for detection of swing start and end time positions in 
forelimb and hindlimb strides.

Signal markers Search window

Forelimb

Swing Start M1: negative Rz’ peak with the highest prominence with positive Ax
M2: midpoint between max(Ax) and Ax = 0 [TN – HWN, TN]

Swing End M1: Ax’ peak with the highest prominence excluding the first Ax’ peak
M2: max(Rz’) outside Rz peak boundary [TN + HWN, TN+1 – 1.5 × HWN+1]

Hindlimb

Swing Start M1: Ax first crosses zero from negative to positive before the last negative Rz’ peak
M2: Ay’ starts to decrease significantly (> 50 g/s) [TN-1 + 2 × HWN-1, TN-HWN]

Swing End M1: Ay reaches -g or a negative peak after peak Ay outside TN + HWN
M2: negative Rz peak after TN + HWN

[TN, TN + 2 × HWN]
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Validation results and discussions
The IMU measurements were validated using 24 GAIT4Dog tests recorded in this study. For each GAIT4Dog 
test, four to five strides from each of the four limbs were generally recorded by the GAIT4Dog system. A dog 
typically took a couple of seconds to go through the active area of the walkway (4.9 m long and 0.6 wide). All 
strides identified in the GAIT4Dog system were matched (“synchronized) with IMU measurements as explained 
in the section of “Synchronized IMU and GAIT4Dog tests”. Overall, the number of synchronized swing start 
events detected was 237 in forelimbs and 239 in hindlimbs in the four dogs. The number of synchronized swing 
end events was 230 and 239 in forelimbs and hindlimbs, respectively. The four parameters listed in Eq. (1) were 
then calculated based on these detected events.

Figure 4 shows the Pearson’s correlation results between IMU and Gait4Dog measurements of the four gait 
parameters (SWD, STD, SDS, SDE) defined in Eq. (1). All results obtained in the two systems were highly cor-
related (p < 0.001) for both forelimbs and hindlimbs. The correlation coefficient (r) ranged from 0.81 to 0.99 in 
forelimb and 0.83 to 0.98 in hindlimb. The correlation coefficient was equal or greater than 0.97 in STD, SDS, 
and SDE in forelimbs, as well as in SDE in hindlimbs. The smaller correlation coefficients in other measures were 
attributed to slightly greater variations between the two systems as well as the smaller data range.

The Bland–Altman analysis is a reliable way to evaluate the agreement and bias between two measurement 
systems32. Figure 5 shows the Bland–Altman plots of the four gait parameters (SWD, STD, SDS, SDE) obtained 
from the synchronized IMU and GAIT4Dog tests. Each symbol represents a comparison of the same step param-
eter measured using both IMU and GAIT4Dog systems (indicated using subscript “IMU” and “G4D”, respec-
tively). The horizontal axis is the arithmetic mean of the two measurements, and the vertical axis represents the 
difference between the two measurements.

In forelimbs, the mean bias (dashed line) between the IMU and Gait4Dog results was − 0.0023 s, 0.0032 s, 
0.0008 s, and 0.0014 s for SWD, STD, SDS, and SDE, respectively. The corresponding 95% confidence intervals 
of the agreement (solid lines) were [− 0.023 s, 0.018 s], [− 0.018 s, 0.025 s], [− 0.012 s, 0.010 s], and [− 0.017 s, 
0.019 s]. The disagreement between IMU and GAIT4Dog results was less than 10% of the mean value in more 
than 92% of the data points (97.4%, 92.2%, 100%, 100% in SWD, STD, SDS, SDE, respectively). The stride dura-
tion by swing start (SDS) had the best agreement between the two systems, which was consistent with the high 
correlation coefficient (r = 0.99) shown in Fig. 4.

In hindlimbs, the mean bias between the IMU and Gait4Dog results was 0.0022 s, − 0.0027 s, 0.0006 s, 
and − 0.0005 s for SWD, STD, SDS, and SDE, respectively. The corresponding 95% confidence intervals of the 
agreement were [− 0.022 s, 0.026 s], [− 0.028 s, 0.023 s], [− 0.028 s, 0.029 s], and [− 0.011 s, 0.010 s]. While the 

Figure 3.   Examples of IMU signal markers (Table 1) used to detect the time points of swing start and end 
events in forelimb (a–d) and hindlimb (e–h). The black vertical dashed lines indicate the search window 
boundaries, whereas the star symbols indicate the location of the swing start marker (SSM, black/red star) and 
swing end marker (SEM, green star). W1 and W2 indicate the search windows for swing start and swing end, 
respectively.
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mean bias between the two systems remained low, the confidence intervals were wider than those in the forelimb 
comparison. Overall, the disagreement between the two systems was less than 10% of the mean value in 96.9%, 
78.7%, 99.0%, and 100% of the data points in SWD, STD, SDS, and SDE, respectively. A careful examination 
indicated that the small percentage number of 78.7% in STD could be mainly attributed to the small mean STD 
values, which were the smallest among all parameters. SDE had the best agreement between the two systems with 
sub-millisecond mean bias and 10 ms in the confidence interval. This was consistent with the high correlation 
coefficient (0.98) shown in Fig. 4.

Among the four gait parameters calculated in this study, the SWD and STD values are affected by both the 
swing start and swing end detection (Eq. (1)). The SDS and SDE values are only affected by the swing start and 
swing end, respectively. Therefore, the accuracy in SDS and SDE provides a good estimation of the accuracy of 
swing start and swing end detection, respectively. Because the temporal resolution of the IMU system was 0.01 s 
(100 Hz data acquisition rate), the small limits in confidence intervals of SDS in forelimb ([− 0.012 s, 0.010 s]) 
and SDE in hindlimb ([− 0.011 s, 0.010 s]) suggested that the accuracy of swing start detection in forelimbs and 
swing end detection in hindlimbs may be close to the system limit.

Although we have conducted an extensive search for better signal markers, the phase detection accuracy of 
swing end in forelimbs and swing start in hindlimbs remained slightly worse than their aforementioned coun-
terparts. It’s known that the IMU signals may be affected by variations in sensor mounting positions. The 3D 
printed sensor holder used in this study helped to minimize variations in mounting position. However, the IMU 
sensors were mounted at higher locations away from the paw to avoid affecting the dog’s movement. Because the 
swing start and end events were defined based on the contact between the ground and paw, the distance between 
the sensor and paw may ultimately affect the accuracy of detection paw-ground contact.

It should also be noted that any disagreement between the two systems may also be attributed to possible 
errors in the GAIT4Dog system. The walkway system is made from a large number of pressure sensors with finite 
sensor size and response. The paw touch events are determined based on the pressure readings using a proprietary 
algorithm. It’s expected that pressure readings may be affected by specific paw position, contact size, and contact 
speed, which can lead to fluctuations in the detection of swing start and end events. We had encountered several 
occasions when a dog’s steps were detected by the IMU system but not recognized by GAIT4Dog on the walkway.

Nevertheless, the overall good agreement between the IMU and GAIT4Dog systems suggests that the wire-
less 4-limb IMU system may be able to characterize the gait types of the dogs used in this study. In general, a 
canine gait can be classified as “walk”, “amble”, “trot”, “canter” etc., based on the on-ground paw patterns. For 
example, in “walk”, three paws are on-ground, and the other is off-ground. The off-ground paw (in swing phase) 
may alternate from the forelimb to the hindlimb, and from the left limb to the right limb. In “amble” gait, the 
on-ground paws may alternate between two limbs on the same side and two limbs in diagonal. “Trot” is a slightly 
faster gait and is characterized by two diagonal limbs swinging in unison while the other two are on the ground.

In reality, a dog’s gait sequence is often complicated with mixed gait types. The top panel of Fig. 6 shows a 
continuous temporal “box diagram” of a stride sequence constructed using the swing start and end data measured 
from a dog’s four limbs. The solid boxes represent swing phases of a limb, and the stance phases are represented 
by the white spaces between two solid boxes. The pawprint diagrams at the lower panel visualize the on-ground 
paw patterns at a specific time where off-ground paws are represented in light-gray, and on-ground paws are 
shown in solid colors.

Figure 4.   Pearson’s correlation of the four gait parameters (Eq. (1)) obtained from the IMU (vertical axes) and 
GAIT4Dog (horizontal axes) systems in the synchronized validation study. The correlation coefficient r and p 
values are given in each pairwise plot. SWD, swing duration; STD, stance duration; SDS, stride duration based 
on swing start; SDE, stride duration based on swing end.
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A quick overview of the temporal box diagram suggests that many strides can be characterized as “trot” due 
to the alternating diagonal on-ground paw patterns. This is most obvious at the beginning and toward the end, 
as evidenced in the paw diagrams around 43 s and 46 s. However, deviations can be observed in the middle 

Figure 5.   Bland and Altman plots of the four gait parameters (SWD, STD, SDS, SDE) to study the agreement 
between IMU (with subscript IMU) and GAIT4Dog (with subscript G4D) measurements in the synchronized 
validation study. The horizontal axes are the arithmetic mean of IMU and G4D readings, and the vertical axes 
are their difference. The measurement unit is second in all axes. The dashed lines are the mean bias between the 
two systems. The solid lines indicate the 95% confidence interval of the agreement. SWD, swing duration; STD, 
stance duration; SDS, stride duration based on swing start; SDE, stride duration based on swing end.
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part of the stride sequence. The dog appeared to speed up from ~ 44 s to ~ 45 s, which can be corroborated by 
smaller stance durations (white spaces between boxes in solid colors) in all four limbs. The two paw diagrams 
close to 44 s and 45 s show only the right hind paw on-ground, and all other three paws are off-ground. Such 
a paw pattern only exists in the traditional “canter” or “gallop” gait. It is interesting to note that the diagonal 
“trot” gait can still be observed in the middle part of the stride sequence. Therefore, we can conclude that this 
dog’s gait type changed rapidly during the speed-up period from the beginning toward 44–45 s and during the 
slow-down period thereafter.

In conclusion, we developed a 4-limb wireless IMU system for canine gait analysis. The IMU sensors can 
be easily mounted to a dog’s limbs using a 3D printed sensor holder, which showed no adverse impact on dog’s 
movement. Through intensive searching and validation, effective IMU signal markers were identified for detect-
ing the swing start and end events in both forelimbs and hindlimbs. The system was tested on four dogs in a 
synchronized study using a commercially available GAIT4Dog system as a comparison reference. Owing to the 
novel sensor mounting system and robust signal processing algorithms, we achieved a great agreement between 
the measurements obtained in the IMU system and the GAIT4Dog walkway. We demonstrated that this 4-limb 
system was able to reveal complicated gait patterns in detail.

To the best of our knowledge, this is the only IMU based wireless gait system that can autonomically detect 
stride parameters in all four limbs of a dog with precision comparable with a GAIT4Dog system. With its 
low cost, lightweight, and wireless capability, this 4-limb IMU based gait analysis system is well positioned 
for applications on free roaming animals. It enables new research opportunities in studying the sophisticated 
coordination among all four limbs in dogs. Such a system may also be adapted for gait applications in other 
quadrupedal animals. Once fully developed, such a tool would be valuable for animal gait analysis at veterinary 
clinics as well as in translational research involving canine models (and potentially other quadrupedal animal 
models) of human diseases.

Data availability
Data are available from the corresponding authors upon reasonable request.
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