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Abstract: Each day, about 2000 U.S. workers have a job-related eye injury requiring medical treatment.
Corneal diseases are the fifth cause of blindness worldwide. Most of these diseases can be cured
using one form or another of corneal transplantation, which is the most successful transplantation in
humans. In 2012, it was estimated that 12.7 million people were waiting for a corneal transplantation
worldwide. Unfortunately, only 1 in 70 patients received a corneal graft that same year. In order to
provide alternatives to the shortage of graftable corneas, considerable progress has been achieved in
the development of living corneal substitutes produced by tissue engineering and designed to mimic
their in vivo counterpart in terms of cell phenotype and tissue architecture. Most of these substitutes
use synthetic biomaterials combined with immortalized cells, which makes them dissimilar from the
native cornea. However, studies have emerged that describe the production of tridimensional (3D)
tissue-engineered corneas using untransformed human corneal epithelial cells grown on a totally
natural stroma synthesized by living corneal fibroblasts, that also show appropriate histology and
expression of both extracellular matrix (ECM) components and integrins. This review highlights
contributions from laboratories working on the production of human tissue-engineered corneas
(hTECs) as future substitutes for grafting purposes. It overviews alternative models to the grafting of
cadaveric corneas where cell organization is provided by the substrate, and then focuses on their
3D counterparts that are closer to the native human corneal architecture because of their tissue
development and cell arrangement properties. These completely biological hTECs are therefore
very promising as models that may help understand many aspects of the molecular and cellular
mechanistic response of the cornea toward different types of diseases or wounds, as well as assist in
the development of novel drugs that might be promising for therapeutic purposes.

Keywords: human cornea; tissue-engineering; 3D corneal model; wound healing; limbal stem cells;
epithelium; stroma; endothelium

1. Introduction

Vision is crucial when it comes to our interactions with our surroundings. In order
to see, light must be refracted by the cornea, the outer layer of the eye, onto the lens, and
then reach the retina. Thus, our visual abilities rely heavily on corneal transparency and
its refractive power. The cornea accounts for two-thirds of the overall refractive power of
the eye and provides defense against trauma and infections. It is composed of three layers:
the epithelium, the stroma, and the endothelium, which are divided by two extracellular
matrix interfaces: the Bowman’s layer and the Descemet membrane [1]. The epithelium
can readily regenerate and restore normal vision after a minor trauma. However, in the
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case of deeper wounds, the stroma tends to develop permanent opaque scars, the extent of
which is related to the severity of the injury. The endothelium cannot regenerate in humans
under normal conditions. The principal physiological function of these cells is to allow the
leakage of solutes and nutrients from the aqueous humor to the more superficial layers
of the cornea, while at the same time pumping water in the opposite direction. When
endothelial cells are damaged, the cornea swells, loses transparency, and develops bullae
on its anterior surface.

1.1. Anatomy of the Human Cornea

The human cornea is a transparent avascular tissue and is the most anterior structure
of the eye. Its three main purposes are to protect the intraocular contents, to allow light
to enter the eye and reach the retina, and to provide two thirds of the refractive power
of the optic system [2]. Many factors contribute to corneal transparency: the regularity
of the surface and thickness of the epithelium in association with the integrity of the
lacrimal film, the regular architecture of the collagen fibrils in the stroma, the production
of soluble crystallin proteins and the presence of proteoglycans produced by the stromal
keratocytes, the regulation of the hydration level by the endothelium, and the absence of
vascularization [3–7]. The diameter of the cornea is approximately 12 mm and the mean
anterior corneal curvature radius is around 8 mm [8]. The corneal thickness is about 540 µm
in the center and 700 µm in the periphery. Being avascular, the cornea’s nutritional supply
(mostly oxygen and glucose) comes from small blood vessels in the corneoscleral junction
as well as from palpebral arteries through the aqueous humor and the lacrimal film [1,9].
Moreover, it is estimated that the cornea has an innervation density 300–600 times that of
the skin and 20–40 times that of the tooth pulp, making it one of the most innerved tissues
in the human body [10,11]. The five components of the cornea (from anterior to posterior:
corneal epithelium, Bowman’s membrane, corneal stroma, Descemet’s membrane, and
corneal endothelium) are described below [2] (also refer to Figure 1).
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Figure 1. Schematic of the human cornea and histology. Left panel: Schematic view of the human eye. The cornea
forms the transparent front part of the eyeball. Central panel: From anterior to posterior, the cornea is made up of a
stratified squamous epithelium deposited on a basement membrane, follows the Bowman’s membrane, a stroma, composed
predominantly of collagen fibrils in which keratocytes are entangled, the Descemet’s membrane, and a monolayer of
endothelial cells. Right panel: Masson trichrome staining of a section of the entire native human cornea showing all cellular
compartments of that tissue. Scale bar: 50 µm.
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1.1.1. Corneal Epithelium

The epithelium is the outermost layer of the cornea and is thus constantly exposed to
the environment and the lacrimal film. The epithelium is around 40–50 µm thick and it is
the most important refractive element of the eye. It is composed of 5–7 layers of stratified
and nonkeratinized squamous epithelial cells resting on a basement membrane produced
by both basal epithelial cells and keratocytes from the stroma [1]. The basement membrane
is 40–60 nm thick and is composed of type IV collagen, laminin, perlacan, and nidogen [12].
The epithelium can be further separated into 3 cell layers: the superficial cells, the wing
cells, and the basal cells. The superficial epithelial cells form 2–3 flat layers and act as a
barrier that prevents toxins, microorganisms, and tears from entering the epithelium. This
is the result of the tight junctions between these cells. Moreover, on top of the outermost
cells is the glycosylax, which is essential to the stability of the tear film. The epithelial cells
are eliminated by desquamation and their turnover is assured by the basal layer. Basal cells
divide and differentiate into wing and superficial epithelial cells as they migrate towards
the surface [13]. They are connected to the basement membrane by hemidesmosomes
while epithelial cells are linked to their neighbors by lateral gap junctions and zonulae
adherens [14]. The lifespan of epithelial cells is 7–10 days. The epithelium completely
renews itself every week through centripetal migration starting from the limbus, which
is located at the corneoscleral junction and is where the corneal epithelial stem cells are
found [15,16]. Stem cells divide asymmetrically into transient amplifying cells, which
migrate to form the basal cell layer of the central cornea.

1.1.2. Bowman’s Layer

Bowman’s membrane is an acellular layer between the basement membrane of the
epithelial cells and the corneal stroma. It is primarily composed of collagen type I, III,
V, VI, and XII, but also contains collagen type IV and VII coming from the basement
membrane [17–20]. This collagen is organized in small fibrils of 20–25 µm in diameter. The
fibrils interconnect to form an 8–12 µm thick layer of tissue. The thickness of the Bowman’s
membrane has been shown to decrease with age. Moreover, this membrane does not
regenerate after trauma or surgical removal, which leads to scarring [17,21]. The function
of this structure is still unclear as its absence does not result in loss of vision or in important
structural changes in the cornea. It is hypothesized that the Bowman’s membrane could
participate in the protection of the sub-epithelial nervous plexus, which goes through the
anterior stroma [17].

1.1.3. Corneal Stroma

Accounting for roughly 90% of the cornea’s thickness, the stroma plays a pivotal
role as it provides major structural support and crucial properties such as tensile strength,
stability, and transparency [12]. It is composed mainly of fibrils of collagen types I and V or-
ganized in lamellar sheets, but collagen types III, VI, XII, and XIV can also be found [22,23].
Additionally, these sheets are surrounded by proteoglycans associated with glycosamino-
glycans that are decorated with chondroitin sulfate or keratan sulfate, and this assures
the hydration and transparency of the cornea [24]. The stroma contains 250–300 collagen
lamellae that are heterogeneously organized. In the anterior stroma, the collagen fibers are
interwoven, whereas in the mid to posterior stroma, they are parallel to each other [25].
Keratocytes, which are responsible for the renewal of the stroma, are located between
the lamellae and occupy around 20% of the stroma. Their role is to produce collagen
and proteoglycans, thus contributing to the stability of the stromal framework as well
as to the regulation of the extracellular matrix and to the wound healing process [26–28].
The transparency and biochemical properties of the cornea are the result of the stroma’s
complex architecture.
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1.1.4. Descemet’s Membrane

The Descemet’s membrane is a basement layer that is continuously secreted by corneal
endothelial cells and which maintains the endothelium’s structure. Its thickness is around
3 µm at birth but, contrary to the Bowman’s membrane, expands to approximately 10 µm
with age. Produced before birth, the anterior portion of the Descemet’s membrane (in
contact with the stroma) is fibrous. In contrast, the posterior portion (in contact with the
endothelium) is produced after birth, and is more homogenous [11,29,30]. Structurally,
the Descemet’s membrane mainly contains fibrils of collagen types IV and VIII, although
collagen types III, V, and VII can also be found, as well as fibronectin and laminins [19,
20,31,32]. As the basement membrane of the endothelium, the Descemet’s membrane
participates in corneal dehydration. This is evident in corneal hydrops, which is a possible
complication in advanced keratoconus and is characterized by stromal oedema following
the tearing of the Descemet’s membrane [33,34].

1.1.5. Corneal Endothelium

The human corneal endothelium is organized in a single layer of hexagonal cells
covering the posterior face of the cornea. This 5 µm thick layer forms a relatively uniform
and regular mosaic and is in direct contact with the aqueous humor. The endothelial cells
have a diameter of 20 µm and are responsible for maintaining the deturgescent state of
the corneal stroma via ionic pumps situated in the basolateral portion of their cellular
membranes [11]. Endothelial cells possess lateral gaps and tight junctions and are attached
to the Descemet’s membrane by hemidesmosomes. This results in the formation of a
barrier that allows the passage of water from the aqueous humor to the stroma [35–37].
Contrary to the corneal epithelial cells, endothelial cells are incapable of mitosis and
therefore cannot regenerate in vivo. The replacement of damaged cells is provided by
the centripetal migration of peripheral endothelial cells [38–40]. The cell density, initially
around 4000 cell mm−2, decreases with age at a rate of approximately 0.6% per year in
the central endothelium to reach a density of 2500 cell mm−2 in adults. Moreover, this
phenomenon is accompanied by an increase in the surface area covered by each cell [41–43].
The main function of the endothelium is to control stromal dehydration in order to prevent
the formation of corneal oedema, which leads to the loss of transparency and thus vision.
This is the result of Na+, K+–adenosine triphosphatase (ATPase) pumps located in the
basolateral membrane. These pumps passively move ions and water from the stroma,
which is hypotonic, to the aqueous humor, which is hypertonic [44,45]. Consequently, this
mechanism is crucial for maintaining transparency and for nourishing the cornea, as the
ion and water exchanges allow the transfer of nutrients.

1.2. Clinical Aspects of Corneal Blindness and Current Therapeutic Strategies

Due to its anatomical location, the cornea is continuously exposed to abrasive forces
and mechanical, chemical, and thermal trauma. Corneal diseases represent the fifth leading
cause of blindness around the globe, preceded by cataracts, refractive errors, glaucoma, and
age-related macular degeneration [46]. According to the first global report on vision launched
in November 2019 by the World Health Organization (WHO), at least 2.2 billion people
worldwide suffer from a vision impairment or blindness (https://www.who.int/publications-
detail/world-report-on-vision). The vision impairment of more than one billion of these
patients, of which 4.2 million impairments are due to unaddressed corneal opacities, could
have been prevented or have yet to be addressed. In 2012, it was estimated that 12.7 million
people were waiting for a corneal transplantation worldwide. Unfortunately, only 185,000
cornea transplantations could be performed in the world the same year, covering the needs
of a mere 1 in 70 patients [47]. Furthermore, according to Matthew et al., it is estimated that
4.9 million persons worldwide suffer from bilateral corneal blindness and could potentially
benefit from a corneal transplant [48]. Of these individuals, a large proportion (near 90%) live
in underdeveloped countries and are significantly younger than the individuals suffering
from other causes of blindness [48]. The etiologies of corneal blindness vary greatly from

https://www.who.int/publications-detail/world-report-on-vision
https://www.who.int/publications-detail/world-report-on-vision


Int. J. Mol. Sci. 2021, 22, 1291 5 of 43

country to country. Accordingly, the indications for corneal transplantation are mainly based
on geographical, political, and economic factors [49]. In 2016, the 4 main indications for
corneal transplantation were Fuch’s dystrophy, pseudophakic bullous keratopathy, repeat
corneal transplantation, and keratoconus [49].

Ocular traumas and corneal ulcerations could be the cause of up to 1.5–2 million new
cases of monocular blindness every year [50]. Diseases such as trachoma, accounting for
4.9 million cases of blindness (WHO), Fuch’s dystrophy, xerophtalmia, onchocerciasis,
and ophthalmia neonatorum are known to lead to corneal blindness via scarring and
vascularization [51]. Scarring can also occur following chemical burns, especially alkaline
burns. Complicated ophthalmic surgeries as well as chronic inflammation may also lead to
long-term corneal endothelial decompensation.

In developed countries, easy access to fresh corneal tissue combined with new sur-
gical techniques (deep anterior lamellar keratoplasty (DALK), Descemet’s stripping en-
dothelial keratoplasty (DSEK), Descemet’s stripping automated endothelial keratoplasty
(DSAEK), Descemet membrane endothelial keratoplasty (DMEK), conjunctival-limbal
autografting (CLAu), simple limbal epithelial transplantation (SLET), cultivated limbal ep-
ithelial transplantation (CLET), etc.) has made visual rehabilitation following corneal
transplantation very successful. The traditional penetrating keratoplasty (PK) repre-
sented only 34% of corneal transplantations in the United States in 2018, whereas en-
dothelial keratoplasties accounted for 59%, and 7% were anterior lamellar keratoplasties
(ALK) or other types of graft (Eye Bank Association of America, 2018 Statistical Report;
https://restoresight.org/what-we-do/publications/statistical-report/). In PK, the overall
observed graft survival rate has been similar in many studies over the past 15 years and
revolves around 87–96%, 63–76%, and 52–64% at 1, 5, and 10 years, respectively [52–54].
The advent of post-PK refractive surgery and the development of new types of contact
lenses (hybrid and scleral contact lenses) have also greatly improved the visual outcome
following this procedure. For endothelial keratoplasties, the graft survival rate is 93% at 5
years [55]. For most of these procedures, post-operative vision can be corrected with simple
glasses in a matter of a few months since they do not create large amounts of astigmatism.
Despite the excellent results obtained for a first corneal transplantation in patients not at
high risk, the graft survival rates drop significantly in high-risk patients, including those
afflicted with chemical burns, autoimmune diseases, or with a history of previous graft
rejections. For these patients, the rejection rate may rise as high as 49%, which might lead
to repeat surgeries and worsening of the prognosis after each graft [52,56,57].

The actual cornea shortage worldwide strikes mainly in underdeveloped countries,
where, as aforementioned, 90% of corneal blindness is observed. It is estimated that
3.5 million people are in need of a corneal transplant, whereas only 20,000 donors are
reported every year [58]. Therefore, it is clear that alternatives to cadaveric corneas must
be turned to in the future.

One of such alternatives is the keratoprosthesis, which is a device that uses clear
polymers (acrylic, polymethyl methacrylate (PMMA), hydroxyethyl methacrylate (HEMA),
etc.) embedded in the cornea to reestablish the transparency of the central cornea. The diffi-
culties in creating keratoprosthesis come from the need for biocompatibility with the plastic
material used, the long-term integration of such polymers within living tissues, and the
permanent exposure to the air of the outer component of the keratoprosthesis. Throughout
the years, different strategies have been developed to address these difficulties: the creation
of an intrastromal pocket to receive the implant (AlphaCor (Coopervision Surgical Inc.,
Lake Forest, CA, USA), KeraKlear (Keramed, Inc., Sunnyvale, CA, USA), etc.), the insertion
of the device in bone tissue surrounded by a fibrovascular membrane (osteo-odonto kerato-
prosthesis (OOKP), modified OOKP (MOOKP)), and the placement of the clear prosthetic
cylinder in the center of a corneal graft with front and back plates that snap together with
corneal tissue sandwiched in-between (Boston K-Pro) [59–64]. Keratoprosthesis are usually
last-resort procedures used when conventional corneal transplantation does not reestablish
vision satisfactorily.
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The collagen-based hydrogel is another option for the actual shortage of cadaveric
cornea [65–67]. The extracellular matrix (ECM) of the corneal stroma is primarily composed
of collagen type I with some collagen types III [22], V, VI, XII, XIII, XIV, and XXIV [67].
Recombinant human collagen types I and III (collagen type III having a smaller fibril
diameter and thus possibly making a more compact and robust hydrogel [68]) were stud-
ied and compared as mimics to the collagen-based corneal stroma. Both types were
proven to possess similar physical and chemical properties to corneal substitutes, but the
synthetic cross-linked recombinant human collagen type III (RHC-III) was found to be
superior regarding optical clarity [67]. Over the years, it was modified by the addition of
2-methacryloyloxyethyl phosphorylcholine (MPC) to further enhance its stability, mostly
the enzymatic resistance, and to prevent neovascularization while still allowing regenera-
tion [69], making it an interpenetrating collagen-phospholipid network (RHC-III-MPC) [70].
Recombinant human collagen corneal implants may offer an interesting alternative for
patients in need of an anterior lamellar keratoplasty. However, their lack of mechanical
strength precludes their use for keratoplasties requiring a thicker stromal graft.

Fibrin, a non-globular fibrous protein that participates in blood clotting, has also been
studied for corneal transplantation. In 1997, Pellegrini et al. confirmed that it could be
used for the production of autologous, limbal stem cell-derived corneal epithelial sheets
that can then be used for transplantation in patients with corneal epithelial defects [71].
Since then it has been thoroughly tested, showing that the limbal stem cells are maintained
when cultivated on a fibrin substrate and that in more than 75% of cases at 10 years post-
transplant [72,73], the corneal integrity of patients suffering from total limbal stem cell
deficiency (LSCD) unresponsive to surgical therapy can be restored permanently when
the transplantation of limbal stem cells cultured on a fibrin gel is performed. Fibrin also
has many other applications, the most noteworthy in ophthalmology being fibrin glue
for wound closure in numerous surgical procedures, where it often replaces sutures for
an enhanced cosmetic result [74,75]. However, it has been shown that fibrin glue delays
corneal epithelial cell growth and migration and should therefore be used with caution [76].
Recently, Dereli Can et al. published a study in which they showed that their human-
derived platelet-rich fibrin (HPRF) released significantly more growth factors than the
traditional human amniotic membranes (HAMs) when used as a substrate for limbal
explant culture [77]. Moreover, it proved better than the HAMs for cell proliferation,
migration, and stemness, as well as being an inexpensive biomaterial for the optimization
of limbal explant culture [77].

Fibrin-based corneal implants have proven useful for further improving the adhesion,
migration, and stemness of limbal stem and progenitor cells [77] as well as their long-term
survival during the cultivation process [78].

Frequently used in medicine nowadays, human amniotic membranes (HAMs) have
several physical and chemical properties that are applicable to modern ophthalmic issues.
Among them are the stimulation of epithelialization and differentiation of epithelial cells
as well as the enhancement of adhesion and the prevention of apoptosis [79–81]. Moreover,
HAMs possess anti-fibrotic and anti-inflammatory properties, mainly via the suppression
of TGF-beta signaling and the inhibition of pro-inflammatory cytokines, respectively [82].
They also produce several anti-angiogenic compounds [83] and anti-microbial agents [84].
Finally, HAMs’ immunomodulatory effect (with close to no risk of rejection due to the low
amount of class Ia and Ib human leucocyte antigens (HLA) present, therefore requiring
no immunosuppression in HAM grafts [85,86]) and their transparency are two of their
best assets. Indications for a HAM graft include corneal surface disorders with or without
partial LSCD, such as persistent epithelial defects (PEDs) or non-healing corneal ulcers,
conjunctival surface reconstruction after the removal of large lesions (malignant tumors,
pterygium, symblepharon, etc.), glaucoma (as an adjunct therapy to reduce scarring at
the time of filtering surgery and complication rates), scleral melts, and perforations. For
non-traumatic micro-perforations and deep corneal ulcers with descemetoceles, 81.8% of
grafts were successful at a mean follow-up time of 32 months (12 to 60), although 15% of
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the treated eyes developed complications [87]. It was shown to be useful in alleviating
pain in 94% of patients with bullous keratopathy, [88], and in 93% of patients with band
keratopathy [89]. HAMs have proven to be valuable adjuncts in some procedures and
can be used alone to treat several ocular pathologies such as partial LSCD [90], PEDs, and
corneal ulceration, to name a few.

When corneal epithelial stem cell autografts are impossible due to a bilateral condition
such as LSCD, allografts may be used. However, the risk of pathogen transmission and
rejection is much higher [91]. Another option is to find another stem cell population
from the patient’s own cells as an alternative to the use of allogenic material. In the
past years, many possible sites have been explored such as oral mucosa epithelial cells
(OMECs), conjunctival epithelial cells, dental pulp stem cells, and hair follicle bulge stem
cells. OMECs have proven to be a good replacement for corneal epithelial cells in ocular
surface reconstruction as they share some physical properties and functions [92,93]. The
cells are typically cultured on HAMs until stratification of the epithelium is achieved, then
grafted. OMECs have demonstrated their ability to regenerate an avascular, stable, and
epithelialized corneal surface in patients with severe LSCD [94,95]. Conjunctival epithelial
cells grown on HAMs have also been used clinically in LSCD patients, but the results are
poorer than those obtained with autologous limbal stem cells [96].

2. Tridimensional (3D) Scaffold Models of the Cornea

In the intent to develop new corneal replacements, two-dimensional (2D) models,
where cell organization is provided by the substrate, are being replaced by their tridimen-
sional (3D) counterparts. By improving tissue development and cell arrangement, these
3D scaffolds prove to be a closer imitation of the native human corneal architecture. Many
materials have been studied with the goal of replicating the human cornea: silk, chitin,
collagen-chitosan hydrogels, fibrin-agarose hydrogels, and polyacrylic acid hydrogels are
some of the most promising models.

2.1. Silk-Based Corneal Implants

Silk, produced by silkworms and spiders, is a biomaterial well-known for its biocom-
patibility and low immunogenicity [97], its degradability [98], its optical transparency [99],
and its tensile strength, which is superior to any other known synthetic fiber [100]. For
these reasons, it has been used for medical purposes for a long time, more specifically
for surgical sutures [101]. Moreover, silk provides a substrate that promotes substantial
cell attachment and proliferation [102–104] and silk films with different surface groove
patterns not only allow cell attachment and growth but also direct alignment of their ECM
components, such as collagen type V and proteoglycan (decorin and biglycan) [103–105].
Silk fibroin is a structural fibrous protein extracted mainly from the cocoons of the silkworm
Bombyx mori. Its physical properties have proven to be comparable to those of the human
corneal stroma [106]. Many researchers have therefore tried using silk in vitro and in vivo
in rabbit corneas as a substitute to allogenic corneal materials [107,108].

In 2010, Gil et al. functionalized silk biomaterials with arginylglycylaspartic acid
(RGD) peptides, resulting in an improvement in cell attachment, proliferation, and align-
ment, as well as increased expression of corneal stroma markers. Their work also showed
that their model could sustain the growth of corneal epithelial and stromal cells [109]. A
year later, Higa et al. demonstrated that porous silk membranes were promising scaffolds
for cultured epithelial sheets, providing regeneration of the corneal epithelium in rabbit
models [110]. More recently, Wang et al. developed a porous silk-based corneal model
that included the corneal epithelium and stroma with an artificial innervation mimicked
by chicken dorsal root ganglion neurons [111]. Human corneal stromal stem cells and
epithelial cells were seeded on the silk scaffolds and cultured either immersed in liquid
medium or raised to the air–liquid interface in order to compare both conditions. After
28 days of cultivation, transparency was similar to that of a porcine cornea, with a higher
axon density when cultivated at the air–liquid interface. Moreover, the immersed condition
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showed a decrease in the number of corneal stromal stem cells in comparison with culture
at the air–liquid interface after adding the epithelial cells. The authors concluded that
culture at the air–liquid interface should be used to create such a corneal model [111].

Silk has also been studied as a carrier for corneal endothelial cells. Both human and
rabbit cells were cultured successfully on silk films and rabbit endothelial cells were even
grafted during a Descemet membrane endothelial keratoplasty procedure conducted on
New Zealand white rabbits, with promising results [112]. Moreover, it is worth mentioning
that progress has been made in retinal reconstruction with silk scaffolds for the culture of
retinal pigment epithelial cells [113], as well as in ocular wound healing and drug delivery
(as reviewed in Reference [114]. Therefore, silk fibroin shows great promise for tissue
engineering of the cornea. Often overlooked because of its supposed allergenic properties,
sericin, another silkworm protein, has recently been studied as a substrate for cell growth.
It has been found that silk sericin has a stronger cell attachment capacity when compared
to fibroin, although its mechanical attributes were inferior [115].

2.2. Chitin-Based Corneal Implants

Chitin, a long-chained polymer derived from glucose, can be found naturally in
arthropod exoskeletons and fungal cell walls. It can be converted into chitosan upon
deacetylation [116]. Because they are biodegradable and biocompatible, chitosan and its
derivatives have been widely used in tissue engineering as drug delivery systems [116,117].
In ophthalmology, in situ chitosan gels have been studied as a replacement for ocular
drops essentially because they increase bioavailability and retention time as well as the
compliance of patients by reducing the frequency of administration [118]. Chitosan has
also been studied as a replacement for the amniotic membrane as a scaffold for corneal
surface and endothelial reconstruction. It was found to be comparable to HAM regarding
the preservation of the phenotype of bovine corneal epithelial cells but also proved to be
superior concerning corneal epithelial cell proliferation and attachment rapidity [119].

According to Liang et al., reconstruction of the corneal endothelium could be possible
using an in situ-formed hydrogel of hydroxypropyl chitosan (HPCTS) cross-linked with
sodium alginate dialdehyde (SAD). By encapsulating corneal endothelial cells within
such a HPCTS/SAD hydrogel that was then transplanted on the exposed Descemet’s
membranes of rabbits’ corneas, they demonstrated its non-toxicity, histocompatibility, and
quick biodegradability. Moreover, their experiment showed that the grafted endothelial
cells could survive and retain their native morphology [120]. In 2014, Liang et al. studied
a water-soluble derivative of chitosan, hydroxyethyl chitosan (HECTS), as a scaffold for
the repair of mechanical damage in rabbit corneas. Its use resulted in an acceleration of
re-epithelialization, as the repair time was cut in half when compared with the control
group [121]. More recently, a hydrogel based on carboxymethyl chitosan (CMCTS) coupled
with SAD was used to treat severe alkali burns of the ocular surface. Indeed, grafting limbal
stem cells encapsulated with CMCTS/SAD hydrogel on the injured corneal surface led to
quick wound healing and reconstruction of the burned tissues [122]. Overall, chitosan has
shown great potential in tissue engineering, although it serves best when cross-linked with
other molecules to enhance its basic properties.

2.3. Collagen-Chitosan Hydrogels

Chitosan, as discussed above, has many physical attributes that could benefit the
field of tissue engineering in ophthalmology. Among them are its biocompatibility, its
non-toxicity, and its biodegradability. This polymer also has notable cell adhesion prop-
erties as well as permeability and tensile strength [123]. However, its hydrophilic nature
and reasonably low stability considerably restrict its use [124]. Therefore, many have
tried combining chitosan with other materials such as nano-whiskers [124], poly(vinyl
alcohol) [125], or collagen [123] in order to eliminate its weaknesses. In 2014, Li et al.
developed a biomacromolecule containing chitosan and collagen cross-linked with 1-ethyl-
3-(3-dimethylaminopropyl) carbodiimide (EDC). Upon analysis of this membrane, they
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concluded that the addition of collagen to a chitosan-based membrane greatly enhanced
its physical attributes such as hydrophilicity and transparency. Furthermore, besides its
ability to support cell adhesion, this model also proved to be biocompatible. Meanwhile,
no adverse effects were noted in the culture of human corneal epithelial cells [126]. In vivo
studies in pig and rat models have shown that collagen-chitosan hydrogels provide trans-
parency and biological performance equivalent to HAMs as well as the promotion of
re-epithelialization. Moreover, the results suggest that these scaffolds are implantable and
bioresorbable and possess significant physical and biological properties that could poten-
tially lead to large-scale production of these inexpensive nanofibrous materials [127,128].
However, although collagen-chitosan hydrogels sound promising for tissue engineering,
human clinical trials as yet remain to be completed.

2.4. Fibrin-Agarose Hydrogels

As described in Section 1.2, fibrin is a protein involved in blood clotting and has been
utilized for many purposes in tissue engineering during the last decades. In comparison
with collagen type I, commonly used as a corneal stroma substrate, fibrin is inexpensive,
readily available, and stable. Moreover, fibrin is not as quickly degraded and has a good
affinity for corneal stromal cells [129–131]. Agarose hydrogels have not been extensively
studied due to the slow cell growth rate they provide [132]. However, a fibrin-agarose
scaffold yields a better consistency than fibrin alone, is much easier to manipulate (enough
to be sutured), and provides good transparency as well. Additionally, these constructs
do not shrink as much as collagen gels and are able to sustain a layer of rabbit corneal
epithelial cells [133,134]. In 2011, Cardona et al. compared the transparency of fibrin and
fibrin-agarose scaffolds at different time intervals up to 28 days of culture. Their study
showed that the transparency, scattering, and absorption properties of both constructs
were similar to those of the native human cornea. No superiority of the fibrin-agarose
hydrogel was demonstrated. Nonetheless, the authors also mentioned that it could reduce
the corneal keratocyte growth rate in vitro [135]. A clinical trial testing artificial human
corneas bioengineered using fibrin-agarose nanostructured sheets and human allogeneic
corneal stromal and epithelial cells, with the intention to treat severe corneal trophic ulcers,
was recently initiated. Currently in phase I/II, preliminary results show good feasibility
and safety [136].

2.5. Polyethylene Glycol and Polyacrylic Acid Hydrogels

Interpenetrating polymer network (IPN) hydrogels based on polyethylene glycol
(PEG) and polyacrylic acid (PAA) were developed in 2007 by Myung et al. and used as
corneal substitutes. These hydrogels proved to be biocompatible and had a tensile strength
adjustable from roughly 10 kPa to 10 MPa. Moreover, their near 90% water content allows
the passage of important nutrients such as glucose at a diffusion rate similar to that of
the native cornea [137–140]. Inspiring results were also obtained from PEG corneal inlays
successfully implanted into rabbit corneas [141,142]. Two years later, Parke-Houben et al.
developed a biocompatible PEG/PAA interpenetrating polymer network (IPN) hydrogel
with a porous periphery to allow better integration of the synthetic material into the native
cornea. This model also supported extensive corneal fibroblast adhesion and prolifera-
tion [140]. However, the first study that assessed the biocompatibility of the PEG/PAA
hydrogels on rabbits at 6 months also reported that a majority of them had complications
ranging from a haze and epithelial defects to implant extrusion [143]. Therefore, PEG/PAA
IPN hydrogels display interesting properties such as nutrient permeability as well as
strength and transparency similar to those of the native cornea, but future clinical trials
will be necessary to assess it as tissue-engineered corneal substitutes for long-term corneal
replacement in vivo.
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3. The Human Tissue-Engineered Cornea (hTEC)

As stated in the above section, the progress made in the field of tissue engineering
has greatly increased and diversified the corneal substitutes available today for in vitro
studies and in development for clinical purposes. However, many of these models rely on
the use of exogenous material, which may raise concerns at the time of grafting due to their
allogenic nature or pro-inflammatory properties. Therefore, cell-based and scaffold-free
models have emerged.

Among them, the work of Zieske and Karamichos is worth mentioning. By culturing
both rabbit corneal epithelial cells and immortalized mouse corneal endothelial cells on
each side of a collagen matrix made of rabbit stromal fibroblasts, Zieske’s group first
demonstrated that the production of a three-dimensional corneal construct with the three
cell types found in the native cornea could be achieved [144]. Since then, other models based
on the principle of self-assembly (the same principle used for our model, see Section 4.2)
have been developed in order to study physiological processes in vitro. For instance, a
self-assembled 3D model of the corneal stroma was developed using primary human
corneal fibroblasts [145,146]. This model proved to be a useful tool for studying diabetes
and keratoconous disease, among other things [147,148]. Originally much thinner than
the native corneal stroma, this 3D stromal construct was recently improved in order to
better mimic the corneal stroma in terms of size [149]. This corneal stromal construct
was also upgraded with the addition of human corneal endothelial cells and primary
and immortalized human corneal epithelial cells in two separate studies conducted last
year [150,151]. All of this work points out the importance and potential of such multi-
cellular corneal 3D models for in vitro studies.

3.1. The 3D Human Tissue-Engineered Cornea Generated by the Self-Assembly Method

Besides the need for a suitable model for research studies, the development of a model
that could serve as an alternative to donor corneas for grafting purpose would be of great
interest. For over 20 years now, we have been dedicating our efforts to producing a human
tissue-engineered cornea (hTEC) that would be made exclusively of human primary corneal
cells and that would faithfully mimic the human native cornea. Bearing this in mind, and
with the aim of improving existing models, we successfully achieved the production of
a human tissue-engineered cornea (hTEC) that is compatible for grafting and made up
exclusively of untransformed human primary-cultured corneal cells. The reconstruction
procedure, characteristics, and uses of this model are detailed in the following sections.

3.1.1. Isolation and Culture of Human Corneal Cells (Epithelial, Stromal, and
Endothelial Cells)

Corneal epithelial, stromal, and endothelial cells can be isolated and expanded from
human donor corneas that are unsuitable for transplantation. In our case, corneas are
obtained from our local eye bank (Centre Universitaire d’Ophtalmologie Eye bank, Québec,
QC, Canada). Briefly, the Descemet membrane with its attached corneal endothelial cells
is peeled off from the whole cornea and then subjected to digestion with collagenase
A (or ethylenediaminetetraacetic acid (EDTA)) [152]. Cells are grown until they reach
confluence in a proliferation medium (Opti-MEM-I medium supplemented with 8% fetal
bovine serum, 5 ng/mL epidermal growth factor, 0.08% chondroitin sulfate, 20 µg/mL
ascorbic acid, and penicillin/streptomycin). The culture medium is then switched to a
maturation medium (Opti-MEM-I medium supplemented with 8% fetal bovine serum and
penicillin/streptomycin) when endothelial cells reach complete confluence, and cells are
grown for an additional 7 to 28 days. This two-phase culture has proven to be efficient
for maintaining and improving the corneal endothelial cell phenotype [153]. Once the
Descemet membrane has been peeled off, the remaining corneal tissues (stromas with their
attached epithelial cells) are then incubated with dispase. The epithelium is mechanically
separated from the underlying stroma and treated with trypsin, and hCECs are seeded with
either lethally irradiated murine Swiss-3T3 fibroblasts (i3T3) or human dermal fibroblasts
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(iHFL) that are used as feeder layers (see Section 3.1.4 for recent improvements brought to
the hTEC model). Human corneal fibroblasts (hCFs) are isolated from the stromal portion
of the cornea that is left after dispase digestion and removal of the epithelium by incubating
with collagenase H. All three cell types are passaged or cryopreserved in 90% v/v fetal calf
serum and 10% v/v dimethyl sulfoxide (DMSO), aliquoted into cryogenic vials, and frozen
at −80 ◦C overnight. Cells are then transferred and stored in liquid nitrogen until use.

3.1.2. The Self-Assembly Procedure for the Reconstruction of hTECs

The first evidence that corneal fibroblasts could produce collagen in culture when
under appropriate growing conditions goes back to the late 1970s [154]. Such a discov-
ery suggested that it might be possible to produce, upon fibroblast stimulation, a 3D
scaffold-free construct made of natural corneal ECM components. Along with the im-
provements in fibroblast isolation and culture procedures, this hypothesis was further
validated in 1998 with the development of the first self-assembly approach by the Labo-
ratoire d’Organogénèse expérimentale (LOEX) for blood vessels and skin [155,156]. The
self-assembly approach was first developed as an alternative to the use of exogenous
materials for tissue engineering. Since its development in 1998, this procedure has been
refined and adapted, and now allows the reconstruction of various human tissues and
organs (see below) that, besides being devoid of any added biomaterials, can be entirely
autologous (when used as a bilamellar tissue constituted of both the corneal epithelium
and stroma) and therefore compatible with grafting without rejection. The self-assembly
technique relies on the natural ability of certain types of cells to organize a tri-dimensional
tissue, in all respects similar to their native environment, when cultured under appropri-
ate conditions. The presence of ascorbic acid in the culture medium efficiently induces
spontaneous secretion and assembly of the ECM by fibroblasts [157,158]. Ascorbic acid
promotes ECM production in two different ways: first, it is known to increase the mRNA
synthesis of pro-collagen in mouse and human fibroblasts [159], and second, it acts as
a cofactor of prolyl 3-hydroxylase, an enzyme that hydroxylates proline residues on the
triple helix of collagen and stabilizes it [158,160]. First used to reproduce blood vessels,
the self-assembly approach has also been applied to the reconstruction of various human
tissues including skin, cardiac valves, adipose and urologic tissues, and, of course, the
cornea [155,156,161–165].

The procedure for reconstructing a tissue-engineered cornea by the self-assembly
approach firstly consists in culturing hCFs with ascorbic acid for 35 days in order to
stimulate the fibroblasts to secrete their own ECM. After 35 days, hCFs form thick cellular
sheets that can be easily manipulated (Figure 2). Two fibroblast sheets are then superposed
and cultured for one week, allowing the formation of a reconstructed corneal stroma [164].
hCECs are then seeded on the self-assembled stroma that is cultured for one week under
immerged conditions and then lifted to the air–liquid interface for an additional seven
days in order to promote the differentiation and stratification of the epithelium [166]. The
reconstructed cornea, thus produced, is composed of a corneal stroma and a pluristratified
epithelium (Figure 3) and can also be completed by the addition of a monolayer of corneal
endothelial cells [167]. It is then possible to produce, using the self-assembly approach, a
human tissue-engineered cornea histologically very similar to the native human cornea.
Bilamellar hTEC could shortly prove to be an interesting in vitro model for studying
corneal wound healing or drug–tissue interaction. In the future, it may be possible to use
allogenic endothelial cells, since the rejection risk is low for these cells [55,168,169], or to
grow autologous endothelial cells from induced pluripotent stem cells (iPS) in order to
obtain a three-layer substitute [170]. This three-lamellar hTEC might eventually become
the best, rejection-free alternative to repeat penetrating keratoplasty or to keratoprosthesis
for patients with corneas at very high rejection risk.
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stromal fibroblasts are cultured with serum and ascorbic acid for 35 days. Two fibroblast sheets are then superimposed to
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conditions and 7 days at the air–liquid interface.

3.1.3. Characteristics and Advantages of the Human Tissue-Engineered Cornea

The hTEC produced according to the self-assembly procedure is composed of a pluris-
tratified epithelium made of four to six cell layers (Figure 3). While the basal epithelial cells
are cuboidal with round nuclei, the superficial cell layers are rather characterized by the
presence of non-keratinized flat squamous cells [164]. Keratin 3 and 12, the two main cytok-
eratins that serve as phenotypic markers of the corneal epithelium, can be found in some
basal cells but mostly in the suprabasal cells of the reconstructed corneal epithelium [167].
This epithelium also lies on a well-organized basement membrane that forms a continuous
lamina densa that is easily detectable in electronic microscopy [164,167,171] (Figure 4).

Laminin V and collagen VII are predominantly expressed in this basement mem-
brane [164]. Hemidesmosomes, which connect basal cells to the underlying matrix, are
also present at the epithelial–stromal junction [167,171]. Furthermore, both gene profiling
and immunofluorescence analyses revealed that the reconstructed tissue has a pattern of
expressed integrin receptors (that comprises the integrin subunits α2, α3, α5, α6, β1, and
β4), which is very similar to that observed in the native cornea [171,172]. Interestingly, in
the hTEC, the two integrin subunits α6 and β4 (both components of the hemidesmosomes)
are relocated from the basal side of cells to the lateral and apical membranes during corneal
wound healing, a phenomenon that also occurs in the native cornea [164].

The self-assembled stroma is made of hCFs entangled in their own ECM. Collagen
type I is the predominant ECM component expressed, secreted, and assembled by the
fibroblasts. Laminin, fibronectin, and other collagens, such as collagen types IV, V, VI, VII,
and XII, all naturally present in the human cornea, can also be found in the reconstructed
tissue [171,172]. Although usually absent from the native cornea, collagen type XIV and
tenascin are also present in the hTEC [172,173]. One remarkable feature of the hTEC is that
within the reconstructed stroma, collagen fibrils spontaneously adopt a structure similar
to that found in vivo. Indeed, collagen fibrils in the self-assembled stroma can organize
in lamellae, each superimposed at different angles, but all parallel with one another, an
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organization that is thought to confer its transparency to the human cornea [174]. Moreover,
it has been shown that the reconstructed cornea mostly absorbs ultraviolet (UV) radiation
around 265 nm, which appears to be close enough to 275 nm, corresponding to the UV
absorption peak found in vivo [175].
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Figure 3. Characterization of the human tissue-engineered cornea. Immunofluorescence analysis
of: (A) the epithelial barrier marker ZO-1, (B) the differentiation marker keratins K3/K12, (C) the
epithelial cell marker p63, (D) the cornea epithelial stem cell marker ∆Np63α, and (E) K19, (F)
the epithelial basement membrane components laminin V, and (G) collagen IV. (H) Nuclei were
counterstained with Hoechst 33,258 reagent and appear in blue. Scale bar: 20 µm. Histology
(Masson’s Trichrome staining) of the tissue-engineered cornea, showing an epithelium adhered to
the self-assembled stromal matrix. The 5–6 epithelial cell layers differentiate during their upward
migration. The scale bar in H equals 20 µm.
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Figure 4. Transmission electron microscopic analysis of the hTEC. (A) Electron microscopic ex-
amination of the hTEC revealed the presence of an organized basement membrane (BM) with
many hemidesmosomes (arrows) that attach basal corneal epithelial cells (E) to the underlying
fibroblast sheet (F). A basement membrane is present at the junction between the epithelium and
the stroma. Note the presence of the collagen fibers (C) surrounding the fibroblasts in the sheet.
(B) Higher magnification that shows both the lamina lucida (LL) and lamina densa (LD), as well as
the hemidesmosomes (arrows) are present in the BM. Scale bars: 1 µm.

The hTEC exhibits various advantages as a tissue substitute. First, it is devoid of
any synthetic biomaterials, in order to better mimic the native cornea. It’s completely
natural ECM, in many aspects similar to the native ECM, is a characteristic shared with
other self-assembled constructs. The hTEC is made exclusively of untransformed human
living fibroblasts and epithelial cells, which therefore makes it possible for the epithelial–
mesenchymal interactions and cell–matrix interactions that are naturally present within the
cornea to take place. Compared to immortalized cells, primary cells are also preferred since
they are closer to native cells. hTECs produced by the self-assembly approach mimic many
histological features of the native cornea, including a well-developed stratified epithelium
and an adequate expression of basement membrane components and integrins, which
makes them very similar to their in vivo counterparts. This tridimensional model also
exhibits good translucency, an essential feature for a corneal substitute, and also good
mechanical strength [174]. Furthermore, when mechanically wounded, the hTEC enhances
migratory and proliferative cell properties, thereby promoting re-epithelialization and the
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restoration of a stratified epithelium, which is found to be very similar to the mechanisms
occurring in the native cornea [164,173,176] and which makes them a relevant model for
studying corneal wound-healing mechanisms.

3.1.4. Recent Improvements Brought to the hTEC Model

The culture of hCECs has been developed using medium supplemented with growth
factors and a very low concentration of cholera toxin [177]. Cholera toxin is a bacterial toxin
secreted by Vibrio cholerae that acts as a mitogenic factor for hCECs by inducing intracellular
accumulation of the second messenger cyclic adenosine monophosphate (cAMP) [178].
Since the demonstration of its efficacy, cholera toxin has been widely used as an additive
for hCEC culture medium. The use of a feeder layer, in particular the murine i3T3 feeder
layer, has also proven to be a key element for the optimal culture of a variety of cell types,
including hCECs [71,177]. Indeed, previous studies have shown that a murine i3T3 feeder
layer was effective in promoting hCEC proliferation and the maintenance of epithelial stem
cells and progenitor cells [179,180]. Murine i3T3 are currently used as the most conventional
feeder layer for the culture of hCECs. However, for clinical applications, both cholera toxin
and i3T3 feeder cells present limitations for regulatory approval. Indeed, the handling of
cholera toxin is regulated considering the risk it might pose to human health. The murine
i3T3 feeder cells have been proven to secrete N-glycolylneuraminic acid (Neu5Gc), a non-
human sialic acid, which could induce an immune response following transplantation [181,
182]. Furthermore, this feeder layer could increase the risk of transmission of viruses (or
viral fragments) from mice to humans, such as xenotropic murine leukemia virus (MLV)-
related viruses [183]. For these reasons, we and others have recently improved the culture
conditions of hCECs in order to decrease the potential risk of pathogen transmission from
mice to humans and increase general safety for human health.

In the last few years, several groups have been working on the development of new
feeder layers with the aim of finding an alternative to the use of i3T3. Human oral mucosal
fibroblasts, umbilical cord-derived human unrestricted somatic stem cells, and human
bone marrow-derived mesenchymal stem cells have been recently used as feeder layers
for the co-culture of hCECs with promising outcomes [184–188]. Another group also
succeeded in fabricating corneal epithelial cell sheets without a feeder layer by using a
novel oxygen-controlled method [189]. We recently substituted i3T3 with a new irradiated
human dermal fibroblast feeder layer [190]. This particular feeder layer has proven to be
effective for culturing keratinocytes [191,192] and has even yielded higher growth rates
and increased clonogenicity when compared with i3T3 [193]. We recently replaced cholera
toxin with isoproterenol, another cAMP inducer whose use in keratinocyte culture goes
back to 2005 [194]. Isoproterenol is a non-selective β adrenoreceptor agonist currently
used for the treatment of bradycardia and heart block. It therefore has the advantage
of being already approved for the clinic. While the measure of its relative effectiveness
over cholera toxin has not reached a consensus yet [195,196], we recently demonstrated
that isoproterenol was as effective as cholera toxin for stimulating and maintaining the
proliferative potential of human skin keratinocytes upon cell passages, without, however,
having any restrictions related to its use [193]. As for limbal epithelial cells, isoproterenol
also proved to be more effective than cholera toxin for inducing cell proliferation, as well
as for maintaining a smaller cell size [197]. Consequently, both iHFL and isoproterenol
seem to be good alternatives to the use of i3T3 and cholera toxin, respectively.

In vivo, corneal endothelial cells are arrested in the G1 phase of the cell cycle. However,
when appropriately stimulated, they are able to proliferate in vitro [198]. Consequently,
culture media for corneal endothelial cells are traditionally supplemented with different
growth factors and additives that act as mitogens, such as epidermal growth factor and
chondroitin sulfate [199,200]. However, despite all the work done on the development of
ideal growing conditions, corneal endothelial cells have a tendency to rapidly lose their
endothelial phenotype upon passaging, evolving towards a fibroblastic-like phenotype.
This phenomenon is now known as the endothelial-to-mesenchymal transition [201–203].
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Among others, TGF-β1 has been shown to be a trigger for endothelial-to-mesenchymal
transition in corneal endothelial cell cultures [202]. To address this problem, a novel dual
media approach, which consists in culturing cells in two different media depending on
whether cells are in the proliferation or the maturation phase, has emerged in the last
few years. This approach allows the expansion of corneal endothelial cells over several
passages while preventing the endothelial-to-mesenchymal transition [153]. Even so, it has
been demonstrated that the addition of the growth factor TGF-β1 to corneal endothelial
cells in their proliferating phase was deleterious for those cells and promoted a fibroblastic
phenotype [202]. While seeking to further improve culture conditions, Beaulieu Leclerc et al.
recently found that the addition of this growth factor was not always prejudicial. Indeed,
the addition of TGF-β1 to corneal endothelial cells in their maturation phase proved to be
beneficial for their phenotype and functionality [204]. It has been shown that the presence
of TGF-β1 in the maturation medium could enhance endothelial morphology and also
induce a better cytolocalization of Zonula occludens-1 (ZO-1), a tight junction-associated
protein, at cell–cell interfaces [204]. Taking into account this new evidence concerning the
contradictory effects of TGF-β1, a unique culture protocol for corneal endothelial cells was
developed by this team, which consists in a dual media culture with a maturation phase
in the presence of TGF-β1. Therefore, by exploiting this new approach, functional and
high-quality endothelial cells can be obtained and used for the production of hTECs.

3.1.5. What Are the ‘Missing Constituents?’

Although it is much closer to the native cornea than corneal epithelial cells grown as
monolayers or on synthetic substrates can be, our human tissue-engineered cornea model
can still be further improved. Indeed, some of its natural constituents, such as both nerve
and immune cells, are absent from our hTECs. This section discusses improvements that
can be brought to our corneal model to bring it much closer to the native human cornea.

Corneal Stromal Stem Cells

Corneal stromal stem cells (CSSCs) are present in the human corneal stroma and
localized in the limbal palisades of Vogt, directly underlying the epithelial basement mem-
brane where they maintain a close association with limbal epithelial stem cells [205–210].
Stem cells from the human stroma were initially identified as a side population, using the
dye Hoechst 33,342 efflux [205,211]. CSSCs, like mesenchymal stem cells (MSCs), have
been found to efflux fluorescent dyes, reducing their fluorescence and thus allowing their
identification by flow cytometry as a side population. CSSCs could be expanded clonally
through 100 cumulative population doublings. Genes specifically expressed by these cells
include the MSC genes ABCG2, BMI1, and CXCR4, as well as genes present in early corneal
development, such as PAX6 and Six2 [205,212]. Like mesenchymal stem cells (MSCs),
CSSCs are multipotent, a key identifier of stem cells.

When CSSCs are grown in serum-free medium supplemented with insulin and ascor-
bate, they upregulate expression of the keratocyte-specific markers ALDH3A1, CXADR,
PTDGS, and PDK4 [205]. These results are very interesting when looking at improving
the hTEC model. Indeed, expanding stem cells in culture and then differentiating them
into keratocytes could provide useful cells for tissue engineering of the cornea and for
cell-based therapeutic applications. Usually, the in vitro expansion of adult keratocytes
typically leads to their transition towards a fibroblastic morphology, which produces a
scar-like ECM rather than the specialized ECM required for corneal transparency [213]. It
has been shown that when CSSCs and hCFs are grown under equivalent culture conditions,
secretion of collagen types I, V, and VI, the major protein components of the corneal stromal
tissue, was much less abundant in the hCF-secreted constructs than in those produced
by hCSSCs. Furthermore, most studies have reported that the ECM secreted by hCFs is
lacking the cornea-specific keratan sulfate proteoglycans, keratocan and lumican, that are
critical to the regulation of inter-fibril spacing and thus for corneal transparency [214–220].
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When CSSCs are removed from their substratum and cultured as a pellet in low-
mitogen, ascorbate-containing media, a more complete keratocyte gene expression pattern
was observed and significant amounts of ECM were deposited, some with tracts of aligned
collagen fibrils, similar to what is observed in the stroma in vivo [212]. Like hCFs, when
CSSCs are cultured on a substratum of parallel aligned polymeric nanofibers, they produce
layers of highly parallel collagen fibers with packing and fibril diameter close to that of
human stromal lamellae [174,221–223], thereby demonstrating a role for topographical
cues in guiding the organization of corneal tissue. Furthermore, the addition of fibroblast
growth factor-2 (FGF-2) and transforming growth factor- β3 (TGF-β3) enhanced the effects
of the geographical cues, allowing the generation of a corneal stroma-like tissue made
up of multilayered lamellae with orthogonally oriented collagen fibrils and abundant in
cornea-specific proteins and corneal keratan sulfate proteoglycans (keratocan, lumican,
decorin) [220].

By comparison, hCF-secreted ECM exhibits characteristics of human corneal scar
tissue, in which collagen fibrils lack the hierarchical organization of human corneal stromal,
inter-fibril spacing is irregular, and keratocan expression is lacking [220]. In accordance
with a repair ECM protein profile, the stromal substitutes engineered using fibroblasts
have been shown to express fibronectin [172,224] and lack the expression of keratocan (a
keratocyte phenotypic marker) [225,226]. However, the stromal substitutes expressed very
low levels of type III collagen and α-SMA, suggesting that the ECM was deposited by
fibroblasts and not by myofibroblasts [224].

Innervation

Somatosensory innervation of the cornea serves to identify changes in environmental
stimuli at the ocular surface, thereby promoting the barrier function in order to protect the
eye against injury or infection. As the most densely innervated tissue in the body, the cornea
contains intraepithelial nerve fibers that originate from the sub-basal nerves, giving rise to
an extreme sensitivity of the tissue [227,228]. Structurally, nerves enter the cornea radially
from the periphery to form the sub-basal nerve plexus with intraepithelial nerve fibers. This
sensory presence is prominent at the cornea-scleral rim at 200 µm from the ocular surface
with additional bundles distributed from 50 to 500 µm deep within the stroma [228]. The
means by which the cornea is able to retain homeostasis, transparency, structural rigidity,
and regeneration throughout a lifetime relies on this interplay between the peripheral
nervous system and resident cells within the tissue (epithelial, stromal, and immune cells)
via secreted factors, like exosomes (recent work highlighting their potential mediators of
epithelial–stromal interactions) [229]. Damage that affects peripheral nerve functionality
may lead to deleterious effects on the integrity of the corneal surface [230–233].

The rapid degeneration of nerve endings in the cadaveric cornea limits long-term
studies of ocular irritation since nociceptive functionality is lacking [234]. Furthermore, the
nerve loss of the excised cornea post-transplantation increases the difficulty of attempting
to study nerve structure in the human cornea. So, there is a need to develop functional
human tissue models that can predict ocular damage and pain using in vitro-based systems
to increase throughput and minimize ex vivo model and animal use. Corneal tissue models
that fully mimic the anatomy, mechanical properties, and cellular components of the
human cornea would provide useful systems for the study of cellular interactions, corneal
diseases, and corneal wound healing. Furthermore, these in vitro models with functional
innervation would be sophisticated tools for studying ocular nociception.

There are currently few 3D in vitro corneal models available which contain corneal
innervation along with the physical and structural properties of the corneal tissue. Recently,
a corneal tissue model comprising a stroma, an epithelium, and innervation was gener-
ated [111]. A thin silk protein film served as scaffolding to support the corneal stromal layer
assembly and stratified epithelium formation [235,236]. A surrounding silk porous sponge
has been used to grow chicken dorsal root ganglions (DRG) or human-induced neural
stem cells in order to generate cortical neurons cultured in a 3D environment [111,237].
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In order to guide axons towards the top of the scaffolds, a collagen hydrogel containing
nerve growth factor (NGF) was cast on top of the film stack. Further advances include
the application of a self-assembled stromal model. This relies on ECM production by
corneal fibroblasts and the addition of a bone-marrow-derived neuroblastoma cell line
(SH-SY5Y), differentiated into a neuronal lineage [238]. Furthermore, the ECM plays a
fundamental role in regulating the growth and functionality of peripheral nerves [239,240].
These studies emphasize the need to implement 3D model approaches in conjunction with
in vivo models in the study of pain mechanisms.

Collectively, the application of these human-based in vitro models will provide an
opportunity to improve our cornea model. In fact, it would be possible to seed DRG or
human-induced neural stem cells at the periphery of hCFs or CSSCs sheets. Then, these
sheets would serve as supports for the successive stacking of other cellular sheets. After
the reconstruction of the corneal stroma and the seeding of hCECs, NGF would be cast on
top to guide axon migration.

Immune Cells

The immune system plays a fundamental role in protecting the complex and fragile
structures of the surface of the eye. The cornea and conjunctiva are adjacent mucous mem-
branes, subjected to the same stresses but characterized by totally different immunological
responses: while the conjunctiva is hyperreactive in the immuno-inflammatory mode, the
cornea is much less reactive and presents an inhibition of inflammatory reactions [241]. This
is called the immune privilege of the cornea [242]. Although the immuno-inflammatory
response is a formidable weapon, it also sometimes has undesirable effects, for example by
damaging the surrounding healthy structures [243]. In contrast to other tissues including
the skin, the cornea usually does not respond with the induction of blood and/or lymphatic
vessels to minor injuries and angiogenic stimuli. Such reactions would interfere with its
transparency and result in loss of vision, a characteristic commonly referred to as corneal
angiogenic privilege [244]. Therefore, the corneal angiogenic and immune privileges, which
are two closely linked but distinct processes, are actively maintained and ensure corneal
transparency.

Immune cells are found in the corneal tissue. Leukocytes, for instance, are located
mostly in the corneal periphery, but also in the epicentral and central cornea [245,246].
Furthermore, CD45+ cells are distributed throughout the entire depth of the stroma [246]
where they are localized primarily in the posterior stroma and uniformly distributed in
the periphery and center of the cornea [245]. CD11b-positive macrophages were shown to
make up about 50% of the resident corneal leukocytes [246]. Langerhans cells, a type of
dendritic cell, are found in the limbal epithelium, and both at the periphery and in the center
of the cornea [247]. The slow-cycling cells that have been identified in the limbal basal
epithelium are putative precursors of Langerhans cells [248]. Similar to the distribution
of Langerhans cells, stromal dendritic cells are found in the periphery and center of the
anterior stroma, with the central cells [245,249]. LysM-positive neutrophils are located
around the limbal vessels in the periphery but are not found in the central cornea [250].
Similarly, mast cells are found in the corneal limbus and conjunctival parenchyma, but not
in the central cornea. Although in earlier reports CD3+ T cells had been reported to be
absent from the cornea [246], resident CD4+ and CD8+ T cells have now been identified in
the central and peripheral region of native corneas [251].

In general, immune cell recruitment after corneal injury is mediated by proinflamma-
tory cytokines released from epithelial cells and keratocytes at the injured site. Il-1, Il-6,
and TNFα have been shown to be important mediators of that process [252–256]. Being
attracted by these and several other cytokines, recruited leukocytes from the limbal blood
vessels enter the stroma and migrate towards the wound site [257]. Neutrophils are the first
cells to infiltrate the cornea after injury: they can be detected up to 48 h after epithelial abra-
sion or injury [258]. Shortly, macrophages extravasate from the limbal vessels, infiltrate the
stroma from superficial to deeper layers, and migrate towards the center of the cornea [257].
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Macrophages remove debris and apoptotic cells at the wound site but have also been
shown to be essential mediators of angiogenesis after severe and prolonged corneal in-
jury [259–262]. Macrophages also take part in corneal wound closure by secreting TGF-β
to promote the differentiation of fibroblasts into myofibroblasts [263,264]. Centripetal
migration of Langerhans cells, from the limbal basal epithelium, into the central cornea was
shown to be mediated by IL-1, TNF, and CCR5 signaling [265,266]. The rise in Langerhans
cell number at the corneal surface also increases the antigen-presenting capacity of the
cornea, which is important in order to adequately respond to foreign antigens that might
have been introduced through the wound [266,267]. Natural killer cells, which are rare in
the native intact cornea, were also shown to accumulate around the limbal vessels and to
infiltrate the corneal stroma from the periphery to the center [268]. These cells promote
epithelial wound closure and the regeneration of corneal nerves and orchestrate the corneal
inflammatory response [268,269]. γδ T cells were shown to promote wound healing and
influence neutrophil and platelet numbers in corneal inflammation [270–272].

The inclusion of inflammatory cell types may also be an interesting development
in cornea models, given the contributory role of inflammation in wound healing. This
area remains relatively unexplored in corneal tissue models but may be important in
studying ocular infection and inflammatory pain in vitro. The addition of resident and
invading immune cells may be useful for the study of nerve–immune cell crosstalk or
epithelial–immune cell crosstalk in a system readily adaptable to temporal studies. Unlike
the cornea, several research groups have successfully incorporated immune cells into their
tissue-engineered skin models [273–277]. The addition of Langerhans cells [273,276–279],
dendritic cells [273,274], macrophages [280], and T cells [281] was made possible in order
to generate the much more complete models needed to study processes (disease, scarring,
infection) involving inflammation. The cells used to generate immune-competent models
are usually partially or fully sourced from donor skin samples and peripheral blood [273,
277,280,281]. As for the skin [282], the addition of immune cells such as macrophages,
Langerhans cells, or dendritic cells to the corneal stromal sheet would surely prove to be
particularly interesting in order to generate an immunocompetent hTEC.

4. The Future of the hTEC: Potential Applications and Uses

The ECM and cellular composition of hTEC, which are relatively similar to that of the
native cornea, make it an excellent model for various research and clinical applications.
Indeed, hTECs can be used to study various physiological processes at both the cellular
and molecular levels, such as the mechanistics of corneal wound closure. The hTEC can
also be used for in vitro designing and testing of different drugs or procedures that may
prove of interest for the treatment of corneal pathologies such as LSCD. This can range
from a simple topical treatment, to tissue transplantation in the patient, to gene therapy.

4.1. A Graftable Alternative in the Treatment of LSCD

The corneal epithelium is a self-renewing tissue that is maintained by stem cells
localized in the peripheral limbus. The destruction of the limbal stem cell niche results in
LSCD [240]. Congenital or acquired LSCD impairs corneal epithelium renewal, resulting in
progressive opacification, chronic ulceration, conjunctivalization, and neovascularization
with blindness, disfigurement, and occasionally discomfort as a result. If the damage
extends to the anterior corneal stroma, fibroblastic cells derived from stromal keratocytes
may produce long-lasting opaque scar tissue [283,284]. In many cases, stromal opacities
and neovascularization improve once the corneal epithelial phenotype is restored by limbal
stem cells and corneal epithelium regeneration. If it does not, additional surgery such as
penetrating or lamellar keratoplasty can be tempted to recover corneal transparency.

The use of corneal epithelial sheets for the treatment of LSCD has represented sig-
nificant progress for the management and outcome of this condition. The knowledge of
limbal stem cells, the improvement of culture methods, and the development of surgical
procedures adapted to corneal epithelial sheets have defeated such a challenging disease
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as LSCD [285]. Indeed, twenty years of clinical studies have resulted in 70–80% success
rates for the treatment of LSCD with autologous corneal epithelial sheets [71,73,285–296].
The effectiveness of CLET using HAMs or fibrin gel support for transplantation is now
well established [73,92,297–300]. However, the underlying stroma with large scars will
maintain a certain opacity of the cornea. Surgical replacement of the cornea is the primary
approach for the restoration of the patient’s vision. In a study by Pellegrini et al. con-
ducted on 152 patients treated for unilateral LSCD with CLET, 56 patients were subjected
to anterior lamellar or penetrating keratoplasty to improve the vision of eyes with stromal
scarring [286]. For these 56 patients, limbal stem cells grafted previously proved successful
for the regeneration of a corneal epithelium.

In the presence of a healthy contralateral eye, unilateral LSCD is usually addressed
with techniques such as CLAu, SLET, or CLET. CLAu and SLET have the advantage of
being more easily accessible and less costly, since the need for a specialized laboratory is
not necessary for their preparation. When both eyes are compromised with significant
LSCD, CLAu or SLET are not the procedures of choice because they bear the risk of badly
depleting limbal stem cells from the donor eye, worsening the clinical situation. Under such
circumstances, limbal stem cells allografts obtained from living related or cadaveric donor
eyes is the preferred limbal stem cells replacement technique [301]. The major disadvantage
for allogenic transplants is the need for long term systemic immunosuppression to prevent
graft rejection. On the other hand, CLET has been shown in our laboratory to have the
potential to generate, from one small limbal sample, enough autologous corneal epithelial
and stem cells to treat more than one limbal stem cells’ deficient cornea. Moreover, the
cultivated cells can be frozen for long periods of time and used whenever it might become
necessary. We recently successfully treated a patient with a decompensated first CLET due
to an inflammatory ocular surface disease by using the frozen expanded cells harvested
five years before [296].

Eyes with unilateral severe LSCD and badly scarred stroma are usually taken care
of with a two-step procedure: a corneal stem cell transplantation (CLAu, SLET, CLET)
followed, at a later time, by a Lamellar or a Penetrating Keratoplasty. The use of a bilamellar
hTEC [296] would eventually enable a one-step technique, possibly leading to a less
expensive overall procedure and a faster recovery. Long-term stability of the grafted stem
cells in those circumstances and the viability of the reconstructed stroma would have to be
investigated further before such a clinical application is attempted.

The demonstration that ECM sheets produced by stromal cells are biocompatible
in vivo when transplanted in feline corneas has been reported [302]. These stromal substi-
tutes composed of ECM sheets produced by corneal stromal fibroblasts were inserted in
a lamellar stromal pocket and followed for 4 months. The stromal substitutes were well-
tolerated, showing a normal fibrillar stromal ultrastructure and progressive reinnervation.
These stromal substitutes showed low immunogenicity and high biocompatibility in vivo.
Since the fibroblast phenotype is reversible in vivo, it is hypothesized that the fibroblasts in
the stromal substitutes engineered using serum would revert into keratocyte-like cells once
implanted. There are other examples of tolerance reported for these cells. For instance,
stem cells isolated from human corneal stromas and injected into mouse corneal stromas
remained viable for 10 weeks without eliciting an immune response. The injected cells
deposited lumican and keratocan, suggesting that stem cells differentiated into keratocytes
in vivo [303]. Furthermore, using limbal biopsy-derived stromal cells embedded in fibrin
gels and engrafted into mouse corneal wounds, these authors showed that their limbal
stem cells differentiated into keratocytes in vivo and induced regeneration of the damaged
stromal tissue without scarring [303]. In fact, the transplanted stromal cells did not only
survive and differentiate in vivo, but they were also functional after grafting in mice. This
recent discovery opens the door to the development of autologous treatment for stromal
scarring. Further research is necessary to evaluate whether human corneal stromal sub-
stitutes composed of assembled insular sheets secreted by hCFs or CSSCs cultured with
ascorbic acid could be effective for treating stromal scarring. Corneas with anterior scar-
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ring that contain a competent endothelium are often treated by partial-thickness anterior
lamellar keratoplasty. The efficacy of this process is similar to that of penetrating kerato-
plasty, but it is considered safer [304]. Unfortunately, many of these grafts are lost within
3–5 years [305]. The grafting of partial-thickness stromal substitutes for diseased anterior
stromas could become an alternative in the case of failure of a penetrating keratoplasty.

Full-thickness stromal substitutes would be used for pathologic corneas that are not
amenable to lamellar transplantation because of the extent of the disease or scar tissue.
They are more challenging to develop, as several criteria need to be met. Indeed, these sub-
stitutes must faithfully mimic the main functions of a normal cornea, namely transparency,
refraction, and ocular protection. Corneal equivalents must have corneal stromal deturges-
cence in order to maintain optical transparency, which requires a functional endothelium.
Full-thickness 3-layer tissue-engineered corneas (epithelium-stroma-endothelium) have
been produced using primary cells and immortalized cells [306,307]. These full-thickness
stromal substitutes would require more rigorous testing before they could be used in
clinical trials. It is obvious that the development of an autologous, tissue-engineered,
three-layered corneal tissue would be an important advancement for the treatment of
corneal pathologies. Currently, the only devices used to replace a penetrating graft in
human subjects are the keratoprostheses (Section 1.2).

4.2. A Model for the Study of Corneal Wound Healing

Corneal wound healing is a complex event involving many processes such as cell
death, proliferation, migration, adhesion, and differentiation [308]. During these steps,
the composition of the ECM is continually modified to allow proper re-epithelialization,
epithelial cell migration, and differentiation [309,310]. The ECM is a non-cellular network of
proteins and polysaccharides to which cells adhere through cell–matrix interactions [311].
Alterations of the ECM occurring during corneal wound healing include the massive
transitory secretion of fibronectin combined with a reduction in the secretion of collagens
and laminins [312–314]. This ECM remodeling is required to allow the fast migration
of corneal epithelial cells, in order to rapidly cover the damaged area. Changes in the
composition of the ECM are perceived by integrins, a family of membrane-anchored
receptors that recognize the different components of the ECM as their ligands [172,315].
The downstream cascades of mediators activated by these cell–matrix interactions then
lead to the transcription of genes involved in wound healing [316].

Several models of wound healing have been developed in order to investigate the
corneal mechanisms of re-epithelialization and to screen for growth factors susceptible
to stimulate an adequate healing response [317–325]. Although very convenient because
of their ease of use, cell monolayers in in vitro models suffer, however, from the lack of
epithelial–mesenchymal interactions and a limited epithelial thickness. In addition, stud-
ies of corneal wound healing in animal models are very expensive and inter-individual
variability among animals is inherent to in vivo experiments. Progress in tissue engineer-
ing has resulted in the development of hTECs designed to mimic their in vivo counter-
part in terms of cell phenotype and tissue architecture (see Ref. [326] for an extensive
review). As detailed in Section 3 above, we have succeeded in producing hTECs that
show appropriate histology and expression of basement membrane components and inte-
grins [164,167,175,306,327–330]. Besides being devoid of any synthetic materials, corneas
tissue-engineered by our self-assembly approach exhibit a well-developed stratified ep-
ithelium that expresses differentiation markers (such as keratin 3) and that comprises a
stroma and a well-organized basement membrane (Figures 3 and 4). When mechanically
damaged (using a biopsy punch), this fully human hTEC, produced from living hCFs and
untransformed hCECs, mimics many aspects of the re-epithelialization process, including
cell migration and proliferation, and the restoration of a stratified epithelium [164,175]
(Figure 5).
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neas produced using HCECs isolated from the eyes of three different donors (44, 52, and 71 years 
old). Closure of the wounded epithelia was followed from 1 to 4 days after corneal injury. (C) 
Composite image showing a complete view of the wounded tissue-engineered human cornea 3 
days following corneal damage (sections were stained with Masson’s trichrome; cells are pink and 
collagen is bluish). The wound margin created by the biopsy punch is indicated. F1 + F2: initial 
fibroblast sheets present in the reconstructed cornea prior to wounding. F3 + F4: supplementary 
fibroblast sheets added following wounding of the tissue-engineered corneas (Figure adapted 
from Reference [173] with the permission of the journal Biomaterials). 

Our recent use of the hTEC as a biomaterial for the study of both the cellular and 
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genes expressed in response to wound healing [173]. Indeed, the expression of many met-
alloproteinase (MMPs)-encoding genes was shown by microarray and qPCR analyses to 
increase in the migrating epithelium of wounded corneas. In addition, the expression of 
MMPs by hCECs was affected both by the hCFs and the collagen-enriched ECM they pro-
duce. Most interestingly, the results from mass spectrometry analyses provided evidence 
that a fully stratified epithelium is required for proper synthesis and organization of the 
ECM to which the epithelial cells adhere [173]. 

Figure 5. Production of wounds on human tissue-engineered corneas. (A) The reconstructed cornea
is wounded using an 8 mm biopsy punch. (B) Closure of wounds on tissue-engineered corneas
produced using HCECs isolated from the eyes of three different donors (44, 52, and 71 years old).
Closure of the wounded epithelia was followed from 1 to 4 days after corneal injury. (C) Composite
image showing a complete view of the wounded tissue-engineered human cornea 3 days following
corneal damage (sections were stained with Masson’s trichrome; cells are pink and collagen is bluish).
The wound margin created by the biopsy punch is indicated. F1 + F2: initial fibroblast sheets present
in the reconstructed cornea prior to wounding. F3 + F4: supplementary fibroblast sheets added
following wounding of the tissue-engineered corneas (Figure adapted from Reference [173] with the
permission of the journal Biomaterials).

Our recent use of the hTEC as a biomaterial for the study of both the cellular and
molecular mechanisms of wound healing revealed important alterations in the pattern
of genes expressed in response to wound healing [173]. Indeed, the expression of many
metalloproteinase (MMPs)-encoding genes was shown by microarray and qPCR analyses
to increase in the migrating epithelium of wounded corneas. In addition, the expression of
MMPs by hCECs was affected both by the hCFs and the collagen-enriched ECM they pro-
duce. Most interestingly, the results from mass spectrometry analyses provided evidence
that a fully stratified epithelium is required for proper synthesis and organization of the
ECM to which the epithelial cells adhere [173].
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The major signal transduction pathways activated by the integrins include the Janus
kinase/signal transducers and activators of transcription (JAK/STAT) [331], mitogen-
activated protein kinase (MAPK) [332], and phosphoinositide-3-kinases/protein kinase B
(PI3K/AKT) pathways [333,334]. More recently, the β2 integrin subunit from the immune
cells was also identified as an upstream regulator of the actin-regulated myocardin-related
transcription factor A/serum response factor (MRTF-A/SRF) pathway in response to exter-
nal cell stimuli that initiate F-actin polymerization downstream of RhoA activation [335].
However, in corneal wound healing, little is known about which pathway contributes the
most to the healing process. The hTEC was recently used as a model for studying the
signal transduction pathways that participate in corneal wound healing. By exploiting
both gene profiling and activated kinase arrays, the occurrence of important alterations in
the level of expression and activation of a few mediators from the PI3K/Akt and C-AMP
responsive element-binding protein (CREB) pathways in response to the ECM remodeling
taking place during wound healing of damaged hTECs could be demonstrated [171]. The
pharmacological inhibition of CREB with C646 considerably accelerated wound closure
compared with controls. This process was further accelerated when both C646 and SC79, an
agonist of Akt, were added together to wounded hTECs (Figure 6), suggesting that proper
corneal wound healing requires the activation of Akt together with the inhibition of CREB
and that in vitro wound re-epithelialization can be improved by the use of pharmacological
inhibitors (such as C646) or agonists (such as SC79) of these mediators.

In a recent attempt to further characterize the mechanistic details of the signal
transduction pathways activated during corneal wound healing, we have shown that
phosphorylation-mediated activation of the WNK1 kinase was one particularly important
event occurring during hTEC wound healing [336] (Figure 7). WNK1 is the founding
member of a family that comprises four evolutionarily conserved serine–threonine ki-
nases (WNK1, WNK2, WNK3, and WNK4) that share 85% homology over their kinase
domains [337]. The activation by phosphorylation of WNK kinases allows them to respond
to changes in intracellular chloride concentration [Cl−] and tonicity [338,339]. Whereas
the expression of WNK2 and WNK3 is usually restricted to the kidney, that of WNK1 is
ubiquitous (reviewed in Ref. [340]). In agreement with these results, unwounded hTECs
were found to significantly express only the WNK1 mRNA transcript [336]. The especially
important contribution of this kinase to the wound healing process was demonstrated
by the inability of wounded hTEC to properly heal upon pharmacological inhibition of
WNK1 by WNK463, a process that is likely mediated by the WNK1 downstream target
mediators SPAK/OSR1 [336]. How, then, might the activation of the WNK1/SPAK/OSR1
pathway contribute to wound healing? The answer to this puzzling question might come
from the recent demonstration that activated WNK1 is a key participant in ensuring a
proper balance between adhesion and migration in T cells. Indeed, the activation of WNK1
through the PI3K/Akt pathway was found to negatively regulate integrin-dependent T-cell
adhesion while improving their migratory properties [341]. It is the activation of the WNK1-
downstream pathway OSR1-SPAK-NKCC1 that has been demonstrated to regulate cell
migration, likely through a mechanism involving ion transport across the cell membrane.
This interesting hypothesis suggests that polarization occurs at the leading edge through
a Slc12a Na-K-Cl co-transporter-dependent uptake of ions and water, whereas these are
released at the trailing edge of the migrating cells, a process that would cause cell move-
ment and described as the ‘osmotic engine model’ [342,343]. In summary, activation of the
WNK1-SPAK/OSR1 pathway appears to be required to ensure proper wound closure of
wounded hTECs. The activation of this signal transduction pathway during corneal wound
healing raises the interesting possibility that ions and water transport in addition to actin
reorganization might contribute to the proliferative and adhesive/migratory properties of
the corneal epithelial cells located near the wounded area.
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tral and external areas of wounded hTECs were analyzed by immunoblotting to confirm the phos-
phokinase array results for the mediator WNK1. Actin was used as the loading control (Figure 
adapted from Reference [336] with the permission of Journal of Tissue Engineering and Regenera-
tive Medicine). 
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proaches in tissue engineering are currently being developed for peripheral nerve regen-
eration [346], in which different scaffolds, based on natural, synthetic, or semi-synthetic 
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lease of active substances, such as neurotrophic factors. Similar strategies are being devel-
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Figure 7. Kinase profiling analysis during corneal wound healing. (A) Major protein mediators from the WNK1 signal
transduction pathways. (B) Cell lysates isolated from the central and external areas of hTECs assembled using hCEC-44,
hCEC-52, and hCEC-71 were pooled together and used for the detection of activated kinases with the Human Phospho-Kinase
Array from R&D Systems. Kinases and mediators identified as being differentially phosphorylated between the central
(wounded) and external (unwounded) areas of hTECs are identified. (C) Cell lysates from the central and external areas of
wounded hTECs were analyzed by immunoblotting to confirm the phosphokinase array results for the mediator WNK1.
Actin was used as the loading control (Figure adapted from Reference [336] with the permission of Journal of Tissue
Engineering and Regenerative Medicine).
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4.3. hTECs and Nanotechnologies: A Model for the Development of a New Drug Delivery System

Nanotechnologies are increasingly associated with multiple systems for biomedi-
cal applications, including tissue engineering for regenerative medicine [344]. Indeed,
these molecular-level technologies enable the modification and improvement of system
properties, such as their interactions with cells, their topology via nanofabrication, and
the controlled release of drugs or active substances [345]. For example, nanotechnology
approaches in tissue engineering are currently being developed for peripheral nerve regen-
eration [346], in which different scaffolds, based on natural, synthetic, or semi-synthetic
materials, are combined with nanotechnology to improve the targeting, guidance, or release
of active substances, such as neurotrophic factors. Similar strategies are being developed for
different organs such as the bladder [347], blood vessels [348], heart [349], skin [350], and
bone [351,352], as well as for craniofacial and dental materials [353]. These recent advances
in the integration of nanotechnologies in tissue engineering could dramatically improve
tissue properties, and thus have a significant impact on their clinical developments.

In order to reduce the number of animal assays, as recently announced and targeted
by the American Food and Drug Administration (FDA) [354], the use of 3D models as
preclinical models is becoming increasingly popular for cytotoxic assays and pharmacoki-
netic studies [355]. The active substances are often hydrophobic and unstable, and their
formulation must be optimized to allow their biocompatibility as well as better penetration
and efficiency, depending on the route of administration. Tissue engineering is therefore
an excellent system for testing a large number of experimental conditions.

A hTEC platform was recently developed to assess drug absorption in the anterior
eye [356]. This system, named the Dynamic Micro Tissue Engineering System (DynaMiTES),
was tested with a human hemicornea construct [357] in the presence of sodium fluorescein
and different concentrations of benzalkonium chloride, a controversial preservative [358].
This proof of concept represents a real advance for the use of tissue-engineered corneas for
pharmacokinetic studies of promising new drugs. Furthermore, hTECs are progressively
completed with different aspects, such as innervation [359]. This new functionality allows
the exploration of different drugs for their influence on the corneal innervation.

Another commercially available model of hTEC (SkinEthic Laboratories, Nice, France)
was used to assess the eye-irritating potential of chemicals through viability assays [360].
A bovine tissue-engineered cornea was also used for ophthalmic permeation studies of
pilocarpine, currently used for glaucoma treatment, in order to evaluate the influence of
different formulations [361]. Furthermore, drug permeation studies were performed on
hTECs and compared to porcine corneal constructs, excised porcine corneas, and human
donor corneas [134,362]. hTECs could therefore play a key role in preclinical testing
during the development of drugs and drug delivery systems, thus reducing the use of
animal models.

As stated in Section 4.2, we recently demonstrated the clinical interest of pharmaco-
logically altering the activation status of signal transduction mediators, such as CREB and
AKT, which also play a critical role during corneal wound healing in vitro [171]. However,
the low solubility and stability of these compounds could benefit from nanotechnologies
to improve their properties. For example, mucoadhesive ultra-stable gold nanoparticles
are currently being developed in order to modulate their formulation and achieve better
efficiency (unpublished results) [363–368]. In this case, hTECs could thus serve as a plat-
form for performing preclinical tests such as cytotoxicity, biodistribution, drug release, and
efficiency assays (Figure 8).
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here. 
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least one of the diseased corneas. It is conceivable that with a single harvest of limbal cells, 
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as limbal stem cells allografts) requiring long-term systemic immunosuppression and 
their potential severe side effects [16]. We are currently starting a new clinical research 
protocol to address this issue. 
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Figure 8. The hTEC as a model for the development of a gold nanoparticle drug delivery system. Illustration of the use of
the hTEC as a platform for the development of drug delivery systems. Left insert: layers composing the hTEC (stroma, basal
membrane, epithelium, and mucins) for the assessment of drug absorption, controlled release of drugs, permeation studies,
bio-distribution, cytotoxic assays, efficacy assays, and pharmacokinetic studies. Right insert: Mucosal layer in the tear film,
composed of mucins that can interact with mucoadhesive molecules such as the gold nanoparticles, as shown here.

5. Future Directions and Conclusions

The development of full-thickness stromal substitutes for pathologic corneas that
are not amenable to lamellar transplantation because of the extent of the disease or scar
tissue truly represents a promising avenue despite the fact their development proves to be
more challenging. Full-thickness three-layer tissue-engineered corneas (epithelium-stroma-
endothelium) have been produced using primary cells and immortalized cells [306,307].
These full-thickness stromal substitutes require more rigorous testing before they could
be used in clinical trials. It is obvious that the development of an autologous, tissue-
engineered, three-layered corneal tissue would be an important advancement for the
treatment of corneal pathologies such as LSCD. Indeed, despite the inherent laboratory
cost for the preparation of CLET, this technique holds great potential with respect to the
treatment of bilateral LSCD when a minimal number of limbal stem cells is still available
in at least one of the diseased corneas. It is conceivable that with a single harvest of limbal
cells, we might soon be able to treat both corneas without having to depend on techniques
(such as limbal stem cells allografts) requiring long-term systemic immunosuppression
and their potential severe side effects [16]. We are currently starting a new clinical research
protocol to address this issue.

Recent advancements in the field of gene therapy have led to the development of the
clustered regularly interspaced short palindromic repeats (CRISPR) -associated protein 9 (CRISPR-



Int. J. Mol. Sci. 2021, 22, 1291 28 of 43

Cas9) technology. This technique offers great advantages compared to other gene editing
procedures such as RNA interference (RNAi), as it is quite simple and highly efficient [369].
It relies on the enzymatic activity of the Cas9 nuclease, an RNA-guided DNA endonuclease
from Streptococcus pyogenes that induces a double-strand break at a very specific DNA
sequence. In most cases, the DNA is repaired by Non-Homologous End Joining (NHEJ)
and the resulting protein is truncated, and therefore not functional [370]. Besides this Cas9
gene knockout property, more sophisticated CRISPR methods now allow the alteration of
the expression of any given gene either positively (gene activation) or negatively (gene
repression), which is of particular interest in some diseases. In those cases, the Cas9 enzyme
is deactivated (dCas9) and coupled with enhancers (such as VP16) [371] or repressors of
chromatin compaction (such as the Krüppel associated box domain (KRAB)) [372]. This
technology is growing at a very rapid pace. It has been proven to be secure and efficient
enough to be used for gene therapy. At the moment, there are 30 different clinical trials
being conducted worldwide that use the CRISPR-Cas9 technology as a therapeutic gene
editing agent (https://clinicaltrials.gov/ct2/results?cond=&term=CRISPR&cntry=&state=
&city=&dist=). While these clinical trials mostly focus on treating several types of cancers,
only one affects the eye, the Leber Congenital Amaurosis, a retinal disease. Nevertheless,
in vitro studies using the CRISPR-Cas9 as a gene editing tool are being conducted in order
to treat corneal diseases and dystrophies. Human herpes viruses [373], TGFβ1-related
corneal dystrophies [374], and the Schnyder corneal dystrophy [375] are great examples of
this kind of in vitro studies.

There are many reasons why the cornea is a tissue of particular interest for targeted
gene therapy. It is in part due to its accessibility, as this tissue consists of the outer layer
of the eye. For example, eye drops can be very easily applied directly on the cornea in
order to deliver all the CRISPR components. Furthermore, as the area of the cornea is quite
restrained, only small amounts of these components are required. The cornea is also ideal
for CRISPR-Cas9 use because of its immune privilege status and the absence of vascular-
ity [376]. Indeed, the lack of blood vessels helps to reduce the immune response against
the plasmids that are induced with the gene therapy [377]. The absence of vascularity is
also of great interest because it nearly eliminates the possibility of the therapy reaching
other organs.

Because the hTEC shares these features with the native cornea, it is also a great model
to study gene therapy in vitro. As the hTEC needs to be maintained at the air–liquid
interface for several days, the CRISPR-Cas9 components can be deposited directly on
the humid upper surface of the hTEC and will not be diluted in the culture media. It is
then easy to know the exact amount of components that are in contact with the tissue.
The CRISPR-Cas9-targeted gene alteration can then be passed to the daughter cells of the
superficial epithelial layers by simply raising the hTEC to the air–liquid interface. Another
way of using the CRISPR-Cas9 technology with the hTEC would be to transfect the cells as
monolayers prior to reconstructing the 3D model. However, it is important to make sure
that the gene editing process does not affect cell proliferation and differentiation properties
in order to produce a tissue-engineered cornea with a well-differentiated epithelium.

In the last decades, the progress made in cell culture and tissue engineering has
resulted in the improvement of human corneal living substitutes. The success of these
cultured tissues in some of the experimental and clinical applications presented in this
review will pave the way for multiple avenues of fundamental and translational research.
The improved living substitutes containing additional cell types (inflammatory and nerve
cells) will help to unravel the complex molecular mechanisms and cellular pathways
ongoing in the normal cornea and those leading to diseases. In addition, numerous
applications will be concretized for the use of human corneal living substitutes as tools
for pharmacotoxicologic studies and the development of new drugs. We hope that the
clinical applications derived from the various living substitutes will improve the treatment
of several forms of corneal blindness and favor a better quality of life for patients suffering
from ocular diseases.

https://clinicaltrials.gov/ct2/results?cond=&term=CRISPR&cntry=&state=&city=&dist=
https://clinicaltrials.gov/ct2/results?cond=&term=CRISPR&cntry=&state=&city=&dist=
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