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Motto: Representing Motifs in Consensus Sequences
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ABSTRACT Sequence analysis frequently requires intuitive understanding and convenient representation of motifs. Typically, motifs
are represented as position weight matrices (PWMs) and visualized using sequence logos. However, in many scenarios, in order to
interpret the motif information or search for motif matches, it is compact and sufficient to represent motifs by wildcard-style consensus
sequences (such as [GC][AT]GATAAG[GAC]). Based on mutual information theory and Jensen-Shannon divergence, we propose a
mathematical framework to minimize the information loss in converting PWMs to consensus sequences. We name this representation
as sequence Motto and have implemented an efficient algorithm with flexible options for converting motif PWMs into Motto from
nucleotides, amino acids, and customized characters. We show that this representation provides a simple and efficient way to identify
the binding sites of 1156 common transcription factors (TFs) in the human genome. The effectiveness of the method was
benchmarked by comparing sequence matches found by Motto with PWM scanning results found by FIMO. On average, our method
achieves a 0.81 area under the precision-recall curve, significantly (P-value , 0.01) outperforming all existing methods, including
maximal positional weight, Cavener’s method, and minimal mean square error. We believe this representation provides a distilled
summary of a motif, as well as the statistical justification.

KEYWORDS consensus; information theory; motif; sequence logo; transcription factor binding

MOTIF analysis is crucial for uncovering sequence pat-
terns, such as transcription factor (TF) binding sites

(Thompson et al. 2003), splicing sites (Murray et al. 2008),
DNA methylation patterns (Wang et al. 2019), and histone
modifications (Ngo et al. 2019b). A motif is typically repre-
sented as a position weight matrix (PWM), in which each
entry shows the occurrence frequency of a certain type of
nucleic acid at each position of the motif. PWMs are often
visualized by the sequence logo (Schneider and Stephens
1990), which requires a graphical interface. However, when
in a textual interface, representing PWMs requires an n by k

matrix, where n is the number of characters (such as A, C, G,
T, for nucleotides), and k is the length of the motif. Recently,
several studies have shown the usefulness of representing
motifs using kmers (Fletez-Brant et al. 2013; Ghandi et al.
2014; Zeng et al. 2016; Guo et al. 2018); despite the power of
this representation in machine learning models, it is cumber-
some to have a set of kmers to characterize a single motif. In
many scenarios, motifs can be sufficiently represented by
regular expressions of the consensus sequences, such as
[GC][AT]GATAAG[GAC] for the GATA2motif. This represen-
tation is the most compact and intuitive way to delineate a
motif. In the GATA2 motif example, the GATAAG consensus
in the center is the most prominent pattern that would be
read off the PWM or sequence logo. For this reason, consen-
sus sequences are still widely used by the scientific commu-
nity. Consensus sequences in regular expression form are the
only supported textual format to highlight motif occurrence
in popular genome browsers such as UCSC (Kent et al. 2002)
and IGV (Robinson et al. 2011). Consensus sequences are
assigned to de novo motifs and sequences for informative
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denotations (Bailey et al.2009;Heinz et al.2010;Whitaker et al.
2015; Wang et al. 2019). Wildcard-like sequence patterns are
also supported inDNAoligo libraries synthesis bymajor vendors
including Invitrogen, Sigma-Aldrich, and Thermo-Fisher.

However, current methods that convert PWMs to consen-
sus sequences are often heuristic. One simple approach is
taking thenucleotidewithmaximal frequencyat eachposition
to define the consensus sequence (e.g., GGTCAAGGTCAC for
ESRRB). Unsurprisingly, this could misrepresent positions
with similar frequencies (e.g., 0.26, 0.25, 0.25, 0.24, which
should have been assigned as N). Alternatively, in 1987, Cav-
ener proposed to follow a set of rules: use the single nucleo-
tide with the highest frequency when it exceeds 0.50 and two
times the second-highest frequency; else, use the top two
dinucleotides when their total frequencies exceed 0.75; else,
use N (Cavener 1987). However, these rules are arbitrary,
inflexible, and lack a mathematical framework.

Here,wepresentMotto,asequenceconsensusrepresentationof
motifs based on information theory, which ensures minimal in-
formationlosswhenconvertedfromaPWM(Figure1).Weprovide
a standardized solution that determines the optimal motif consen-
sus sequence. We have also implemented a lightweight and easy-
to-use Python package with versatile options for biologists.

Materials and Methods

A positional weight matrix (PWM) defines Pði; jÞ; the probability
of the jth character (out of n characters) at the ith position (out
of k positions), where

P
j
Pði; jÞ ¼ 1; i 2 ½1; k�; and j 2 ½1; n�:

For a given position i; let MðiÞ ¼ fSi;1; Si;2; :::; Si;mg denote
a output consensus character set, where m is the number
of characters to be presented, m 2 ½1; n�; and let Cði; mÞ de-
note the perceived frequencies for a combination of m char-
acters, defined by equal frequencies shared among included
characters:

Cði; 1Þ ¼ Cði; 2Þ ¼ :::¼ Cði;mÞ ¼ 1=m

For example, a MðiÞ ¼ f$A$;$C$; $T$g is a case for m ¼ 3
and Cði; mÞ ¼ 0:333 with frequencies of [0.333, 0.333, 0,
0.333] for [A, C, G, T], respectively. Thus, we consider
the optimal consensus sequence as a series of combination
of characters MðiÞ that has the most similarity between
Cði; mÞ and PðiÞ for each position i 2 ½1; k�:

For convenience, in the following discussionwewill omit the
index i when possible, as we note that optimalMðiÞ is indepen-
dent of the position i 2 I under consideration. To further sim-
plify the discussion, we use the second ði ¼ 2Þ position of
the human TF P73 (Figure 1), where the Pð$A$Þ ¼ 0:077;
Pð$C$Þ ¼ 0; Pð$G$Þ ¼ 0:726; and Pð$T$Þ ¼ 0:197; for
demonstration below.

Motto method using minimal Jensen-Shannon
divergence

Here, we propose to use Jensen-Shannon divergence (JSD)
to measure the similarity between CðmÞ and P: JSD has
been widely used in information theory to characterize the

difference between distributions (Lin 1991). Using this met-
ric, the combination of nucleotides with the least JSD from
CðmÞ to P will have the minimal “information loss,” and is
thus considered as the optimal consensus nucleotide.

To efficiently compare JSD between all possible nucleotide
combinations, we propose the following algorithm (Figure 1).
First, we sort the nucleotides of the PWM in descending order, so
that:

Pð j1Þ$ Pð j2Þ:::$ Pð jnÞ:

For example, at the second position of the human TF P73
(Figure 1), the nucleotides are sorted by occurrence frequen-
cies so that:

Pð$G$Þ ¼ 0:726 $Pð$T$Þ ¼ 0:197 $ Pð$A$Þ
¼ 0:077$ Pð$C$Þ ¼ 0:

Next, we reasoned that if a nucleotide with probability PðSjÞ is
included in the output consensus sequence set, then all nucle-
otides with frequencies larger than PðSjÞmust also be included.
Therefore, the optimal consensus character set M (denoted as
M*) is given by the optimal m(denoted as m*), where:

M* ¼ ðS1; S2; :::; Sm*Þ

PðS1Þ$ PðS2Þ:::$PðSm*Þ:

For example, ifm* ¼ 2, then the optimal output character
set will be M* ¼ f$G$;   $T$g; where Pð$G$Þ ¼ 0:726 
$ Pð$T$Þ ¼ 0:197:

The closer this distribution is to the original distribution of
nucleotide frequencies, the better approximation of the con-
sensus motif is to the original PWM. Thus, m* can be deter-
mined by minimizing the JSD between the two distributions:

m* ¼ argminm
�
JSDðCðmÞ;   PÞ þ q2 �m�

JSDðA; BÞ ¼ 1
2
KLDðA; MÞ þ 1

2
KLDðB; MÞ

M ¼ 1
2
ðA þ BÞ

KLDðA; BÞ ¼
Xn
j¼1

ln
�
AðjÞ
Bð jÞ

�
:

Here, q 2 ½0; 1� is the ambiguity penalty, a parameter input
from the user to penalize a larger m; in case a more definite
output is preferred. When q ¼ 0(the default value), the op-
timal m* marks the canonical minimal JSD, which we deem
to have retained the most information about the original
PWM. When q ¼ 1;m* is guaranteed to be 1, thus the output
consensus nucleotide is M* ¼ fS1g; equivalent to using nu-
cleotides with the maximal frequency.

Thus, the optimal consensus nucleotide set at the ith po-
sition is:
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M* ¼ fS1; S2; :::; Sm*g:

Repeat this procedure for every position i 2 ½1; k�, the final
optimal consensus sequence is given by:

�
S1;  1;  S1;  2;   :::;   S1; m*

�
; 
�
S2;  1;  S2;  2;   :::;   S2; m*

�
; :::; �

Sk;  1;  Sk;  2;   :::;  Sk; m*

�
:

Minimal mean squared error method

For comparison purposes, we have also implemented a
minimal mean squared error (MSE) method, which is an-
other metric used widely to measure distribution discrepancy
(Lele 1993). The rest of the implementation is unchanged,
except that the optimal m ðm*Þ is now determined by mini-
mizing the MSE between the two distributions:

m* ¼ argminm
�
MSEðCðmÞ; PÞ þ q2 �m�

MSEðA;  BÞ ¼ 1
n

Xn
j¼1

ðAð jÞ2Bð jÞÞ2:

Evaluating motif occurrence sites

We have collected 1156 common TFs from human and mouse
from the databases of Transfac (Matys et al. 2006), Jaspar
(Portales-Casamar et al. 2010), Uniprobe (Robasky and Bulyk
2011), hPDI (Xie et al. 2010), and HOCOMOCO (Kulakovskiy
et al. 2018). Each PWM is converted into consensus sequences,

using default options of the four discussed methods: JSD (de-
scribed above), MSE (described above), Cavener (Cavener
1987), and the naive approach of using the maximal frequency.
Motif occurrence sites are determined in the human genome
(hg19), matched by their regular expressions. The ground truth
of the occurrence sites is determined by scanning the original
PWMs with FIMO (Grant et al. 2011) using a 1e-5 P-value
cutoff. The resulting P-values are converted into a significance
score [2log(P-value)] and assigned to the matched motif oc-
currence sites from sequence Mottos. Thus, the area under the
precision-recall curves (Davis and Goadrich 2006) (auPRC) is
calculated by comparing the motif occurrence sites and their
significance scores. Resulting auPRCs are averaged andapaired (by
eachmotif) t-test is conducted to determine performance. Compar-
isons with significance (P-value, 0.01) are shown (Figure 3).

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully within
the article. Motto is freely available at https://github.com/
MichaelMW/motto. Motto representation of all 1156 com-
mon TFs, as well as their sequence logo used in this study can
be found at http://wanglab.ucsd.edu/star/motto.

Results and Discussion

Motto takes theMEME format of PWMas the input because of
its popularity. The MEME format is supported by the majority

Figure 1 Overview of sequence Motto and comparison with sequence logo. Given a motif PWM as the input, Motto outputs a consensus
that minimizes information loss. Here we show how the sequence Motto of the human transcription factor P73 is determined.
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of the motif databases (Kulakovskiy et al. 2018), and the
MEME suite provides packages for integrative analysis and
conversion from other motifs formats (Bailey et al. 2009).
The recently proposed kmer-based motif models also support
conversion toMEME format (Fletez-Brant et al. 2013; Ghandi
et al. 2014; Zeng et al. 2016; Guo et al. 2018). Our package is
lightweight and open-source. The algorithm is efficiently
implemented in Python and the conversion for 1000 motif
sequences typically takes ,2 sec. In addition, perhaps ex-
pectedly, downstream analysis like matching motif occur-
rences using Motto is much faster (�5 sec for a common
PWM on a chromosome, implemented inhouse with Python)
than a conventional PWM scanning (about 1 min, scanned
with FIMO (Grant et al. 2011)). By default, the Motto pack-
age takes a motif in the MEME format, parses the header
to get the nucleotide, computes the optimal consensus se-
quences based on the Motto method, and then outputs the

sequence in a compact format (Figure 1). Motto provides
flexibility at each step along this process. Input can be from
a file, or from standard input, and Motto can consider nucle-
otides, amino acids, and customized characters such as CpG/
non-CpG methylation (Ngo et al. 2019a) and protein phos-
phorylation (Amanchy et al. 2011). We have provided four
methods for comparison: maximal probability (Max), heuris-
tic Cavener’s method (hereafter referred to as Cavener), min-
imal MSE method, and our proposed Motto method using
the minimal JSD (Motto) (seeMaterials and Methods). Three
output styles are provided: (1) IUPAC uses a single char-
acter to represent the combination of nucleotides (e.g., S
for [CG]) and is the most compact form, but requires ref-
erence to the nomenclature (Johnson 2010); (2) regular
expression (“regex”) enumerate all output consensus nucle-
otide ranked by occurrences and is recommended for down-
stream analysis, such as motif occurrence and oligo designs;

Figure 2 Example usage using human CTCF (upper panel) and lipoprotein binding sites from Bailey and Elkan (1994) (lower panel). The original PWM is
shown in a sequence logo. Different Motto options resulted in various consensus sequence output at each position. In particular, “-m/–method”
specifies the method: Motto (default), MSE (minimal mean square error), Cavener (Cavener 1987), or Max (using maximal frequency at each position);
“-s/–style” specifies the output style: IUPAC (Johnson 2010) (single character for nucleotide combinations), regex (regular expression), or compact
(convert [ACGT] to N in regex); “-t/–trim” is an option for trimming off the flanking Ns; “-p/–penalty” specifies a weight between 0 and 1 that penalizes
ambiguity at each position (for details see Materials and Methods).
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(3) “compact” (the default) is the same as “regex,” except
that it replaces [ACGT] with N. To trim off Ns ([ACGT]s) at
both ends of the output sequences, a optional flag “–trim” is
provided. If the users prefer consensus with more certainty
(e.g., prefer [AC] to [ACG]), they can use either “–maxCharacter”
as a hard limit to the number of characters allowed, or use
“–penalty” to penalize ambiguity (seeMaterials and Methods).

Effects of these options are shown using an example of
human TF CTCF (Figure 2, upper panel). Unsurprisingly,
MSE, Motto, and Cavener are more representative than the
naive maximal probability methods. For example, positions
1, 2, 3 and 20 with low information content (,0.2) in CTCF,
are justifiably called as “N” byMotto and Cavener, which is an
improvement over strictly calling the top nucleotide. MSE
considers [TCG] and [GAT] more representative at the first
and the third position but agrees with Motto and Cavener at
the 2nd and 20th. Similarly, Motto, MSE, and Cavener suc-
cessfully capture strong double-consensus patterns at indices
7, 11, 12 and 16, which maximal probability fails to capture.
The advantage ofMotto over Cavener is noticeable at index 6,
where the logo of CTCF shows a dominating AG consensus.
While Motto finds this co-consensus, Cavener disregards G
that barelymisses the cutoff. In addition, at index 19, the logo
of CTCF shows a strong three-way split among A, G and C, but
Cavener, by its rules (as described previously), ignores all
such triple patterns. In addition, among the four methods,
only the Motto and MSE are capable of generating consensus
sequences for amino acid motifs (Bailey and Elkan 1994)
(Figure 2, lower panel). Due to its arbitrary nature, heuristic
methods like Cavener have difficulties defining decision
boundaries for motifs of more than four nucleotides or cus-
tomized character sets found inmotifs containingmethylated

DNA (Ngo et al. 2019a) and phosphorylated amino acids
(Amanchy et al. 2011). In such cases, Motto andMSE provide
more mathematically rigorous information than Cavener
and oversimplified maximal consensus methods. With in-
creased penalty level at 0, 0.2, 0.5,and 1 respectively, the
consensus sequence smoothly progresses toward single
nucleotide consensus (Figure 2). Such flexibility gives an
advantage to users that are biased toward more defined
consensus results.

To quantify how well these four methods summarize the
information in the original PWMs, we converted 1156 com-
mon human and mouse TFs to consensus sequences and
compared their matched occurrences (by regular expression)
in the human genome (hg19) with conventional motif sites
scanned by FIMO (Grant et al. 2011) with PWMs, which is
how conventionally motif sites are determined (seeMaterials
and Methods). We observe that using the Motto method has
resulted in the best (0.81 6 0.01) area under the Precision-
Recall curve (auPRC), significantly (P-value , 0.01) better
than existing alternative methods, including MSE (0.76 6
0.01), Cavener (0.76 6 0.01), and maximal frequency
(0.53 6 0.04) (Figure 3). In addition, we observed Motto
performs better with lower ambiguity penalty, where the de-
fault setting with minimal ambiguity penalty (–P = 0) per-
forms significantly (P-value , 0.01) better than setting
penalty at 0.2 (0.78 6 0.01) or 0.5 (0.76 6 0.01) (Figure
3). This is consistent with the finding that setting the am-
biguity penalty to the maximal value of 1 (–P = 1) is equiv-
alent to using the max frequency method, resulting in
the worst performance. These results confirm that Motto
conversion minimizes information discrepancy (per JSD)
from the original PWM, while setting larger penalties will

Figure 3 Converted sequence Mottos recapitulate motif occurrence sites of 1156 common human and mouse transcription factors (TFs) in the human
genome (hg19). (A) The averaged area under the precision-recall curve (auPRC) using Motto (default method with minimal JSD, ambiguity penalty at
-P = 0.2, and at -P = 0.5) compared with existing alternative methods. P-value determined by paired t-test. (B) Comparison in three examples TFs
showing the differences of consensus sequences [shown in IUPAC (Johnson 2010) coding for better alignment] and performances.
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result in more determined sequences at the cost of accurately
recapitulating the original PWM.

In summary, Motto provides a mathematical framework
and a set of convenient features to textualize PWMs in a
compact, intuitive and accurate manner.

Acknowledgments

This work was partially supported by National Institutes of
Health (NIH) (U54HG006997 R01HG009626) and Califor-
nia Institute for Regenerative Medicine (CIRM) (RB5-07012).
The authors declare no conflict of interest.

Author contributions: M.W. conceived the idea, imple-
mented the package, performed the analyses, and wrote
the manuscript; D.W. implemented key aspects of the
package, contributed to the data analysis and manuscript
preparation; K.Z., V.N., and S.F. contributed to data analysis
and manuscript preparation; W.W. supervised the analyses
of the project and contributed to manuscript preparation.

Literature Cited

Amanchy, R., K. Kandasamy, S. Mathivanan, B. Periaswamy, R.
Reddy et al., 2011 Identification of novel phosphorylation mo-
tifs through an integrative computational and experimental
analysis of the human phosphoproteome. J. Proteomics Bioin-
form. 4: 22–35. https://doi.org/10.4172/jpb.1000163

Bailey T. L., and C. Elkan, 1994 Fitting a mixture model by ex-
pectation maximization to discover motifs in bipolymers. Proc
Int Conf Intell Syst Mol Biol. 2: 28–36

Bailey, T. L., M. Boden, F. A. Buske, M. Frith, C. E. Grant et al.,
2009 MEME SUITE: tools for motif discovery and searching.
Nucleic Acids Res. 37: W202–W208. https://doi.org/10.1093/
nar/gkp335

Cavener, D. R., 1987 Comparison of the consensus sequence
flanking translational start sites in Drosophila and vertebrates.
Nucleic Acids Res. 15: 1353–1361. https://doi.org/10.1093/nar/
15.4.1353

Davis, J., and M. Goadrich, 2006 The Relationship Between Pre-
cision-Recall and ROC Curves, pp. 233–240 in Proceedings of the
23rd International Conference on Machine Learning, ICML ’06.
ACM, New York. 10.1145/1143844.1143874https://doi.org/
10.1145/1143844.1143874

Fletez-Brant, C., D. Lee, A. S. McCallion, and M. A. Beer,
2013 kmer-SVM: a web server for identifying predictive regu-
latory sequence features in genomic data sets. Nucleic Acids Res.
41: W544–W556. https://doi.org/10.1093/nar/gkt519

Ghandi, M., D. Lee, M. Mohammad-Noori, and M. A. Beer,
2014 Enhanced regulatory sequence prediction using gapped
k-mer features. PLOS Comput. Biol. 10: e1003711 (erratum:
PLOS Comput. Biol. 10: e1004035). https://doi.org/10.1371/
journal.pcbi.1003711

Grant, C. E., T. L. Bailey, and W. S. Noble, 2011 FIMO: scanning
for occurrences of a given motif. Bioinformatics 27: 1017–1018.
https://doi.org/10.1093/bioinformatics/btr064

Guo, Y., K. Tian, H. Zeng, X. Guo, and D. K. Gifford, 2018 A novel
k-mer set memory (KSM) motif representation improves regu-
latory variant prediction. Genome Res. 28: 891–900. https://
doi.org/10.1101/gr.226852.117

Heinz, S., C. Benner, N. Spann, E. Bertolino, Y. C. Lin et al.,
2010 Simple combinations of lineage-determining transcription

factors prime cis-regulatory elements required for macrophage
and B cell identities. Mol. Cell 38: 576–589. https://doi.org/
10.1016/j.molcel.2010.05.004

Johnson, A. D., 2010 An extended IUPAC nomenclature code
for polymorphic nucleic acids. Bioinformatics 26: 1386–1389.
https://doi.org/10.1093/bioinformatics/btq098

Kent, W. J., C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle
et al., 2002 The human genome browser at UCSC. Genome
Res. 12: 996–1006. https://doi.org/10.1101/gr.229102

Kulakovskiy, I. V., I. E. Vorontsov, I. S. Yevshin, R. N. Sharipov, A. D.
Fedorova et al., 2018 HOCOMOCO: towards a complete col-
lection of transcription factor binding models for human and
mouse via large-scale ChIP-Seq analysis. Nucleic Acids Res.
46: D252–D259. https://doi.org/10.1093/nar/gkx1106

Lele, S., 1993 Euclidean Distance Matrix Analysis (EDMA): esti-
mation of mean form and mean form difference. Math. Geol. 25:
573–602. https://doi.org/10.1007/BF00890247

Lin, J., 1991 Divergence measures based on the Shannon entropy. IEEE
Trans. Inf. Theory 37: 145–151. https://doi.org/10.1109/18.61115

Matys, V., O. V. Kel-Margoulis, E. Fricke, I. Liebich, S. Land et al.,
2006 TRANSFAC and its module TRANSCompel: transcrip-
tional gene regulation in eukaryotes. Nucleic Acids Res. 34:
D108–D110. https://doi.org/10.1093/nar/gkj143

Murray, J. I., R. B. Voelker, K. L. Henscheid, M. B. Warf, and J. A.
Berglund, 2008 Identification of motifs that function in the
splicing of non-canonical introns. Genome Biol. 9: R97. https://
doi.org/10.1186/gb-2008-9-6-r97

Ngo, V., Z. Chen, K. Zhang, J. W. Whitaker, M. Wang et al.,
2019b Epigenomic analysis reveals DNA motifs regulating his-
tone modifications in human and mouse. Proc. Natl. Acad. Sci.
USA 116: 3668–3677. https://doi.org/10.1073/pnas.1813565116

Ngo, V., M. Wang, and W. Wang, 2019a Finding de novo meth-
ylated DNA motifs. Bioinformatics 35: 3287–3293. https://
doi.org/10.1093/bioinformatics/btz079

Portales-Casamar, E., S. Thongjuea, A. T. Kwon, D. Arenillas, X.
Zhao et al., 2010 JASPAR 2010: the greatly expanded open-
access database of transcription factor binding profiles. Nu-
cleic Acids Res. 38: D105–D110. https://doi.org/10.1093/nar/
gkp950

Robasky, K., and M. L. Bulyk, 2011 UniPROBE, update 2011: ex-
panded content and search tools in the online database of protein-
binding microarray data on protein–DNA interactions. Nucleic
Acids Res. 39: D124–D128. https://doi.org/10.1093/nar/gkq992

Robinson, J. T., H. Thorvaldsdóttir, W. Winckler, M. Guttman, E. S.
Lander et al., 2011 Integrative genomics viewer. Nat. Biotech-
nol. 29: 24–26. https://doi.org/10.1038/nbt.1754

Schneider, T. D., and R. M. Stephens, 1990 Sequence logos: a
new way to display consensus sequences. Nucleic Acids Res.
18: 6097–6100. https://doi.org/10.1093/nar/18.20.6097

Thompson, W., E. C. Rouchka, and C. E. Lawrence, 2003 Gibbs
Recursive Sampler: finding transcription factor binding sites. Nu-
cleic Acids Res. 31: 3580–3585. https://doi.org/10.1093/nar/gkg608

Wang, M., K. Zhang, V. Ngo, C. Liu, S. Fan et al., 2019 Identification
of DNA motifs that regulate DNA methylation. Nucleic Acids
Res. 47: 6753–6768.

Whitaker J. W., Z. Chen, and W. Wang, 2015 Predicting the hu-
man epigenome from DNA motifs. Nat. Methods 12: 265–272,
7 p following 272. https://doi.org/10.1038/nmeth.3065

Xie, Z., S. Hu, S. Blackshaw, H. Zhu, and J. Qian, 2010 hPDI: a
database of experimental human protein–DNA interactions. Bioin-
formatics 26: 287–289. https://doi.org/10.1093/bioinformatics/btp631

Zeng, H., T. Hashimoto, D. D. Kang, and D. K. Gifford, 2016 GERV:
a statistical method for generative evaluation of regulatory vari-
ants for transcription factor binding. Bioinformatics 32: 490–496.
https://doi.org/10.1093/bioinformatics/btv565

Communicating editor: D. Nielsen

358 M. Wang et al.

https://doi.org/10.13039/100000900
https://doi.org/10.4172/jpb.1000163
https://doi.org/10.1093/nar/gkp335
https://doi.org/10.1093/nar/gkp335
https://doi.org/10.1093/nar/15.4.1353
https://doi.org/10.1093/nar/15.4.1353
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1093/nar/gkt519
https://doi.org/10.1371/journal.pcbi.1003711
https://doi.org/10.1371/journal.pcbi.1003711
https://doi.org/10.1093/bioinformatics/btr064
https://doi.org/10.1101/gr.226852.117
https://doi.org/10.1101/gr.226852.117
https://doi.org/10.1016/j.molcel.2010.05.004
https://doi.org/10.1016/j.molcel.2010.05.004
https://doi.org/10.1093/bioinformatics/btq098
https://doi.org/10.1101/gr.229102
https://doi.org/10.1093/nar/gkx1106
https://doi.org/10.1007/BF00890247
https://doi.org/10.1109/18.61115
https://doi.org/10.1093/nar/gkj143
https://doi.org/10.1186/gb-2008-9-6-r97
https://doi.org/10.1186/gb-2008-9-6-r97
https://doi.org/10.1073/pnas.1813565116
https://doi.org/10.1093/bioinformatics/btz079
https://doi.org/10.1093/bioinformatics/btz079
https://doi.org/10.1093/nar/gkp950
https://doi.org/10.1093/nar/gkp950
https://doi.org/10.1093/nar/gkq992
https://doi.org/10.1038/nbt.1754
https://doi.org/10.1093/nar/18.20.6097
https://doi.org/10.1093/nar/gkg608
https://doi.org/10.1038/nmeth.3065
https://doi.org/10.1093/bioinformatics/btp631
https://doi.org/10.1093/bioinformatics/btv565

