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Acute respiratory distress syndrome (ARDS) involves damage to lungs causing an influx
of neutrophils from the blood into the lung airspaces, and the neutrophils causing further
damage, which attracts more neutrophils in a vicious cycle. There are ∼190,000 cases
of ARDS per year in the US, and because of the lack of therapeutics, the mortality rate
is ∼40%. Repelling neutrophils out of the lung airspaces, or simply preventing neutrophil
entry, is a potential therapeutic. In this minireview, we discuss how our lab noticed that
a protein called AprA secreted by growing Dictyostelium cells functions as a repellent
for Dictyostelium cells, causing cells to move away from a source of AprA. We then
found that AprA has structural similarity to a human secreted protein called dipeptidyl
peptidase IV (DPPIV), and that DPPIV is a repellent for human neutrophils. In animal
models of ARDS, inhalation of DPPIV or DPPIV mimetics blocks neutrophil influx into
the lungs. To move DPPIV or DPPIV mimetics into the clinic, we need to know how this
repulsion works to understand possible drug interactions and side effects. Combining
biochemistry and genetics in Dictyostelium to elucidate the AprA signal transduction
pathway, followed by drug studies in human neutrophils to determine similarities and
differences between neutrophil and Dictyostelium chemorepulsion, will hopefully lead to
the safe use of DPPIV or DPPIV mimetics in the clinic.

Keywords: Dictyostelium discoideum, chemorepulsion, acute respiratory disease syndrome, neutrophil (PMN),
DPPIV, PAR2

ACUTE RESPIRATORY DISTRESS SYNDROME (ARDS)

Acute respiratory distress syndrome (ARDS) is an acute onset of low blood oxygen levels due to
abnormal accumulation of multiple cell types in the lungs, including immune cells (Ashbaugh et al.,
1967). The cells can damage the lungs, as well as clog airspaces, leading to lung dysfunction and thus
low blood oxygen levels. The abnormal accumulation of cells is caused by either direct or indirect
lung injury; direct lung injury can be from pneumonia caused by viruses, bacteria, or fungi, trauma
from mechanical ventilation, or injury caused by inhaling harmful substances, while indirect lung
injury is primarily from inflammation or trauma to other organ systems (Shaver and Bastarache,
2014; Cochi et al., 2016; Lynn et al., 2019). There are approximately 190,000 cases of ARDS in the
United States each year (Rubenfeld et al., 2005). ARDS can have a rapid progression, with patients
advancing from breathing normally despite lung damage (mild ARDS) to requiring a ventilator
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(moderate or severe ARDS) within a week (Ranieri et al., 2012).
The mortality rate for ARDS is 27% for mild, 32% for moderate,
and 45% for severe ARDS (Ranieri et al., 2012) and the 3-year
mortality rate is 44, 47, and 71% respectively (Parhar et al., 2019).

In ARDS patients, neutrophils migrate from the blood into
the airspaces of the lungs (Steinberg et al., 1994; Zemans et al.,
2009) in response to increased levels of inflammatory mediators,
chemokines, and cell damage (Figures 1A–C; Thompson et al.,
2017; Lin and Fessler, 2021). Once in the lungs, the neutrophils
target pathogens for phagocytosis and release proteases, reactive
oxidants, and neutrophil extracellular traps (Zemans et al., 2009).
In ARDS, some neutrophils in the lungs release proteases and
reactive oxygen species even if there is no pathogen present,
causing lung damage, and this then recruits more neutrophils in a
vicious cycle (Figures 1D,E; Weiss, 1989). The inflammation and
damage reduce gas exchange, promotes vascular permeability,
and increases fluid in the lung tissues and air spaces (Matthay
et al., 2012; Kao et al., 2015; Lynn et al., 2019). The only
effective management for ARDS is protection of the lungs,
putting the patient on oxygen and a ventilator with low tidal
volume ventilation to reduce stretching of the lung tissue (Acute
Respiratory Distress Syndrome Network et al., 2000). There are
currently no therapeutics for ARDS (Chen et al., 2020).

As described above, neutrophils entering the lungs appear
to cause most of the damage in ARDS. An intriguing possible
therapy for ARDS is to prevent neutrophils from entering the
lungs, or to repel neutrophils that have entered the lungs back out

of the lungs (Figure 1F). Some prokaryotes can sense repellent
chemicals (chemorepellents) and move away from the source of
the chemorepellent, and this process is fairly well understood
(Pandey and Jain, 2002; Anderson et al., 2015). As described
below, there are a few examples of chemorepellents in eukaryotic
cells, including neutrophils, but how these affect cells is poorly
understood. To move a neutrophil chemorepellent into the clinic,
we need to know how this repulsion works to understand possible
drug interactions and side effects.

CHEMOREPULSION CAN CAUSE CELLS
TO MOVE AWAY FROM A SIGNAL

Chemotaxis allows migratory cells to either move toward
(chemoattract) or move away (chemorepel) from an external
chemotactic stimulus (Figure 2; Vianello et al., 2005). In
eukaryotes, chemoattraction plays important roles during
development and morphogenesis, and in immune responses
(Sadik and Luster, 2012; Kolaczkowska and Kubes, 2013;
Theveneau and Mayor, 2013). Directed migration of a cell toward
a chemoattractant involves chemoattractant gradient sensing
through a receptor-mediated signal transduction processes to
induce rearrangement of cytoskeletal proteins at the front and
rear of a cell, a conserved mechanism used by migrating
cells (Dandekar et al., 2013; Fukujin et al., 2016). Similar to
chemoattraction, chemorepulsion also plays an important role in

FIGURE 1 | Diagram of the basic process of ARDS and a potential therapeutic mechanism. (A) A cartoon of a normal lung, and (B) a lung with damage.
(C) Neutrophils leave the blood and enter the lung tissue and airspaces in response to the damage. (D) In ARDS, this can result in further lung damage, which (E)
results in even more neutrophils attracted to the lungs causing more damage in a vicious cycle. (F) An intriguing possibility is that inhalation of a nebulized neutrophil
chemorepellent could drive neutrophils out of the lungs and/or prevent neutrophils from entering the lungs, and thus break the vicious cycle and reduce
neutrophil-induced lung damage. Figures were created using BioRender.com.
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FIGURE 2 | Diagram of eukaryotic chemorepulsion. (A) In the absence of a gradient, cells extend pseudopods, and move, in random directions. (B) In a gradient of
a chemorepellent (blue shading), cells move away from the higher concentration of the chemorepellent. Figures were created using BioRender.com.

development and immune responses (Mark et al., 1997; Vianello
et al., 2005; Levine et al., 2006; Clark et al., 2014a; Guidobaldi
et al., 2017; Tang, 2017). However, the mechanisms of eukaryotic
chemorepulsion is still being elucidated.

The bacterium Escherichia coli (E. coli) responds to both
chemoattractants and chemorepellents (Adler and Templeton,
1967; Berg and Brown, 1972; Berg and Tedesco, 1975). E. coli
cells that sense decreasing concentrations of an attractant, or
increasing concentrations of a repellent, causes the cells to
tumble induced by clockwise flagellar rotation instead of smooth
swimming induced by counter clockwise flagellar rotation, and
the cells thus change direction to increase the probability that
they will be moving in the right direction (Larsen et al., 1974). In
Helicobacter pylori, chemorepulsion from the autocrine quorum
sensing signal autoinducer-2 determines spatial organization and
dispersal of biofilms (Anderson et al., 2015). The unicellular
eukaryote Trichomonas vaginalis chemorepels from toxic agents
such as metronidazole, ketoconazole, and miconazole (Sugarman
and Mummaw, 1988). In the presence of a chemorepellent, such
as conditioned supernatant factor (CSF), unicellular eukaryotes
such as Tetrahymena and Paramecium swim backward (Rodgers
et al., 2008; Plattner, 2015; Zou and Hennessey, 2017). In fungi,
chemorepulsion can direct filament growth and mat formation
(Karunanithi et al., 2012).

SEVERAL PROTEINS ACT AS
NEURONAL CHEMOREPELLENTS

In higher eukaryotes, during neuronal development, neurons
extend axons to reach specific targets (Kalil et al., 2011;
Santos et al., 2020). For axons to correctly navigate to their
targets, attractive and repulsive factors guide neuronal growth,
regeneration, and collapse (Cregg et al., 2014; Thiede-Stan and
Schwab, 2015). Many of the repulsive factors inhibit growth
cone outgrowth and promote their collapse (Liu et al., 2006).
Some of these repulsive molecules are proteins such as Nogo,

Ephrins, Semaphorins, Draxin and Netrins. Nogo-A (the active
form is called Nogo-66) is expressed by many projection
neurons in the central and peripheral nervous systems (Nash
et al., 2009; Schwab, 2010). Ephrins are negative guidance
molecules for axons (Kolpak et al., 2009; Chatzizacharias et al.,
2014; Savino et al., 2015). Ephrins signal through neuronal
Eph receptors including EphA5 (Wahl et al., 2000). Other
repulsive molecules such as the semaphorins Sema3A and
3F bind to plexin and neuropilin co-receptors to induce the
repulsion of axons (Liu et al., 2006; Andrews et al., 2013;
Vo et al., 2013).

Draxin is an axon guidance cue that is vital for the
development of the thick bundle of nerve fibers, called the corpus
collosum, between the two hemispheres of the brain (Islam
et al., 2009) and signals through the “deleted in colorectal cancer
(DCC)” receptor (Islam et al., 2009; Meli et al., 2015). Although
DCC is vital for axonal repulsive behavior, the binding of Netrin-
1 to neuronal DCC induces attraction (Guijarro et al., 2006).
Netrin-1 has both chemoattractive and chemorepulsive effects
on many migratory axons during development and injury repair
(Colamarino and Tessierlavigne, 1995; Furne et al., 2008). The
binding of Netrin-1 to uncoordinated family member 5 (UNC-
5) (Bashaw and Goodman, 1999; Hong et al., 1999) induces
chemorepulsion in axons and immune cells (Hedgecock et al.,
1990; Tadagavadi et al., 2010).

In mammals, multiple pathways are required for
chemorepulsion (Riches et al., 2013; Holt et al., 2021). The
Wnt signaling pathway is a highly conserved pathway involved
in multiple cell processes such as fate determination, polarity,
migration, and neural patterning (Komiya and Habas, 2008).
Wnt5a activation of the non- canonical Wnt receptor RYK on
specific neurons induces chemorepulsion (Clark et al., 2014b).
Secreted Wnt protein also bind to Frizzled receptors, a family
of integral membrane protein receptors, to repel axon growth
(Huang and Klein, 2004; Freese et al., 2010). Slit guidance ligand
2 (Slit2), a chemoattractant or chemorepellent dependent on
the isoform, and activation of Roundabout receptor (Robo1),
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a coreceptor of Slit2, induces chemorepulsion of axons as well
as neutrophils (Hu, 1999; Nguyen Ba-Charvet et al., 1999;
Park et al., 2016). Slit1 and Slit3 also induce chemorepulsion
of olfactory tract and spinal motor axons during development
(Patel et al., 2001).

SEVERAL PROTEINS ACT AS IMMUNE
CELL CHEMOREPELLENTS

In addition to Slit2, protein signals such as eotaxin-3, CXCL10,
IL-8 and stromal cell derived factor-1 induce dendritic cell,
monocyte, leukocyte, and/or neutrophil chemorepulsion (Ogilvie
et al., 2003; Kohrgruber et al., 2004; Tharp et al., 2006). The
chemokine stromal derived factor-1/CXCL12 is involved in
tumor growth, metastasis and promotion of tumor immunity
(Chen et al., 1994; Jager et al., 1996), possibly because CXCL12
secreted by tumors decreases T-cell infiltration (Vianello et al.,
2006; d’Onofrio, 2012). In neutrophils, Slit2 plays a role
in neutrophil migration toward and away from regions of
inflammation (Tole et al., 2009; Ye B. Q. et al., 2010; Pilling
et al., 2019). A ∼110- kDa N-terminal fragment of Slit2 induces
chemorepulsion in neutrophils, and inhibiting Slit2 receptors
Robo1 and syndecan-4 diminishes neutrophil chemorepulsion
(Pilling et al., 2019).

EUKARYOTIC CHEMOREPULSION
INVOLVES REGULATION OF THE
CYTOSKELETON

Downstream of their receptors, many axon growth
chemorepellents induce axonal repulsion by activating Rho
GTPases, small signaling G protein molecular switches that
play a role in cytoskeletal organization, cell movement, and
cell polarity (Hall, 1998; Bustelo et al., 2007; Ridley, 2015). The
activation of Rho GTPases in turn activates Rho-associated
protein kinases (ROCKs), effector molecules downstream of
Rho GTPases that play a role in cell shape and movement by
regulating cytoskeletal elements (Leung et al., 1996; Maekawa
et al., 1999). The signal transduction pathways then diverge to
rearrange essential cytoskeletal proteins necessary for directed
cell migration (Schmandke et al., 2007; Gelfand et al., 2009;
Schwab, 2010).

Dictyostelium discoideum SECRETES
AN ENDOGENOUS CHEMOREPELLENT
CALLED AprA

The simple eukaryote Dictyostelium discoideum is an excellent
model system to study chemotaxis. In a nutrient-rich
environment, D. discoideum cells grow and proliferate as single
cells. When the nutrients become depleted, D. discoideum cells
aggregate and form multicellular structures bearing spores that
can survive harsh conditions (Bonner and Scharf, 1978; Kessin,
2001). The aggregation is mediated by cells secreting, and moving

toward, relayed pulses of 3′, 5′-cyclic adenosine monophosphate
(cAMP) (Bonner, 1970; Tomchik and Devreotes, 1981).

During their growth phase, D. discoideum cells secrete a
protein called autocrine proliferation repressor A (AprA). AprA
acts as a signal that partially inhibits cell division without
inhibiting cell growth (the increase in accumulated mass) (Brock
and Gomer, 2005). AprA is a 60 kDa protein which forms
a ∼150 kDa complex with a protein called CfaD (Brock and
Gomer, 2005; Bakthavatsalam et al., 2008).

How cells regulate the accumulation of AprA is not fully
understood. Eukaryotic initiation factor 2 (eIF2) (Dever, 2002;
Ye J. et al., 2010), initiation factor kinases, IfkA, IfkB, and IfkC
(Fang et al., 2003; Rai et al., 2006), and Ceroid lipofuscinosis
neuronal 3 (Cln3) and Cln5 that are associated with a childhood
onset neurological disorder called Batten disease or neuronal
ceroid lipofuscinosis (NCL) (Santavuori, 1988), are important
for extracellular accumulation of AprA and CfaD (Bowman
et al., 2011; Huber et al., 2014; Huber and Mathavarajah, 2018;
Figure 3).

Dictyostelium discoideum cells lacking AprA are able to
aggregate, but form abnormal structures with fewer and less
viable spores, suggesting that cells lacking AprA can still
migrate toward cAMP and aggregate (Brock and Gomer, 2005).
In colonies of growing cells, wild type cells show directed
movement away from the edge of the colony while cells
lacking AprA do not move away from the edge of the colony
(Phillips and Gomer, 2010). This suggested that AprA acts
as a chemorepellent (Phillips and Gomer, 2010). In artificial
gradients, D. discoideum cells move away from physiological
concentrations of AprA, indicating that AprA is indeed a
chemorepellent (Phillips and Gomer, 2010).

AprA ACTIVATES A COMPLEX SIGNAL
TRANSDUCTION PATHWAY TO INDUCE
CHEMOREPULSION

Dictyostelium discoideum cells migrating toward cAMP and folic
acid (a waste product released by bacteria, which D. discoideum
cells uses as a chemoattractant to find and eat bacteria) require
G protein-coupled receptors (GPCRs) and multiple conserved
signal transduction pathways (De Wit and Bulgakov, 1985;
Hadwiger et al., 1994; Ma et al., 1997; Lim et al., 2005;
Kortholt et al., 2011; Yan et al., 2012). AprA activates G-proteins
Gα8 and Gβ through the GPCR glutamate receptor-like H
(GrlH) to induce chemorepulsion (Bakthavatsalam et al., 2009;
Phillips and Gomer, 2012; Tang et al., 2018; Rijal et al.,
2019; Figure 3). To decrease cell proliferation and induce
chemorepulsion, AprA requires QkgA, a ROCO family kinase
(Gotthardt et al., 2008; Phillips and Gomer, 2010), PakD, a
member of a conserved family of p-21 activated kinases (PAKs)
(Bokoch, 2003), CnrN, a phosphatase and tensin homolog
(PTEN)-like phosphatase (Tang and Gomer, 2008), RblA, a
homolog of a human Retinoblastoma (Rb) protein (MacWilliams
et al., 2006), protein kinase A, components of the target of
rapamycin (TOR) complex 2, phospholipase A, extracellular
signal-regulated protein kinase (Erk1), and the Ras proteins
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FIGURE 3 | Summary of our current understanding of the AprA signal transduction pathway. See text for details. Figure created with BioRender.com.

RasC and RasG (Bakthavatsalam et al., 2009; Garcia et al.,
2014; Phillips and Gomer, 2014; Tang et al., 2018; Rijal et al.,
2019). In addition, AprA requires the putative bZIP transcription
factor BzpN for its proliferation-inhibiting activity but not
for chemorepulsion activity (Phillips et al., 2011), suggesting
that AprA uses partially overlapping pathways to mediate
proliferation inhibition and chemorepulsion.

THE AprA CHEMOREPULSION
MECHANISM HAS A PARTIAL BUT NOT
COMPLETE OVERLAP WITH THE cAMP
CHEMOATTRACTION MECHANISM

For chemorepulsion, in addition to the components mentioned
above, AprA also uses some but not all components of the
cAMP chemoattraction signal transduction pathway (Rijal et al.,
2019). Similar to chemoattraction to cAMP, cells in a rAprA

gradient show actin-rich protrusions at the leading edge of the
cell and myosin II mediated contraction at the trailing edge of
the cell, allowing the cells to move in a biased direction away
from the chemorepellent (Phillips and Gomer, 2012). Although
phospholipase C (PLC) and PI3 kinases 1 and 2 are important for
chemorepulsion of starved D. discoideum cells by the synthetic
cAMP analog 8-CPT-cAMP, and for cAMP chemoattraction
(Keizer-Gunnink et al., 2007), PLC and PI3 kinases are not
necessary for AprA chemorepulsion (Phillips and Gomer, 2012).
In addition, unlike chemoattraction toward cAMP, AprA does
not require Akt and PKB, guanylyl cyclases, and the cytosolic
regulator of adenylate cyclase (CRAC) (Parent et al., 1998; Rijal
et al., 2019).

Some of the key regulators of the AprA-induced
chemorepulsion pathway are Ras GTPases. AprA induces
translocation of RBDRaf1-GFP, an active Ras binding protein
that when translocated to the cell cortex indicates Ras activation
(Rijal et al., 2019). Although PakD is necessary for AprA
mediated chemorepulsion, PakD is not necessary for AprA
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induced translocation of RBDRaf1-GFP to the cell cortex (Rijal
et al., 2019). While PakD localizes at the rear of a migrating cell
(Phillips and Gomer, 2014), PakD may negatively regulate Ras
activation at the side of the cells facing away from AprA during
chemorepulsion (Rijal et al., 2019). Several other proteins can
negatively regulate Ras local activity at the membrane including
Rho GTPases and ERK1/2 (Wang et al., 2013; Lake et al., 2016).
AprA does not cause translocation of RBDRaf1-GFP in cells
lacking a WASP-related cytoskeletal protein suppressor of cAR
(SCAR), suggesting that AprA requires cytoskeletal proteins to
activate Ras (Rijal et al., 2019).

AprA INDUCES CHEMOREPULSION BY
INHIBITING PSEUDOPOD FORMATION
AT THE SIDE OF THE CELL CLOSEST TO
THE SOURCE OF AprA

When cells such as D. discoideum and neutrophils move, they
induce a localized polymerization of actin to form a pseudopod
that protrudes from the cell, and when this attaches to a
substrate, the cells can then move following their pseudopod
(King and Insall, 2009). In the absence of a chemoattractant
or chemorepellent gradient, cells form pseudopods at random
locations, and thus move in random directions (Sasaki et al.,
2004; Rijal et al., 2019). During chemoattraction, cells polymerize
actin and extend a pseudopod toward the source of the attractant
(Sasaki et al., 2004). During chemorepulsion, AprA inhibits
filamentous actin (F-actin) polymerization at the region of the cell
closest to the source of AprA, inhibiting pseudopod formation
in the sector of the cell closest to the source of AprA (Rijal
et al., 2019). This then allows the cells to move in any direction
except the direction toward the source of AprA, resulting in
chemorepulsion. This then indicates a fundamental difference
between chemoattraction and chemorepulsion in D. discoideum:
if a chemoattractant is coming from the West, a cell will tend
to extend a pseudopod and move toward the West; to a first
approximation, if a chemorepellent is coming from the West, cells
will extend pseudopods randomly, and move toward, the East,
North, or South.

THE IDENTIFICATION OF AprA LED TO
THE IDENTIFICATION OF A HUMAN
NEUTROPHIL CHEMOREPELLENT

Dictyostelium discoideum and neutrophils share chemotaxis
properties (Wang, 2009; Wang et al., 2011). Although AprA
has little similarity to mammalian proteins, a predicted tertiary
structure of AprA showed similarity to the structure of human
dipeptidyl peptidase IV (DPPIV) (Zhang, 2008; Roy et al.,
2010, 2012; Herlihy et al., 2013). DPPIV is a 110 kDa serine
protease that localizes on the extracellular surface of some
lymphocytes, endothelial cells, and is also present in plasma,
serum, cerebrospinal fluid, synovial fluid, semen, and urine in
a soluble form, and cleaves peptides with a proline or alanine

in the second position at the N-terminus end (Walborg et al.,
1985; Thoma et al., 2003; Cordero et al., 2009; Kotacková et al.,
2009; Nauck et al., 2011; Pan et al., 2021). In addition to the
predicted structural similarity, AprA has a DPPIV -like protease
activity (Herlihy et al., 2013, 2017). Although AprA is not able
to repel human neutrophils, DPPIV induces chemorepulsion
of D. discoideum cells, suggesting a conserved mechanism of
action (Herlihy et al., 2017). In a range of concentrations
encompassing its concentration in human plasma, DPPIV acts
as a chemorepellent for human and mouse neutrophils, but
does not affect the motility of macrophages and lymphocytes
(Herlihy et al., 2013). In the presence of the DPPIV inhibitors
Diprotin A and DPPP 1c hydrochloride, the chemorepellent
activity of DPPIV was significantly reduced, and suggesting that
the protease activity of DPPIV mediates its ability to induce
neutrophil chemorepulsion (Herlihy et al., 2013).

DPPIV, THE AprA-LIKE THE
NEUTROPHIL CHEMOREPELLENT,
SHOWS EFFICACY IN A MOUSE MODEL
OF ARDS AS WELL AS A MOUSE MODEL
OF RHEUMATOID ARTHRITIS

A standard mouse model of ARDS is to damage the lungs with
aspiration of a drug called bleomycin (Walters and Kleeberger,
2008). The mouse is lightly anesthetized, and 50 µl of saline
with bleomycin is quickly pipetted through the mouth into the
trachea as the mouse is inhaling. A gentle tailward shake of
the mouse then disperses the bleomycin into the lungs. One
day later, activated neutrophils start accumulating in the lungs
(Walters and Kleeberger, 2008). Using this model, recombinant
DPPIV or an equal volume of saline was introduced into the
airspaces of the lungs of bleomycin-treated mice on day 1 and
day 2 after bleomycin treatment by a similar aspiration procedure
(Herlihy et al., 2013). Three days after bleomycin treatment,
mice were euthanized. Phosphate buffered saline was put into
the lungs through the trachea and then removed along with
cells and other material in the airspaces in a procedure called
bronchoalveolar lavage (BAL) (Herlihy et al., 2013). At day 3,
the DPPIV treatments reduced both neutrophils in the BAL fluid
as well as neutrophils remaining in the lungs (as determined by
immunostaining of sections of the post-BAL lungs), but did not
affect the numbers of macrophages and lymphocytes, suggesting
that the effect of DPPIV is specific to neutrophils (Herlihy
et al., 2013). Inhalation of DPPIV thus showed efficacy in a
mouse model of ARDS.

Inflammatory arthritis, also known as rheumatoid arthritis
(RA), is an autoimmune disorder with characteristic chronic
inflammation due to neutrophil accumulation in the joints
causing destruction of the joints (Kaplan, 2013). RA patients have
lower level of DPPIV in plasma compared to non-inflammatory
osteoarthritis (Busso et al., 2005). Injection of DPPIV directly
into the joint in a mouse model of arthritis reduced the
accumulation of neutrophils in the joint, and reduced the severity
of arthritis and synovial inflammation (Herlihy et al., 2015).
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Together with the ARDS model results, this suggests that DPPIV
can reduce inflammation by causing neutrophils to move away
from a site of accumulation.

AGONISTS OF THE DPPIV RECEPTOR
PAR2 INDUCE NEUTROPHIL
CHEMOREPULSION AND SHOW
EFFICACY IN A MOUSE MODEL OF
ARDS

As mentioned above, soluble DPPIV acts as a human and
mouse neutrophil chemorepellent (Herlihy et al., 2013;
White et al., 2018) via the activation of protease activated
receptor 2 (PAR2) (White et al., 2018). PAR2 is a member of the
PAR family of GPCRs, which consists of PAR1/2/3/4 (Ossovskaya
and Bunnett, 2004). PAR2 is activated by the proteolytic cleavage
of the extracellular N-terminus domain causing the remaining
tethered N-terminus to act as a ligand that binds to extracellular
loop 2 of the receptor thereby activating it (Vu et al., 1991;
Gardell et al., 2008) DPPIV requires protease activated receptor
(PAR2) to induce chemorepulsion of human neutrophils (White
et al., 2018). Similar to DPPIV, the PAR2 agonists 2f-LIGRL-
amide (a small peptide with modifications at the N and C
termini), SLIGKVNH2 (a small peptide with a modifications
at the C terminus), and AC55541 (a small molecule) induce
chemorepulsion of human and mouse neutrophils (White
et al., 2018). Although DPPIV induces stronger chemorepulsion
of male neutrophils than female neutrophils, PAR2 agonists
induce chemorepulsion of neutrophils from both male and
female mice (White et al., 2018). In the mouse ARDS model
described above, aspiration of SLIGKVNH2, starting 24 h after
oropharyngeal aspiration of bleomycin, reduced neutrophil
accumulation in lungs at day 3, similar to the effects of DPPIV
described above (White et al., 2018), suggesting that aspiration
of PAR2 agonists could be used to treat ARDS in human patients
(Herlihy et al., 2013; White et al., 2018). Since DPPIV is a
protease that cleaves many target molecules in addition to PAR2
(Zhu et al., 2003; Mulvihill and Drucker, 2014; Wronkowitz
et al., 2014; White et al., 2018; Deacon, 2019; Trzaskalski et al.,

2020), in terms of potential therapeutics, exogenous delivery
of PAR2 agonists may have fewer side effects than exogenous
delivery of DPPIV.

CONCLUSION

Chemorepulsion is an essential process for development,
morphogenesis, and immune responses in eukaryotes. The
identification of AprA, an endogenous chemorepellent
in D. discoideum led to the identification of DPPIV, a
chemorepellent that acts on human (and mouse) neutrophils.
This in turn led to the identification of small-molecule PAR2
agonists as neutrophil chemorepellents. Given by aspiration into
the lungs, both DPPIV and a PAR2 agonist showed efficacy in
a mouse model of ARDS. Although the activation of PAR2 can
reduce damage caused by arthritis, ARDS, and ischemia (McLean
et al., 2002; McCulloch et al., 2018; White et al., 2018), the
activation of PAR2 can lead to unwanted effects such as fetal
injury, fibrosis, and inflammatory, metabolic and cardiovascular
disorders (Cicala, 2002; Redecha et al., 2008; Grimsey et al.,
2011; Kagota et al., 2016; Shearer et al., 2016; Heuberger and
Schuepbach, 2019). Although intriguing possibilities are that
inhalation of a nebulized mist containing DPPIV and/or PAR2
agonists might be useful as therapeutics for ARDS, and localized
delivery of these neutrophil chemorepellents might be useful in
other neutrophil-driven diseases, caution will be needed to limit
dosing to prevent systemic toxicity.
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