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The combination of neoantigen quality and
T lymphocyte infiltrates identifies glioblastomas
with the longest survival
Jing Zhang 1, Francesca P. Caruso2,3, Jason K. Sa 4, Sune Justesen5, Do-Hyun Nam4,6,7, Peter Sims8,

Michele Ceccarelli2,9, Anna Lasorella1,10,11 & Antonio Iavarone1,11,12

Glioblastoma (GBM) is resistant to multimodality therapeutic approaches. A high burden of

tumor-specific mutant peptides (neoantigens) correlates with better survival and response

to immunotherapies in selected solid tumors but how neoantigens impact clinical outcome in

GBM remains unclear. Here, we exploit the similarity between tumor neoantigens and

infectious disease-derived immune epitopes and apply a neoantigen fitness model for iden-

tifying high-quality neoantigens in a human pan-glioma dataset. We find that the neoantigen

quality fitness model stratifies GBM patients with more favorable clinical outcome and,

together with CD8+ T lymphocytes tumor infiltration, identifies a GBM subgroup with the

longest survival, which displays distinct genomic and transcriptomic features. Conversely,

neither tumor neoantigen burden from a quantitative model nor the isolated enrichment of

CD8+ T lymphocytes were able to predict survival of GBM patients. This approach may guide

optimal stratification of GBM patients for maximum response to immunotherapy.
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Recent reports have shown that nonsynonymous coding
mutations may increase tumor immunogenicity. In selected
tumor types such as melanoma, lung cancer, and colorectal

tumors, the somatic mutational burden correlates with the
probability to generate immunogenic peptides that are presented
to CD8+ T cells on restricted HLA-I subtypes1–4. However, in
most solid tumors, T-cell immunity and a productive response
to immune therapies have been reported only in a minority of
patients and the identity of immunogenic tumor antigens, also
referred to as neoantigens, remains unknown.

High-grade glioma is the most frequent type of primary brain
tumor, with grade IV glioma (glioblastoma, GBM) being an
invariably lethal tumor type with median survival below
15 months5,6. In the case of glioma higher mutational load is
associated with increased tumor aggressiveness7. Consequently,
the role, if any, of mutation-generated neoantigens as inducers of
immunogenic responses in GBM has remained elusive. A further
element that limits a productive anti-tumor immunity in GBM is
the tumor microenvironment, which is dominated by myeloid-
derived cells, mostly blood-derived macrophages and resident
microglia8–11 actively operating to exclude T lymphocytes and
undermine their function12. Accordingly, GBM typically lack
significant number of T lymphocyte infiltrates13. The recognized
unique genetic landscape and the biological features of the GBM
microenvironment led to the exclusion of high-grade glioma
patients from several multi-cancer studies that have characterized
tumor immunity and reinforced the notion that a lymphocyte
depleted and immunosuppressive microenvironment is a dis-
tinctive feature of malignant gliomas14.

In this manuscript, we present the application of a neoantigen
quality model for the accurate prediction of immunogenic
neoantigens in IDH wild-type GBM, the largest and most
aggressive group of high-grade gliomas. We found that in IDH
wild-type GBM the production of high-quality neoantigens and
infiltration of T lymphocytes are distinctive features of patients
with the longest survival. The unique immunogenic attributes of
this GBM subgroup informs on a cohort of patients who are
optimally outfitted to mount the most effective responses fol-
lowing immunotherapy treatments.

Results
Neoantigen quantity fails to predict survival of gliomas. To
define the importance of neoantigens in human glioma, we
designed a stringent neoantigen prediction algorithm that considers
the differential binding affinity of mutant and wild-type 9-mer
peptides to HLA-I (neoantigen quantity model, Supplementary
Fig. 1). Binding affinity was determined by netMHCpan-4.015.
Only mutant peptides with binding affinity IC50 < 500 nM for the
restricted HLA-I subtype and binding affinity of the corresponding
wild-type peptide IC50 > 500 nM for all HLA-I subtypes were
retained as neoantigens (Supplementary Figs. 1–3). HLA-I sub-
typing for each glioma patient was done through the imple-
mentation of four different algorithms (PolySolver16, OptiType17,
PHLAT18, and seq2HLA19). We applied the neoantigen prediction
algorithm to the ATLAS-TCGA pan-glioma cohort that includes
303 GBM and 509 lower-grade glioma (LGG) profiled by whole
exome sequence (WES), RNA-seq, and Agilent transcriptomic
array. Clinical annotations were also available for this cohort
(Supplementary Data 1). The pan-glioma cohort had been pre-
viously stratified on the basis of histology, genetic alterations, DNA
methylation, and transcriptome clustering resulting in 19 glioma
subgroups with distinct overlaps (Supplementary Data 1)20. First,
we calculated the HLA-I allele frequency in each glioma subtype
and found that different glioma subtypes have similar HLA-I alleles
frequency (Benjamini–Hochberg corrected Fisher exact test p value

> 0.05). We characterized neoantigens and immune landscape for
each glioma subgroup, stratified tumors into high and low-
neoantigen groups on the basis of the mean value of the neoanti-
gen load and compared survival by Kaplan–Meier analysis. As
experimental validation of the neoantigen prediction, we used
a homogenous, proximity-based luminescent oxygen channeling
immunoassay to determine the affinity kinetics of the predicted
glioma neoantigens for binding to HLA-I subtypes21. This analysis
including 14 matched glioma neoantigens and corresponding wild-
type peptides revealed that each mutant peptide bound with higher
affinity to HLA-I than the wild-type counterpart, thus validating
the stringency of our approach (Fig. 1a–c, Supplementary Fig. 4).
However, neoantigen load, which correlated with mutational load
across glioma subtypes (Fig. 1d–f), did not distinguish patients
according to clinical outcome in the cohort of GBM IDH wild-type,
GBM, glioma IDH wild-type or the most aggressive form of glioma
(mesenchymal and classical), but a higher neoantigen load was
associated with worse prognosis in lower grade gliomas (with or
without co-deletion of chromosome 1p and chromosome 19q and
regardless of histology) and in glioma of the proneural and neural
subtype (Fig. 1g–i, Supplementary Fig. 5). Recently, it has been
proposed that the difference in binding affinity between any wild-
type and mutant peptide (termed differential agretopicity index,
DAI22,23) is a more accurate indicator of peptide immunogenicity
than the binding affinity of the mutant peptide and it has been
shown that the mean DAI of all tumor peptide pairs was a predictor
of survival in melanoma and non-small cell lung cancer24. We
calculated mean DAI for each glioma in the TCGA cohort and
determined that similar to the results obtained from the quantity
model, patients in different glioma sub-groups with high (above
mean) or low (below mean) DAI had similar prognosis (Supple-
mentary Fig. 6). In some glioma sub-types and the aggregated
cohort of all gliomas, high DAI was associated with a worse clinical
outcome (Supplementary Fig. 6). Together, these findings suggest
that in contrast to other cancer types25,26, the neoantigen load is
only a representation of the tumor mutation burden and is not
associated with better survival.

High-quality neoantigens predict better survival in GBM.
Similarity to known pathogen immunogens has been used to
define neoantigen fitness (neoantigen quality model) and appears
to provide a more accurate prediction of anti-tumor immunity
and patients survival than the neoantigen load27. We postulated
that T cell receptors (TCRs) that can recognize pathogenic anti-
gens can also recognize similar non-pathogenic neoantigens
generated by glioma cells and applied a neoantigen fitness model
to glioma. In this model the candidate neoantigens are used to
compute the Neoantigen Recognition Potential (NRP) which is
the product of two terms (Supplementary Fig. 7 and Methods).
The first term approximates the probability that a presented
neoantigen will be recognized by the TCR repertoire and it
depends on the similarity of the mutant peptide to human
infectious disease-derived peptide sequences with positive
immune assays in the Immune Epitope Database (IEDB)28. The
second term, defined as the amplitude and similar to the DAI,
accounts for the ratio between the binding probabilities of wild-
type and mutant peptides. This model was successfully applied to
predict response to checkpoint blockade immune-therapy in
melanoma and lung cancer29. The first term of NRP depends on
the parameters of a logistic model that were optimized for best
stability and robustness across the major subtypes of high-grade
gliomas (Supplementary Fig. 8). We discovered that NRP is sig-
nificantly higher in IDH wild-type gliomas when compared with
IDH mutant gliomas (Mann–Whitney U test p-value= 2.82e–13,
Supplementary Fig. 9a).
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The application of the quality model analysis, which is
independent of mutation burden (Fig. 2a), to 268 IDH wild-
type GBM patients, revealed that high-quality neoantigen score
(above the mean values) was associated with a significantly longer
survival (Fig. 2b). This effect was independent of age, gender, and
mutation load (Supplementary Table 1). Similarly, stratification
by the mean value of total neoantigen quality separated the
cohorts of GBM (including 292 patients) and IDH wild-type
gliomas (including 363 patients) into two distinct prognostic sub-
groups (Supplementary Fig. 10a, b). A non-statistically significant
trend to better survival for high-quality neoantigens was also

observed in classical, classic-like, and mesenchymal glioma
(Supplementary Fig. 10c–e). We also determined that neoantigens
with high-quality score were not restricted to specific HLA-I
subtypes in IDH wild-type GBM patients (Benjamini–Hochberg
corrected proportion test, p value > 0.05). As an independent
validation of the quality model, we used WES from 46 primary
GBMs from a recently published cohort for which we obtained
most updated survival data30. We confirmed that the 15 patients
with tumors predicted to contain high-quality neoantigens had a
significantly better survival (log rank p= 0.0339, Supplementary
Fig. 11).
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Fig. 1 Neoantigen quantity is not prognostic of survival in glioma. a–c In vitro binding affinity kinetics of neoantigens and corresponding wild-type peptides
for their restricted HLA class I allele. Representative results for a, GBM IDH wild-type; b, GBM; c, glioma IDH wild-type. Data are shown as counts
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As IDH wild-type tumors compose the largest and most
homogeneous subgroup of GBM and exhibit optimal perfor-
mance in the glioma fitness model analysis, we focused our
subsequent analyses on this group of tumors. HLA class I
molecules are highly polymorphic with variation located in the
peptide-binding region, with each variant binding only to a highly
restricted set of peptide ligands31. Compared to heterozygous
HLA-I carriers, homozygosity for HLA-I loci is predicted to
present a smaller and less diverse repertoire of tumor-derived
neoantigens to cytotoxic T lymphocytes (CTLs)32. We therefore
asked whether greater diversity (heterozygosity) in the repertoire
of antigen-presenting HLA-I molecules is associated with more
efficient recognition of high-quality neoantigens. The analysis of
the variations at each of the HLA-I genes (HLA-A, HLA-B, and
HLA-C) in the high and low-quality neoantigen cohorts revealed
that at least one HLA-I allele was homozygous in 25.0% (53 of
212) of IDH wild-type GBM containing only low-quality
neoantigens but the frequency of HLA-I homozygosity was
significantly lower in the high-quality neoantigen group (10.7% or
6 of 56, One-sided Fisher exact test p= 0.0136, Supplementary
Table 2). Although not reaching statistical significance, also the
amplitude term of neoantigens in HLA-I homozygosity was
inferior to the amplitude term of neoantigens in HLA-I
heterozygosity (median amplitude term: 1.583 and 1.785 for
HLA-I homozygosity and HLA-I heterozygosity, respectively;
Mann–Whitney U test p value= 0.176, Supplementary Fig. 12a).
We also determined that the number of neoantigens in HLA-I
homozygous IDH wild-type GBM is significantly lower than
HLA-I heterozygous patients (Mann–Whitney U test p value=
0.0001, Supplementary Fig. 12b). Together, these results indicate
that homozygosity for HLA-I alleles hinders the ability to
generate and recognize high-quality neoantigens.

As the IEDB database also contains a collection of human
immune epitopes tested with experimental assays and annotated
for their ability to trigger an immune response, we sought to
provide an independent validation of the quality of the
computationally identified neoantigens in human gliomas. We
aligned the sequences of the neoantigens detected in the high and
low-quality neoantigen group of IDH wild-type GBM with
experimentally validated human epitopes (allergy and autoim-
mune-derived) in IEDB. The analysis showed that, in comparison
with low-quality neoantigens, high-quality neoantigens exhibited
greater similarity to human peptides in IEDB that score as highly
immunogenic (“positive high”) in T cell and MHC ligand assays
(p= 0.0002 and p= 0.0023, respectively; Fig. 3a, b). Conversely,
we found no difference between low and high-quality neoantigens

in the alignment with human peptides in IEDB that score
negative in validation immune assays (p= 0.3804 and 0.2271,
respectively, Fig. 3c, d). Taken together, neoantigen quality rather
than neoantigen load correlates with immunogenicity and
predicts survival in IDH wild-type GBM.

High-quality neoantigens and CD8+ T cells identify the long-
est survivors. Having established that high-quality neoantigens
improve survival of IDH wild-type GBM patients, we turned our
attention to the role of the non-tumor cells that compose the
GBM microenvironment. In particular, we sought to determine
whether the presence of any of the non-tumor cell populations
(immune and non-immune) that infiltrate human GBM impact
survival and/or cooperate with high-quality neoantigens to
determine a more favorable outcome of GBM patients. The GBM
tumor microenvironment is dominated by myeloid-derived cells
that can be separated into blood-derived macrophages and
microglia. We recently reported the single cell transcriptome of
8 GBM33. The analysis of cells of the tumor microenvironment
from this study using single cell MWW-Gene Set Test (MWW-
GST)34,35 led to the identification of 6 distinct cell populations
(blood-derived macrophages, microglia, CD8+ T lymphocytes,
oligodendrocytes, endothelial cells and pericytes). For each cell
type, we selected a specific signature of 30 genes and calculated
the median enrichment score in order to separate IDH wild-type
GBM patients into groups with high or low infiltration of indi-
vidual cell populations and asked whether the enrichment of
specific cell types was associated with changes in survival. We also
computed the individual signature of 12 previously identified
tumor infiltrating immune cells, thus including a total of 18 cell
type-specific signatures plus two signatures for the interferon
gamma response pathway (Supplementary Data 2)33,36–39. The
analysis was performed on 132 and 248 TCGA-derived GBM that
had been analyzed by RNA-seq or Agilent expression arrays,
respectively. Whereas we detected a significant effect on survival
of some cell populations in one of the cohorts, none of the
20 signatures concordantly differentiated the survival of GBM
patients in both cohorts (Supplementary Table 3). Infiltration of
CD8+ T lymphocytes that has been shown to predict a favorable
prognosis in several tumor types40–43 was associated only with a
non-statistically significant trend to a better clinical outcome in
the RNAseq and Agilent microarray cohorts (p= 0.134 and p=
0.136, respectively; Fig. 4b, e). Confirming the lack of significance
of CD8+ T cell enrichment score for survival, we found a lower
CD8+ T cell enrichment score in the more favorable IDH mutant
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when compared with IDH wild-type gliomas (Wilcoxon p-value
2.26E–16, Supplementary Fig. 9b). When IDH wild-type GBM
patients were stratified according to the enrichment of each non-
tumor cell type in combination with high or low-quality neoan-
tigens, elevated CD8+ T lymphocytes and high-quality neoanti-
gens emerged as the only features that induced a synergistic effect
on survival and classified a subgroup of approximately 10% of
IDH wild-type GBM patients with the longest survival in both

RNAseq and Agilent microarray datasets (p= 0.0016 and p=
0.0048, respectively; Fig. 4a–f and Supplementary Table 3). The
positive role of CD8+ T cells in the synergy with high-quality
neoantigens was recapitulated by the trend for a similar coop-
eration towards a better clinical outcome between high-quality
neoantigens and the interferon gamma signature, which is used
as a surrogate of CD8+ T cell function in transcriptomic
analyses38,39,44 (Supplementary Table 3). The synergistic effect of

p = 0.0102

n = 51

n = 197

0.2

0.6

1.0

0

0.8

0.4

C
um

ul
at

iv
e 

ha
za

rd

Months

p = 0.1357
n = 124

n = 1240.2

0.6

1.0

0

0.8

0.4

C
um

ul
at

iv
e 

ha
za

rd

Months

p = 0.0064

10 50 6020 30 40 700

0.2

0.6

1.0

0

0.8

0.4

C
um

ul
at

iv
e 

ha
za

rd

Months

n = 109

n = 23

p = 0.13430.2

0.6

1.0

0

0.8

0.4

C
um

ul
at

iv
e 

ha
za

rd

Months

n = 66

n = 66

High quality neoantigens/High CD8+ T cells

Low quality neoantigens/Low CD8+ T cells

p = 0.0048
n = 99

n = 26

0.2

0.6

1.0

0

0.8

0.4

C
um

ul
at

iv
e 

ha
za

rd

Months

n = 55

n = 12

p = 0.00160.2

0.6

1.0

0

0.8

0.4

C
um

ul
at

iv
e 

ha
za

rd

Months

High quality neoantigens

Low quality neoantigens

High CD8 T cells

Low CD8 T cells

10 50 6020 30 40 700 5 25 3010 15 20 350

20 100 12040 60 800 20 100 12040 60 800 10 50 6020 30 400

a b c

d e f

Fig. 4 Synergistic effect of CD8+ T cells and high-quality neoantigens on survival of IDH wild-type GBM. a–c Analysis of the cohort for which WES and
RNAseq were available. a Survival of patients stratified according to neoantigen quality score. b Survival of patients stratified according to CD8+ T
lymphocyte enrichment score. c Survival of patients stratified by neoantigen quality and CD8+ T lymphocytes infiltration score. d–f Analysis of the cohort
for which WES and Agilent microarray were available. d Survival of patients stratified according to neoantigen quality score. e Survival of patient stratified
according to CD8+ T lymphocyte enrichment score. f Survival of patients stratified by neoantigen quality and CD8+ T lymphocytes infiltration score. Black
dashed and dotted lines represent samples with high and low-quality neoantigens, respectively. Blue dashed and dotted lines represent patients with high
and low CD8+ T lymphocytes, respectively. Pink dashed and dotted lines represent patients with high-quality neoantigens and high CD8+ T lymphocytes
and low-quality neoantigens and low CD8+ T cells, respectively. n number of patients. p-value was determined by the log-rank test

B
it 

sc
or

e

7.5

10.0

12.5

15.0

n = 666

n = 241

T cell assay
(positive high)

p = 0.0002
B

it 
sc

or
e

8

12

16

20

n = 1179

n = 406

MHC ligand assay
(positive high)

p = 0.0023 9

12

15

18

B
it 

sc
or

e

n = 1553

n = 518

T cell assay
(negative)

p = 0.3804

B
it 

sc
or

e

10.0

12.5

15.0

17.5

20.0

n = 1448

n = 487

MHC ligand assay
(negative)

p = 0.2271

b c

High quality neoantigen

Low quality neoantigen

a d

Fig. 3 High-quality neoantigens are associated with immunogenicity in IDH wild-type GBM. Comparison of the similarity between neoantigens and human
immune epitopes scored as immunogenic (positive high) or non-immunogenic (negative) in high and low-quality neoantigen groups of IDH wild-type GBM.
a, c T cell assays; b, d MHC ligand assays. n number of neoantigens. p-value was determined using two-sided Mann–Whitney U test

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0369-7 ARTICLE

COMMUNICATIONS BIOLOGY |           (2019) 2:135 | https://doi.org/10.1038/s42003-019-0369-7 | www.nature.com/commsbio 5

www.nature.com/commsbio
www.nature.com/commsbio


high-quality neoantigens and CD8+ T lymphocyte activation was
still significant in a multivariate regression model including age,
gender and mutational load as additional covariates (Supple-
mentary Table 4). To determine the relationship between T cell
infiltration, high-quality neoantigens and tumor purity, we used
the tumor purity values calculated by ABSOLUTE45, a validated
computational approach for the inference of the fraction of
stromal/immune cells and consequently tumor cell purity. As
expected, we found a negative correlation between CD8+ T cell
enrichment score and tumor purity (correlation coefficient=
−0.457, p= 3.695e–8, Supplementary Fig. 13a). However, there
was no correlation between neoantigen quality score and tumor
purity (correlation coefficient= 0.0839, p= 0.186, Supplementary
Fig. 13b), indicating that high-quality neoantigens are indepen-
dent of broad immune cell infiltration. Aberrant DNA methyla-
tion of genes expressed by immune cells were reported to regulate
the extent of immune infiltration in solid tumors46–48. Therefore,
we examined whether the enrichment of CD8+ T cells in IDH
wild-type GBM is associated with differential DNA methylation.
Towards this aim, we performed an integrated analysis of gene
expression and DNA methylation. From this analysis, diverse
immune response categories emerged as significantly hypo-
methylated and upregulated in IDH wild-type GBM patients
with high CD8+ T cells for both RNAseq (Supplementary
Fig. 14a, b; Supplementary Data 3, 5) and Agilent expression data
(Supplementary Fig. 14c, d; Supplementary Data 4, 6). Taken
together, the combination of productive neoantigen T cell
recognition and epigenetically directed intra-tumor infiltration of
CD8+ T lymphocytes characterizes a sizable group of IDH wild-
type GBM patients who experience a more favorable prognosis.

High-quality neoantigens and CD8+ T cells activate the
immune response. To identify the transcriptomic features of IDH
wild-type GBM with high-quality neoantigens and high CD8+

T cells, we used the combination of the easy ensemble (ee)
undersampling technique and Mann–Whitney–Wilcoxon
(MWW) test statistics (ee-MWW) we recently developed34 and
generated a ranked list of genes from RNAseq and Agilent
microarray datasets of IDH wild-type GBM discriminating
tumors with high-quality neoantigens/high CD8+ T cells from
those with low-quality neoantigens/low CD8+ T cells. The gene
ontology enrichment map network (Q < 0.00001, normalized
enrichment score, NES > 0.6) revealed that the most significant
biological processes enriched in IDH wild-type GBM from both
RNAseq and Agilent microarray datasets were immune response
categories, thus providing additional evidence for the specific
immune functions implemented within the tumors that contain
high-quality neoantigens and high CD8+ T cells (Fig. 5a, b).

GBM with high-quality neoantigens and CD8+ T cells harbor
distinct genetic lesions. Next, we sought to identify the genetic
features (mutations and copy number variations, CNVs) that
distinguish GBM that generate high-quality neoantigens and high
CD8+ T lymphocyte signatures. We failed to find recurrent genes
harboring mutations that produce neoantigens in the high-quality
neoantigens/high CD8+ T cell group. Similarly, this group lacked
specific recurrent mutations. In contrast, we found that tumors
without high-quality neoantigens and CD8+ T cells harbored a
number of recurrently mutated genes (somatic mutations and
CNVs; Fig. 5c, d), some of which are important cancer drivers.
In particular, we found that genetic alterations of PIK3CA, RB1
and MDM2 were present in 24–28% of GBM unable to generate
high-quality neoantigens and attract CD8+ T lymphocytes but
only in 0–8% of GBM with high-quality neoantigens and high
CD8+ T lymphocytes (RNA-seq, p= 0.06; Agilent, p= 0.02;

Supplementary Table 5). Together with the other genes that were
exclusively mutated in the low-quality neoantigens/low CD8+

T cell group, these findings point to the set of genetic determi-
nants that should support the prospective exclusion of patients
with GBM from the high-quality neoantigens/high CD8+

T lymphocytes group.

Discussion
With neoantigens emerging as attractive targets in the develop-
ment of personalized immunotherapies, strategies for the rapid
identification of relevant neoantigens have become a major
priority24,27,29. This study describes such strategy using a com-
putational approach for the identification of GBM patients
harboring high-quality neoantigens that, together with CD8+

T lymphocyte infiltrates, perform optimally in identifying
patients with the longest survival and a functionally activated
tumor immune microenvironment. This information might be of
clinical importance for the accurate stratification of the subgroup
of GBM patients having the best probability to benefit from
immunotherapies. GBM are classified as lymphocyte-depleted
tumors49 lacking naïve T cells that are instead found sequestered
in large numbers in the bone marrow50. Nevertheless, recent
studies based on single cell profiling have shown that a small
proportion of GBM show CD8+ T lymphocyte infiltrates33.

Progression from low-grade to high-grade glioma evolves
through increasing mutational burden7. Even among GBM
patients, a higher number of mutations is associated with a more
aggressive disease and worse survival7. Therefore, whereas in
several tumor types the tumor mutational burden is associated
with activation of an immune response and better survival, GBM
displays an opposite behavior1,3,26,51–53. Consistent with this
notion, we found that the simple estimate of the mutation-
derived neoantigen load using a quantity model and the DAI
index failed to segregate sub-groups of patients with distinct
clinical outcome. Conversely, a high-quality neoantigen model
that evaluates the similarity of tumor antigens with highly
immunogenic pathogen-derived antigens emerged from our work
as the exclusive parameter that was able to identify patients with
IDH wild-type GBM who display a more favorable clinical
outcome.

Results from the previous studies that have analyzed the
role of CD8+ T lymphocytes for GBM survival have been
conflicting54,55. Some of the studies reported that the presence of
T lymphocyte infiltrates was associated with a more favorable
clinical course of the disease56–58, but others reached opposite
conclusions54,59. In our analysis, which is based on mRNA
expression profile from GBM-derived single T lymphocytes,
enrichment of the T cell-specific signature was associated with a
weak positive effect on survival. However, when combined with
the presence of high-quality neoantigens, CD8+ T lymphocyte
infiltrates provided the best predictive model for the identification
of the longest survivors among IDH wild-type GBM.

We suggest that the combination of high-quality neoantigen
fitness model and elevated T lymphocyte-specific gene signature
together with histopathological verification of tumor infiltration
by CD8+ T cells should be used in current clinical trials of IDH
wild-type GBM for the identification of those patients who have
the highest likelihood of clinical response to immune therapy.

Methods
Data preparation and preprocessing. The patient cohort is from the ATLAS-
TCGA pan-glioma study20, which includes 1122 glioma patients with clinical
information. For 812 glioma patients with tumor and matched normal samples
30,729 somatic mutations were called using exome-seq data bam files from TCGA
Data Portal (http://tcga-data.nci.nih.gov/tcga/)20 using at least two of three
methods, MuTect60, VarScan61, and RADIA62.
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RNA-seq raw counts of 667 cases (513 LGG and 154 GBM) were downloaded,
normalized, and filtered using the Bioconductor package TCGAbiolinks63 including
TCGAquery, TCGAdownload, and TCGAprepare for level 3 data from platform
“IlluminaHiSeq_RNASeqV2”. The union of the two matrices (LGG and GBM) was
then normalized using within-lane normalization to adjust for GC-content effect on
read counts and upper-quantile between-lane normalization for distributional
differences between lanes by applying the TCGAanalyze_Normalization function
encompassing EDASeq protocol20.

Gene expression microarray data with Agilent chip (G4502A) at level 3 were
downloaded from TCGA Data Portal. The gene expression data matrix includes
583 samples (573 GBM and 10 normal brains) and 17,814 genes.

Data from 1084 glioma patients with tumor and normal samples that had been
profiled on Affymetrix SNP6.0 GeneChip arrays, processed into genome
segmentation files64 and analyzed by GISTIC2.0 to identify focal copy number
changes20,65 were downloaded from TCGA Data Portal.

We used TCGAbiolinks63 using TCGAquery, TCGAdownload to obtain data
from 140 GBM samples that had been profiled using Illumina platform
HumanMethylation450, which interrogates 485,421 CpG sites (data level= 3,
platform type= “HumanMethylation450”). We removed from the analysis data
point with a corresponding p-value greater than 0.01, which were deemed not
to carry statistically significant difference from background and defined as “NA”
in TCGA level 3 data.

HLA-I typing. The four-digit resolution HLA-I type of 812 patients (including
LGG and GBM) with exome sequence bam files available in the TCGA cohort was
determined using POLYSOLVER (POLYmorphic loci reSOLVER)16. For 647 out
of 812 patients (including LGG and GBM) having RNAseq bam files available,
OptiType17, PHLAT18, and seq2HLA19 were further applied to infer their four-
digit resolution HLA-I types. The four-digit HLA-I type was determined if the
predictions were consistent in any one of the following analyses: POLYSOLVER
and OptiType; POLYSOLVER and PHLAT; POLYSOLVER and seq2HLA;
OptiType and PHLAT; OptiType and seq2HLA.

Neoantigen prediction. Missense mutations were used to generate a list of all
possible 9-mer peptides. Binding affinities of mutant and corresponding wild-type
9-mer peptides, relevant to the patient’s HLA-I alleles, were predicted using
netMHCpan-4.015. High-affinity binders were defined as those with IC50 equal
or less than 500 nM. Low-affinity wild-type binders were defined as having IC50

greater than 500 nM. More stringent criteria were used to infer neoantigens. A
mutant-specific binder, relevant to the restricted HLA-I allele, was referred to as
neoantigen when the mutant IC50 was less than 500 nM and IC50 of the corre-
sponding wild-type binder, relevant to all HLA-I alleles of the patient, more than
500 nM. All the downstream analyses were based on the inferred neoantigens
(the mutant peptides) and their corresponding wild-type peptides.
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Fig. 5 Gene ontology enrichment networks and genetic characteristics of IDH wild-type GBM with high-quality neoantigens and high CD8+ T cells.
a Enrichment map network of statistically significant GO categories in the patient cohort analyzed by WES and RNAseq. b Enrichment map network of
statistically significant GO categories in the patient cohort with WES and Agilent data available (normalized enrichment score, NES > 0.6, and q-value <
0.00001). Nodes represent GO terms and lines their connectivity. Node size is proportional to the number of genes in the GO category and line thickness
indicates the fraction of genes shared between groups. c Landscape of somatic genomic alterations (non-synonymous mutations, copy number alterations)
in IDH wild-type GBM (GBM cohort analyzed by WES and RNAseq). d Landscape of somatic genomic alterations (non-synonymous mutations, CNVs)
in IDH wild-type GBM (GBM cohort analyzed by WES and Agilent microarrays). Rows and columns represent genes and tumor samples, respectively.
Genomic alterations are indicated. Genes are sorted according to frequency (% patients) in patients having both high-quality neoantigens and high CD8+

T lymphocytes or patients having both low-quality neoantigens and low CD8+ T lymphocytes, respectively
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In the neoantigen fitness model, we calculated the neoantigen recognition
potential (NRP) for each neoantigen using a recently developed method27,29.
Briefly, each neoantigen was associated with a fitness cost designated as recognition
potential, which is the likelihood that it is effectively recognized by the TCR
repertoire. Given a neoantigen, the recognition potential was calculated as A × R. A,
the amplitude, is the ratio of the relative probability that a neoantigen is bound to a
class I MHC times the relative probability that the wild-type counterpart of the
neoantigen is not bound

A ¼ 1

KMT
d

� K
WT
d = L½ � þ ϵð1þ KWT

d = L½ �Þ
1þ ϵð1þ KWT

d = L½ �Þ � KWT
d

KMT
d

� 1

1þ ðϵ= L½ �ÞKWT
d

ε is a pseudo-count, Kd is the original dissociation constant, and [L] the peptide
concentration29. We set ε= L½ � to be 0.000329.

R is the probability that a presented neoantigen will be recognized by the TCR
repertoire. We estimated R using a sigmoid function applied to the score of the
local alignment between the peptide sequences and the set of 2552 unique epitopes
in the IEDB database29. The sigmoid function has two parameters a and k. These
parameters define the shape of the sigmoid function and are optimized as explained
below. In particular, a representing the horizontal displacement of the binding
curve, and k is the steepness of the curve at a. A × R represents the neoantigen
recognition potential (NRP).

For each patient, NRP was first calculated for each neoantigen. The total
neoantigen quality of a specific patient is equal to the mean value of NRPs of all
neoantigens inferred for this patient.

Parameter training. To choose the optimal model parameters a and k, we
generated 4000 different a and k settings with a increasing from 1 to 40 at the
incremental step of 1 and k increasing from 0.1 to 10 at the incremental step of 0.1.
We selected the a and k that maximize the log-rank test scores of the survival
analysis of a given patient cohort.

Leave one out cross validation (LOOCV). Given a patient cohort of n samples,
each sample was sequentially removed from the set and the remaining samples
(n–1) were used as training set on which the quality model was reoptimized. The
excluded sample sequentially became the test set and was classified as high or low-
quality neoantigen group. After n samples were sequentially classified,
Kaplan–Meier analysis was applied to determine whether there was a statistically
significant survival difference between high and low-quality neoantigen sub-
groups.

Random subsampling validation. Given a patient cohort, we randomly split
samples into two groups in ratio of 4 vs. 1 in 100 runs. The larger group were used
as training set and the smaller group as test set. The parameter settings (a, k) of the
quality model were trained on the training set and tested on the test set. If samples
in the test sets were separated into high and low-quality neoantigens groups with
significant survival difference, the parameter setting (a, k) was successfully retained.
The process was repeated 100 times to calculate the percentage of success for each
parameter setting (a, k).

To calculate the significance for the success rate of each parameter setting (a, k),
we performed 10,000 permutations of neoantigen qualities of patients across
samples in the cohort under each parameter setting (a, k) with the random split of
4 versus 1. For each parameter setting (a, k), the success rate under each
permutation was then compared with the success rate for the actual patient data. p-
value was calculated as the percentage of permutations under which success rate
was equal to or larger than the success rate of actual data.

Neoantigen quantity model. In neoantigen quantity model, the number of
inferred neoantigens was counted for each patient. Patients of a given cohort were
stratified according to the mean value of the number of neoantigens into high and
low neoantigen quantity groups.

Gene signatures of immune cells. Gene signatures and relative sources of the
distinct cell populations are reported in Supplementary Data 2.

Stratification of patients based on immune cell NES and NRP. To evaluate the
enrichment of each immune cell type in TCGA glioma samples we used Nor-
malized Enrichment Score (NES) of the MWW Gene Set test34. NES is an estimate
of the probability that the expression of a gene in the gene set is greater than the
expression of a gene outside this set. Specifically,

NES ¼ 1� U
mn

where m is the number of genes in a gene set, n the number of those outside the
gene set,

U ¼ nmþ mðmþ1Þ
2 � T , and T is the sum of the ranks of the genes in the

gene set.
For each immune cell signature, the survival analysis was performed by dividing

the patient cohort by the median value of NES score into low and high-immune

cell groups. By intersecting high and low-quality neoantigen groups with low and
high-immune cell groups information, patients were stratified into four groups
(high-quality neoantigens and high-immune cells; high-quality neoantigens and
low-immune cells; low-quality neoantigens and high-immune cells; low-quality
neoantigens and low immune cells) and Kaplan–Meier analysis was performed
to evaluate their relationship with survival.

ee-MWW based GO enrichment analysis. To extract enriched GO categories
in high-quality neoantigens and high CD8+ T cells compared with low-quality
neoantigens and low CD8+ T cells, we used our recently developed ee-MWW
method34 for comparing unbalanced datasets. The group with higher number
of samples (majority class) is subsampled in order to have the same size of the
subgroup with less samples (minority class), this process is repeated several times
(K= 10,000) and the MWW test statistics is averaged across the samplings. In
particular, the MWW gene-wise was applied to the two class of samples. For each
sample subset k and the gene j, the Ujk value of the test statistic was retained. The
value associate with each gene is the mean Ujk values across the K random subsets,
Uj ¼ 1

K

PK
k¼1Ujk . The collection of Uj values is a set of values that are the input of

enrichment method NES34.

Identification of differentially expressed genes. To identify genes differentially
expressed between tumors in the group with high-quality neoantigens and high
CD8+ T cells and those in the group with low-quality neoantigens and low CD8+

T cells from RNAseq data, we performed TCGAanalyze_DEA implementing the
EdgeR protocol66. Multiple testing using the Benjamini–Hochberg procedure was
applied to generate FDR. Genes with fold change >1.5 and FDR < 0.05 were con-
sidered as differentially expressed genes. To identify genes differentially expressed
between tumors in the group with high-quality neoantigens and high CD8+ T cells
and those in the group with low-quality neoantigens and low CD8+ T cells from
Agilent microarray data, we used the Wilcoxon test followed by multiple testing
using the Benjamini–Hochberg method for FDR estimation. Genes with fold
change >1.5 and FDR < 0.05 were considered as differentially expressed genes.

Analysis of mutations and DNA copy number changes. To define the mutations
and DNA copy number changes that differentiate tumors in the group with high-
quality neoantigens and high CD8+ T cells from tumors in the group with low-
quality neoantigens and low CD8+ T cells, we restricted the analysis to genes with
no more than one alteration in the low-quality neoantigens and low CD8 +T cells
group. One-sided proportion test (“greater”) was adopted to identify genes with
different frequencies of mutation or copy number changes between the two groups.
Genes were first ordered based on the p-value of the proportion test. We then
selected the minimum number of genes on the basis of increasing p-value, so that
all samples were covered by at least one alteration. The same process was used to
select the genes with mutation or copy number changes specifically occurring in
low-quality neoantigens and low CD8+ T cells group. The gene list derived from
patients with both WES and RNAseq was highly overlapping with the gene list
derived from patients with both WES and Agilent.

DNA methylation analysis. Wilcoxon test followed by multiple testing using the
Benjamini–Hochberg method for FDR estimation were used to identify DNA
probes differentially methylated between the high-quality neoantigens and high
CD8+ T cell group of glioma and the low-quality neoantigens and low CD8+ T cell
group of tumors. The probes with FDR < 0.05 and absolute difference in mean
methylation beta-value > 0.2 were defined as differentially methylated probes. The
annotations of each Illumina platform HumanMethylation450 probe were down-
loaded from TCGA Data Portal website.

Integrative expression and DNA methylation analysis. We analyzed differences
in DNA methylation level between IDH wild-type GBMs groups with high CD8+

T cell and low CD8+ T cell. After removing probes not associated with promoters,
the final methylation data matrix was composed of 42 IDH wild-type GBMs
(17 high CD8+ T cell, 25 low CD8+ T cell samples and 85,421 probes) in the
RNAseq cohort or 97 IDH wild-type GBMs with Agilent microarray data available
(42 high CD8+ T cell, 55 low CD8+ T cell and 78,747 probes), respectively.
Differentially DNA methylation analysis was then performed between samples with
high CD8+ T cells versus samples with low CD8+ T cells using the two-sided
MWW test. Differential expression analysis was performed between high versus
low CD8+ T cell samples using edgeR and two-sided MWW test for samples with
RNAseq and Agilent microarray data, respectively. Starburst plot for comparison of
DNA methylation and gene expression data was constructed using the absolute
value of log10(p-value) for differential DNA methylation (x axis) and gene
expression (y axis) multiplied by the sign of the difference in methylation (x axis)
or gene expression (y axis). A p-value less than 0.05 was considered as significant.
Gene Ontology (GO) enrichment was then computed using two-sided Fisher’s
exact test (FET) for a list of significant genes (hypo-methylated and upregulated
genes, hyper-methylated and down-regulated genes in GBM having high CD8+

T cells compared with those with low CD8+ T cells). The significant GO terms
from FET (p-value < 0.05; q-value < 0.25) were further analyzed using the
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Enrichment Map67 application of Cytoscape68. In the network, nodes represent the
terms and edges represent known term interactions and are defined by the number
of shared genes between the pair of terms. Size of the nodes is proportional to the
number of genes in the category. The overlap between gene sets is computed
according to the overlap coefficient (OC), defined as:

OC ¼ A\Bj j
min Aj j; Bj jð Þ

where A and B are two gene sets, and Xj j equals to the number of elements within
set X. We set a cutoff of OC> 0:5 to select the overlapping gene sets.

In vitro peptide-HLA I binding assay. Peptide-HLA class I in vitro binding
affinities were determined as described previously21,69,70. Purified recombinant
HLA class I heavy chains were diluted into a refolding buffer (tris-maleate buffer,
pH 6.6) containing ß2m and serial 10-fold dilutions (0.018 nM to 180 µM) of the
test peptide, and incubated for 48 h at 18 °C to allow for equilibrium to be reached
in phosphate-buffered saline (PBS). The HLA concentration was 1.25 nM, and ß2m
concentration was 10 nM. Complex formation was detected using a proximity-
based luminescent oxygen channeling immunoassay. Donor beads were obtained
pre-conjugated with streptavidin from Perkin Elmer; acceptor beads were con-
jugated in house with W6/22, a pan-specific anti-HLA class I mouse monoclonal
antibody (Sigma-Aldrich) using standard procedures as described by the manu-
facturer. Binding affinity (Kd) was determined as described previously21,69,70 using
the GraphPad Prism software 7.0. Data are means of counts per second. Amino
acid abbreviations: A Ala; C Cys; D Asp; E Glu; F Phe; G Gly; H His; I IIe; K Lys;
L Leu; M Met; N Asn; P Pro; Q Gln; R Arg; S Ser; T Thr; V Val; W Trp; Y Tyr.

Quality model validation using an independent GBM dataset. We used whole
exome sequencing data, processed mutations and updated survival information of
46 primary GBMs30. HLA-I subtype for each patient was obtained by mapping raw
data to human reference genome hg19 using BWA aligner and applying POLY-
SOLVER. Neoantigen quality model with a= 21, k= 1.6 was then applied to
calculate NRP for each neoantigen.

Statistics. Comparisons between two groups were performed using an unpaired
two-tailed Mann–Whitney U-test. Survival curves were compared using a log-rank
test (Mantel-Cox). Categorical variables were compared using one-sided or two-
sided Fisher exact test as indicated in figure legends. Multivariate survival analysis
was performed using Cox regression model.

Reporting Summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data supporting the findings of this study are available within the published article
and its supplementary information files. Figure 1 a–c have associated source data
(Supplementary Table 6). All materials and other data supporting this study are available
from the authors upon reasonable request.

Code availability
We used the original codes of the authors for the computation of neoantigen quality27. A
collection of the R procedures to perform ee-MWW and MWW-GST is available at
http://github.com/miccec/yaGST34.
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