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Polymorphic regenerated silk fibers assembled
through bioinspired spinning
Shengjie Ling1,2, Zhao Qin1, Chunmei Li2, Wenwen Huang2, David L. Kaplan2 & Markus J. Buehler1

A variety of artificial spinning methods have been applied to produce regenerated silk fibers;

however, how to spin regenerated silk fibers that retain the advantages of natural silks in

terms of structural hierarchy and mechanical properties remains challenging. Here, we show

a bioinspired approach to spin regenerated silk fibers. First, we develop a nematic silk

microfibril solution, highly viscous and stable, by partially dissolving silk fibers into micro-

fibrils. This solution maintains the hierarchical structures in natural silks and serves as

spinning dope. It is then spun into regenerated silk fibers by direct extrusion in the air,

offering a useful route to generate polymorphic and hierarchical regenerated silk fibers with

physical properties beyond natural fiber construction. The materials maintain the structural

hierarchy and mechanical properties of natural silks, including a modulus of 11± 4 GPa, even

higher than natural spider silk. It can further be functionalized with a conductive silk/carbon

nanotube coating, responsive to changes in humidity and temperature.
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Animal-produced silks, produced by spiders and silkworms,
have attracted the intense attention of scientists and
engineers for more than a century, not only because of

their marvelous mechanical properties, but also due to their
diverse applications in textiles, optics, environmental engineering,
and biomedicine1–4. In addition to in-depth studies of the phy-
sical properties and functions of natural silk fibers, experimental
attempts have been pursued to mimic the natural process of
producing robust regenerated silk fibers (RSFs) to emulate the
properties of natural silk fibers5–7. Wet spinning techniques,
ejection of the spinning dope into a coagulation bath (often
containing alcohols or salts), are the most common approach to
generate RSFs6–8. However, these methods are complicated,
generally include dissolution, dialysis, concentration, spinning
and post-treatment processes, and most of the steps are
time-consuming, energy-intensive, and require relatively large
quantities of solvent.

In contrast, natural spinning is an anisotropic (liquid crystal)-
based dry-spinning process5, 9–11. Spiders and silkworms con-
struct webs and cocoons by directly spinning a pre-assembled
nematic silk protein dope, which is solidified immediately to a
fiber once it leaves the spinneret5, 10, 11. All of these processes are
conducted under physiological and ambient conditions without
any additional immobilization and post-processing steps5, 9–11.
Bombyx mori (B. mori) silkworm spinning process as an example.
The main structure of silk fibroin is synthesized at the epithelial
wall of posterior silk gland (the tail of gland) with a concentration
around 12 wt%12. Next, the fibroin moves to the wider middle
division (sac or ampulla) with an increase in concentration (~25
wt%12) and assembles to a micelle-like configuration with ani-
sotropic liquid-crystalline properties5, 10. The liquid crystallinity
allows the molecules to flow in a pre-aligned manner and to
further align along the flow axis during the passage through the
spinning duct. Finally, silk fiber formation occurs under shear
stress and dehydration conditions during the pulling out of the
fiber from the spigot5, 9–11.

Several reported dry-spinning technologies13–21, spinning
processes by which solidification of the fiber occurs due to eva-
poration of a volatile solvent7, have shown advantages for
mimicking this fantastic natural spinning process, including ease
of operation and relatively low cost. However, as-spun RSFs
produced by these methods are brittle and have poor mechanical
properties. Therefore, they still require complex post-processing
treatments (e.g., dehydration and crystallization processes7) to
generate useful fibers. This drawback deeply hinders the appli-
cation of these methods, and, more importantly, all of these
attempts (including wet and dry spinning) only focus on repro-
ducing the mechanical properties of natural silks, and pay less
focus on retaining the hierarchical structures of silks, a key feature
in the properties of the natural protein fibers22–27.

On the basis of the anisotropic dry-spinning features of natural
spinning, here we elaborate a facile bioinspired spinning strategy
to collect RSFs in ambient environmental conditions. The RSFs
are formed directly after extruding or pulling silk microfibril
(SMF) solution from a spinneret and no post-processing is
required. The resultant as-spun RSFs retain the hierarchical
architecture and physical properties of natural silks, exhibiting
excellent mechanical properties. In addition, this bioinspired
spinning approach can be applied to generate polymorphic
hierarchical RSFs, such as spiral and helical fibers, and even to
build refined 2D and 3D architectures. Finally, we show how the
scope of these RSFs can be amplified by adding conductive silk/
carbon nanotube coatings, which are suitable for generating
humidity and temperature sensors with potential in wearable
device/biosensor applications due to the robust silk fibers as a
foundation.

Results
Bioinspired spinning strategy. Same as the natural spinning of
B. mori silkworm (Fig. 1a, b), a critical factor in bioinspired
spinning (Fig. 1c–e) is to prefabricate a spinning dope with
suitable rheological properties, which has high viscosity along
with stability29. Previous attempts focused on increasing the
concentration of silk in solution, with different single-solvent,
binary-solvent systems, such as HFIP30, 31, HFA32, 33, NMMO/
H2O34–38, LiBr/H2O39–42, and CaCl2/formic acid15 assessed
(details can be found Supplementary Table 1). However, the
structural hierarchy of natural silks, an important element in
determining bulk material properties22–27, is destroyed during
these dissolution processes43. Recently, we found that HFIP can
partially dissolve B. mori silkworm cocoon silk fibers to micro-
fibrils with diameters of 5–50 µm and contour lengths of 50–500
µm after incubating silk fiber/HFIP (weight ratio, 1:30) mixtures
at 60 °C44, 45.

Herein, we use the same dissolution system but increase the
weight ratio of silk fiber/HFIP to 1:20 and extend the incubation
time to 7–15 days (Fig. 2a–c and Supplementary Fig. 1). These
new conditions enhance the concentration and viscosity of the
SMF solution; more suitable for generating a spinning dope.
During the incubation, the HFIP gradually permeated into the
silk fibers from the defects and ends, and partially dissolved the
sheath layer into silk fibroin polymer chains44. After 4 days, the
silk fiber/HFIP mixture formed a pulp blend (Supplementary
Fig. 1b). The silk fibers were dissolved and cut into shorter fibers
with centimeter length and 5–20 µm in diameter. After 15 days,
the silk fibers are partially dissolved to form the microfibrils, but
in this case the SMFs present in smaller diameters (5–10 µm) and
longer contour lengths (several hundreds to thousands of
micrometers) (Fig. 2c). Importantly, the resultant silk fiber/HFIP
mixture presents as a uniform viscous solution (Fig. 2a) with
nematic liquid-crystal-like texture (Fig. 2b, Supplementary Fig. 2).
Specifically, analogous to the characteristic of nematic silk
proteins in silk glands5, 11, these SMFs form a substance that
flows as a liquid but maintains some of the orientational order
characteristics of a crystal (Fig. 1d). These liquid crystals allow the
viscous SMFs to flow through the spinneret to form complex
alignment patterns under mild shear and stress. The result is an
SMF solution that can be easily transformed into a hardened fiber
with moderate external forces and relatively simple devices. For
instance, we can directly collect the highly oriented uniform fibers
by continuous extrusion with a flow rate of 20 ml h−1 or forcibly
reeling the SMF solution with reeling speeds of 4–14 mm s−1

(Fig. 2d–g). The longest continuously spun RSF reached up to
tens of meters under the reeling speed of 4 mm s−1, despite a few
defects found on the surface. Figure 2h and i present a typical
surface and cross-section morphologies of the RSFs with tightly
stacked SMFs. The SMFs fuse together and align along the fiber
axis without gaps or cracks among the SMFs in a cross-section
direction. Fourier transform infrared spectroscopy (FTIR)
characterization reveals that the RSFs are mainly composed of
β-sheet (crystalline) structures. The deconvolution of the amide I
band provides an estimation of β-sheet structure in the RSFs of
34± 5% to 45± 3%, while that of the degummed B. mori
silkworm cocoon silk fibers is 38± 4% (Supplementary Fig. 3 and
Supplementary Table 2).

Mechanical performance of RSFs. Since the RSFs retain the
structural hierarchy and well-organized silk nanofibril structures
of natural silks (Fig. 1e and inset of Fig. 2i), which is critical for
enhanced strength, extensibility, and toughness of silk fibers24,
the RSFs exhibit high mechanical performance, defined as
mechanical properties with strength, extensibility, and modulus
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equal or higher than 100MPa, 20% and 5 GPa, respectively.
These values are determined based on the mechanical perfor-
mance of previously reported RSFs, which are listed in Supple-
mentary Table 1. A single 7 mg RSF with length of
15 cm, as an example, can hold a 200 g weight without breaking
(Fig. 3a). Tensile tests were carried out to measure the specific

mechanical properties of the RSFs prepared by reeling (details can
be found in “Methods”). A strong correlation between reeling
speed and cross-sectional area (CSA) of the RSFs was observed in
which the average CSAs of RSFs varied from 0.024± 0.003 to
0.002± 0.001 mm2 with reeling speeds from 4 to 14 mm s−1

(Supplementary Table 2). Accordingly, the mechanical properties
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Fig. 1 The natural and bioinspired spinning process. a Illustration of a silkworm spinning gland divided into three parts according to the evolution of silk
protein during spinning. b Schematic model of the natural silk fiber assembly mechanism occurring along the spinning apparatus. The scheme is adapted
from ref. 28, with permission from Elsevier. The silk proteins are synthesized in the tail and are transferred to ampulla with increased concentration. In this
region, the silk proteins are assembled to micelle-like configurations with anisotropic liquid-crystalline properties. Finally, silk fiber formation occurs under
shear stress and dehydration conditions during pulling out the nematic silk proteins from the spigot. c Illustration of the bioinspired spinning process. The
nematic silk microfibril solution can be directly assembled into RSFs without additional treatment. d Schematic of the SMF evolutionary process during
spinning. The SMFs are aligned in the spinning jet (or fiber) axis direction under the shear/stress elongation. e Schematic of the hierarchical structure of
RSFs. There are at least five structural hierarchy levels in RSF
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of RSFs are divided into five categories according to their average
CSAs, due to the changing reeling speed (Fig. 3b–d, Supple-
mentary Table 2). Although these RSFs have a variation in
mechanical properties in each category (particularly for strain to
break), a direct correlation between CSAs and mechanical
properties of the RSFs can be observed. By progressively
increasing the CSA from 0.002± 0.001 mm2 (1st sort; reeling
speed: 14 mm s−1) to 0.024± 0.003 mm2 (5th sort; reeling speed:
4 mm s−1), the tensile modulus of RSFs decreased from
11± 4 to 8± 1 GPa (Fig. 3c), while the toughness increased from
2± 2 to14± 9MJm−3 (Fig. 3d). The minimum average modulus
of RSFs is 8± 1 GPa (5th sort) (Fig. 3c), which is significantly
higher than other values reported for as-spun RSFs from spider
and B. mori silkworm silk fibroin (Supplementary Table 1) and
comparable with natural B. mori silkworm cocoon silks (7 GPa11).
The maximum modulus of RSFs (1st sort, 11± 4 GPa, the highest
value can reach up to 19 GPa) was even higher than that of
Araneus major ampullate gland silk (10 GPa1) and most other

natural biomaterials (Fig. 3e)46–48. In forced reeled animal silk
fibers, besides impacting CSAs, the reeling speed also has a sig-
nificant effect on the structure of the resultant fibers, where the
higher reeling speed resulted in higher crystallinity and higher
molecular aligement49–55. The same tendency was also observed
in RSFs, for example, compared with sort 5 with the lowest
drawing speed, sort 1 with the highest reeling speed presented
increased crystallinity and molecular alignment that was con-
firmed by FTIR. By increasing the reeling speed from 4 to 14 mm
s−1, β-sheet content increased gradually from
34± 5 to 45± 3% (Supplementary Fig. 3 and Supplementary
Table 2). Furthermore, compared with RSFs reeled at 4 mm s−1

(5th sort), RSFs reeled at 14 mm s−1 (1st sort) showed more sig-
nificant FTIR dichroism (Supplementary Fig. 3d), indicating
higher molecular alignment. As a result, sort 5 has higher
toughness but lower modulus than sort 1, because the modulus of
silks is determined by the crystallinity and alignment, while the
tensile strain is impacted by the amorphous regions29, 56.
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Fig. 2 Visual appearance and structural characterization of the regenerated silk spinning dope and resultant RSFs. a–c Visual appearance (a), polarized light
microscopy image (b), and SEM image (c) of B. mori silk fiber /HFIP mixture with a weight ratio of 1:20 after incubation at 60 °C for 15 days. After 15 days
the silk fiber partial dissolved to microfibrils with diameters of 5–10 µm and contour lengths of several hundreds to thousands of micrometers. The resultant
SMF/HFIP mixture was a uniform, highly viscous solution with nematic liquid-crystal-like texture. d The photograph to show the facile bioinspired spinning
process. The nematic SMF/HFIP solution can be directly reeled to form RSFs. e, f Visual appearance (e) and polarized light microscopy image (f) of as-
spun RSFs. g–i SEM images of as-spun RSFs. The images h and i are a top view and cross-sectional SEM images of RSF, respectively. The RSF is constituted
by highly oriented and bound SMFs. The inset of the image i is high-resolution SEM image of a cross-section of RSF. Well-organized silk nanofibrils are
observed. False color is used in SEM images. Scale bars, 50 µm (b), 200 µm (c), 100 µm (f), 200 µm (g), 20 µm (h), 20 µm (i), and
2 µm (inset of i)
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In addition, the size effect influences the mechanical behavior
of the RSFs. It has been shown in the former study that the
diameter of the spider silk fiber plays a crucial role in affecting the
fracture mode and toughness modulus of the fibers at the small
size scale24, 26, because of the interplay of β-sheet nanocrystals
and semiamorphous protein domains. However, compared to the

critical thickness value of H�= 22 nm24, our thinnest RSF with
diameter of H= 70 µm is far from the scale region that will be
affected by such nanoscale size effects, (

ffiffiffiffiffiffiffiffiffiffiffiffi
H�=H

p � 0:5). There-
fore, the size effect as discovered in the experiments in the current
study is caused by mechanisms at the mesoscopic level. A
computational model based on elastic network features was used
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Fig. 3 Mechanical properties of RSFs. a A photograph to show a single RSF (with the weight of 7 mg and the length of 15 cm) can hold up a 200 g weight
without breaking. b–d Tensile stress-strain curves (b), modulus (c), and toughness (d) of RSFs in experiments and simulations. The error bars in c and d
were calculated as a s.d. The mechanical properties of RSFs obtained from experiments are divided into five categories according to their CSAs, which
yielded by different reeling speeds. The relationship between CSA and reeling speed are summarized in Supplementary Table 2. Sort 1: CSA, 0.002±
0.001mm2; Sort 2: CSA, 0.007± 0.001 mm2; Sort 3: CSA 0.014± 0.003mm2; Sort 4: CSA, 0.018± 0.002mm2; Sort 5: CSA, 0.024± 0.003mm2. e
Comparison of Young’s modulus and densities of RSFs with other materials. The Ashby plot was redrawn from refs.46–48. f Schematics of the
computational model of a RSF in tensile test. We modeled a unit section of RSF as a bundle of SMFs of 1000 µm and simulated its mechanical behavior in
tension. The RSF thickness played an important role in governing failure, as the critical cross-section area Ac= 0.008mm2 governed the transition from
brittle to ductile failure according to the simulations. g Simulation snapshots of two RSFs of different cross-section areas (A) in tension that fail in different
ways. h The stress-strain curve of pristine RSFs of different cross-section areas obtained in computational simulations, with the curves of the defected
samples summarized in Supplementary Fig. 4
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to quantify and explain how RSF toughness increased with
diameter. The computational models (Fig. 3f) are composed of a
bundle of SMFs with each explicitly modeled, which allowed us to
simulate RSF deformation up to mechanical failure. Considering
the fact that different diameters of RSFs are the result of different
reeling speeds, which yield different shear stress in spinning, this
leads to differences in silk assembly because of the protein
structural transitions and the formation of hydrogen bonds
during stress57, 58. We effectively modeled the interaction
strength between neighboring SMFs, which was inversely
proportional to the RSF diameter, according to a former study59.
The stress-strain curves were recorded for each of the pristine
RSFs (Fig. 3h) and defect samples (with 0.1–0.5% defect rate,
Supplementary Fig. 4), and statistically summarize the materials’
Young’s modulus and material toughness as the integration of
area below the stress-strain curve (Fig. 3c, d), respectively. The
simulation results showed that increasing RSF diameter leads to a
smaller Young’s modulus but higher toughness, as the modulus
and toughness changed from 11.2± 0.2 GPa and 3.3± 0.7 MJ m−3

for RSF of 0.002 mm2 to 8.0± 1.1 GPa and 14.2± 2.4 MJ m−3 for

RSF of 0.025 mm2 in cross-section area, respectively (Fig. 3c, d).
Good agreement was found between computational simulation
results and experiment. More importantly, the mechanism is
clearly shown as a thin RSF fails by breaking all the SMFs at a
single point, leading to brittle failure, while thick RSFs, because of
the low inter-fiber interactions, break by having fibers slide
against each other, leading to ductile failure, as supported by
simulation snapshots in Fig. 3g (necking of RSF and sliding
between SMFs) and schematics in Fig. 3f.

Structural hierarchy endows natural silks with fascinating
physical properties. A typical example is the ultra-low tempera-
ture toughness of silks; silk fibers exhibit ductile failure even at
the temperature of liquid nitrogen (−196 °C), and breaking
elongation does not differ from the behavior seen at room
temperature60, 61. Another example is the unique fracture mode
and tensile behavior of notched silks; crack direction derives from
the notch can be deflected to fiber longitudinal direction due to
the longitudinally arranged silk nanofibrils in silks62. The RSFs
reserve the structural hierarchy of natural silks, so we further
evaluate the fracture behavior and ultra-low temperature
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mechanical performance of RSFs. To estimate the flexibility of
RSFs in ultra-low temperature, a helical fiber was immersed in
liquid nitrogen and then stretched to uncoil the helical structures
(Fig. 4a and Supplementary Movie 1). The fiber is resilient
(recoiled) immediately after being taken out of the liquid
nitrogen. In contrast, other materials that are flexible at room
temperature, such as cellulose paper and nitrile rubber, loose

elasticity or break during immersing in liquid nitrogen (Supple-
mentary Fig. 5 and Supplementary Movies 2, 3). The same
fracture mode with natural silks is also observed in RSFs
(Fig. 4b–d). In these experiments, an artificial notch was
introduced in RSF, and the mechanical properties were tested
to compare with that of the adjacent intact (un-notched) fiber
(Supplementary Fig. 6). The notched RSF exhibits the same load-

Silk- WCNT coating

RSF

ba

edc

f

g h i j

k l

Ca2+

WCNT

Silk

70 58

56

54

52

50

48

46

80

Time (s)Time (s)

Start

Stage 3

Stage 1

Stage 2

RSF-WCNT fiberRSF-WCNT fiber

Commercial hygrometerCommercial hygrometer

65

60

55

50

45
0 10 20 40

88

86

85

84R
es

is
ta

nc
e 

(k
Ω

)

R
es

is
ta

nc
e 

(k
Ω

)

R
es

is
ta

nc
e 

(k
Ω

)

Ω

Te
m

pe
ra

tu
re

 (
°C

)

R
el

at
iv

e 
hu

m
id

ity
 (

%
)

Relative humidity (%)

83

82

90

43

55

60

65

70

75

80

85

75 70 4359857570594359707585757059

80

70

60

50

Touch

100 20

Release

30 40 50 60 0 10 3020 40 50 60 70 80
Time (s) Time (s)

87

50 60 70 80 0 40 12030

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00613-5 ARTICLE

NATURE COMMUNICATIONS |8:  1387 |DOI: 10.1038/s41467-017-00613-5 |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


strain curve as the un-notched RSF (Fig. 4b); only the strain is
reduced. This mechanical feature is the typical ductile fracture
behavior of natural silks62. Cross-sectional SEM image (Fig. 4c) of
notched RSFs after tensile fracture confirms the ductile fracture
behavior. Three distinct fracture regions are shown (i–iii, as
shown in inset scheme of Fig. 4c): the notched area (region i), the
crack stable growth area (region ii), and the crack unstable
growth area (region iii). The locally amplified SEM image
(Fig. 4d) in the crack stable growth area reveals that the silk
nanofibrils pulled out along the tensile direction after fracture. As
with native silks, the crack growth direction is deflected from the
fiber cross-section direction to the longitudinal direction.

Polymorphic RSFs. As in natural spinning, a unique advantage of
our bioinspired spinning system is to directly build 1–3 dimen-
sional structures (Fig. 4e–k) during spinning without additional
processes. Therefore, this bioinspired spinning approach provides
an approach to utilize silks to generate polymorphic hierarchical
RSFs with useful structures beyond mimicking fiber construction.
For instance, a yarn-like spiral fiber can be produced by rotating
the collector in a plane direction perpendicular to the fiber axis
(Fig. 4e, f and Supplementary Fig. 7); a freestanding Towel Gourd
tendril-like helix fibers63 are generated by extruding the spinning
solution onto a cylindrical collector (Fig. 4g and Supplementary
Fig. 8a, b). In addition, the silk fibrils in the spinning solution
have the ability to absorb different types of dyes44, 64, thus sui-
table for generating colored fibers, which have shown promising
applications in fashion, optical devices, and biomedicine65, 66.
Figure 4h and i give examples of two specimens in which mul-
ticolored luminescent RSFs with parallel and cross-double helical
construction were built by adding Rhodamine B and Rhodamine
123, respectively. More complicated 2D and 3D structures can
also be generated, such as robust webs and grids (Fig. 4j, k and
Supplementary Fig. 8c, d). The use of the hierarchical RSFs for
biomedical applications was assessed by seeding human dermal
fibroblasts (HDFs) on yarn-like spiral and as-spun RSFs. Cells
grew along the fiber axes and 3D cell patterns following the
contour of the RSF templates were generated on RSFs of different
hierarchical structures (Supplementary Fig. 9a–d). Such macro-
scopically aligned constructs may be suitable templates to gen-
erate highly aligned tissues, such as muscle fibers, spinal cord, and
tendon. Moreover, cells formed confluent cell layer on both type
of RSFs by day 7 (Supplementary Fig. 9e, f), suggesting cell
compatibility.

Design and fabrication of conductive RSFs for monitoring the
humidity and temperature. The utility of these RSFs can be
expanded by incorporating inorganic functional components. For
example, the RSFs can be used to construct wearable humidity
and temperature sensors via a three-step dip-coating method67–
69, for which core–shell-based conductive fibers are used because
they are easy to implement and maintain the excellent mechanical
properties of RSF (Fig. 5). Briefly, multi-wall carbon nanotubes
(MWCNT) were dispersed in formic acid/Ca2+ with 1 h

sonication, followed by dissolving the degummed silk fibers in
this solution with intense shaking. Then, the WMCNT/silk/Ca2+

ink was coated onto RSFs and dried at room temperature to
eliminate the formic acid (Fig. 5a, b). The conductive coating
layer closely bonds with the RSFs (Fig. 5c–e and Supplementary
Fig. 10) since the formic acid/Ca2+ solvent system dissolve the
surface of RSFs64. More significantly, the Ca2+ ions in the coating
layer capture water from the environment through coordination
complexes; a Ca2+ ion can coordinate 6–8 water molecules via the
oxygen atoms70, 71. As shown in Fig. 5f, the higher the relative
humidity (RH) in the environment, the more the water that can
be captured in the coating layer. Therefore, the coating layer
gradually swells and the distance between WMCNTs widens
progressively with the increase of RH. These processes are
reversible. Once the RH is reduced to the initial value, the coating
layer dimension and WMCNT distances recover to their starting
states. As a result, the resistance of WMCNT/silk/Ca2+ coatings is
very sensitive to humidity changes (Fig. 5g–i).

Figure 5g reveals the relationship between RH and resistance.
When the RH increases from 43 to 85%, the resistance increase
gradually from 58.4± 0.1 to 83.2± 0.1 kΩ. After four cycles, the
resistances are similar at the repeated same RH, demonstrating
the reversibility of the process. A time-resolved resistance vs. RH
experiment (Fig. 5h and Supplementary Fig. 11) was designed to
evaluate the response rate related to the change in RH. A
conductive RSF was fixed on the top of a 2 L glass bottle, then the
~50 ml 50 °C water was added to the bottom of the bottle. The
temperature of RSF position was kept at 24–25 °C and no changes
were detected during the test process. We find that the resistance
of the RSF increases after 4 s by adding the water to the bottle
(Fig. 5i). Considering the diffusion rate of water vapor, the
resistance is synchronous in ascending with the increase of RH,
and more rapidly than a commercial hygrometer (15 s).
Significantly, the resistance of conductive RSF varies in this
time-resolved process, and is more sensitive to RH changes than a
commercial hygrometer, which offers a step-wise response. The
conductive RSF also quickly responses to changing temperature
(Fig. 5j); the resistance of RSF decreases with increased
temperature. After standardization of the resistance to initial
temperature, the plot coincides with recordings from a commer-
cial thermometer. These rapid responses to humidity suggest that
these conductive RSFs could be utilized in clothes and masks
toward smart fabrics to sense and monitor touching and
breathing. As presented in Fig. 5k, l, the resistances respond
real-timely upon touching the cloth with a finger (Fig. 5k) or
breathing (Fig. 5l), and rapidly recover to the original state once
the stimulus was removed. These RH and temperature-sensitive
wearable SNFs may find applications in wearable sensors,
considering the biocompatible nature of the composites, even in
medical implants.

Discussion
Silks, as one of the most abundant natural polymers (biopoly-
mers) on earth, have attracted intense attention in recent decades

Fig. 5 Examples of functional RSFs by dip-coating a conductive layer. a Illustration of the constitution of conductive core–shell RSFs. The core and coat layer
are composed of RSF and silk/WMCNT/Ca2+ hybrid composites, respectively. b A conductive RSF is weaved into a cloth. These photographs show
conductive RSFs are robust and can be weaved to different patterns. c–e SEM images of conductive RSF surfaces at different magnifications. Scale bars,
200 µm (c), 50 µm (d), and 500 nm (e). The coating layer shows a porous structure, which increased specific surface area and conducive to absorbing
more water. The closely stacked WMCNTs, as a conductive composite, observed on the coating layer. f Schematic of humidity response mechanism of
conductive RSFs. g The relationship between RH and resistance. The error bars in g were calculated as a s.d. of at least three measurements. h Schematic of
experimental setups for monitoring humidity and temperature responses of conductive RSFs. i Time-resolved resistance vs. RH results of RSF sensor and
commercial RH sensor. j Time-resolved resistance vs. temperature results of RSF sensor and commercial temperature sensor. In order to avoid RH effects
on resistance, the RH is kept at 20% during the measurements. k, l Resistance response for finger-touching (k) and breathing (l)
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due to their renewability, wide availability, biocompatibility, and
biodegradability1–3. A variety of processing methods have been
developed to generate silk materials with different formats, but in
most cases, their mechanical properties are much weaker than
that of natural silks3. This gap drives us to rethink the conven-
tional protocols of silk processing, especially when we mainly
focus on the mechanical and functional performance of the
designed materials. Directly utilizing native silks and/or silk
building blocks to create structural and functional materials will
be an optimal choice, because these ways can maximum effec-
tively retain advantages of natural materials.

As a prototype illustrated in this study, we dissolved the silk
fibers into microfibrils instead of thoroughly into silk fibroin
molecules. These microfibrils maintained sophisticated nano-
architecture and micro-architecture in silks and meanwhile can
be spun into polymorphic RSFs through the bioinspired spinning
process. With the advantages of natural silks, these
as-spun RSFs indeed show outstanding mechanical properties,
which are comparable to and even superior to natural silks. In
addition, similar to 3D printing, our bioinspired spinning process
can be used to build sophisticated 1D–3D structures. This
method provides a useful approach to generate functional
materials, such as textiles, surgical sutures, and tissue scaffolds.

This spinning process is also similar to natural fiber
welding72–78, a process where loose fibers are transformed to
create a congealed network using an ionic liquid. Both methods
first involve the partial dissolution of the natural fibers, which are
then processed into different materials. The mechanism of natural
fiber welding is to dissolve the outer portion of individual natural
fibers (i.e., cellulose, hemicelluloses, silk) and then the fibers can
be bonded together by the dissolved polymers. In the whole
natural fiber welding process, the fibers maintain their original
length and appear as solid fibers, so the process is suitable for
building largescale bulk materials. Our spinning strategy is more
like a microscale natural fiber welding process. The silk fibers are
partially dissolved and cut into microfibrils by HFIP, the resultant
system is a viscous microfibril solution with nematic texture, thus
able to be spun out continually to form microscale RSFs and also
can be processed into other microscale formats. Both methods
allow the formation of ordered constructions without destroying
the structural and mechanical features of the natural fibers. More
remarkably, the applications of these constructions can be
widened, for example, RSFs can be coated with a conductive layer.
The resultant conductive RSFs can be woven into textiles to make
wearable RH and temperature sensors. These low-cost, con-
ductive RSFs may be useful in wearable sensors, biosensors, and
implant devices. We believe these attempts, directly using natural
materials, could help to create functional composites with high
mechanical performance.

Methods
Preparation of SMF spinning dope. B. mori silkworm cocoon silk fibers were
degummed by boiling in two 30 min changes of 0.5% (w/w) NaHCO3 (Sigma-
Aldrich, USA) solution79, 80. The degummed silk fibers were washed with distilled
water and allowed to air dry at room temperature. The degummed B. mori silk
fibers were then immersed in HFIP solution with a weight ratio of 1:20, and
sufficient oscillation was applied so that all fibers were immersed. The SMF
spinning dope was obtained after incubating airtight containers with the silk fiber/
HFIP mixture at 60 °C for 7–15 days. Because the HFIP is a toxic solvent, all of
these steps should be conducted in a chemical hood with the necessary precautions.

Bioinspired spinning methods. The SMF dope was transferred to a syringe with a
needle (needle gauge: 25 mm; the inner diameter: 0.8 mm), then the dope was
directly spun from the syringe needle at room temperature. During the spinning
process, three approaches were used to apply shear force to the spinning dope. (1)
Syringe pump extrusion method. The helical Towel Gourd tendril-like RSFs were
prepared by this method. In this process, the SMF dope was directly extruded onto
a polytetrafluoroethylene (PTFE) guide roll (diameter of 10 mm) via a syringe

pump (New Era Pump Systems NE-1800, USA) with a flow rate of 20 ml h−1.
During the spinning process, the needle tip was fixed and contacted with the top of
the PTFE roll, and the PTFE roll was manually rotated (angular speed: ~0.785 rad s
−1) and moved gradually along its z-axis (moving speed: ~1 mm s−1). (2) Manual
extrusion method. The yarn-like spiral RSFs and 2D/3D constructions of RSFs
were spun by this method. Specifically, in yarn-like spiral fiber spinning process,
the initial as-spun RSF was fixed onto a collector (i.e., cardboard, glass, and plastic
films) using double sticky tape and then the collector was rotated in a plane
direction perpendicular to the fiber long axis. Meanwhile, the collector was moved
continuously to the far end (the direction away from the needle tip) with a speed
around 1mm s−1. In terms of spinning 2D and 3D structures, the SMF dope was
directly spun onto a cardboard frame with a hollow size of 60 mm × 60mm (2D
web) or a PTFE substrate (3D structures) along the warp and weft directions. The
spacing between the fibers in the warp and weft direction was fixed at 7 mm. (3)
Forced reeling approach. RSFs used for mechanical tests were prepared by this
method. A small-scale custom-build roller-type reeling apparatus was used to
collect the RSFs. The roller was made of polypropylene with a diameter and length
of 30 and 100 mm, respectively. The rotating speed of roller was controlled by an
electronic system composed of a gear box motor and an electronic controller.
Before the reeling, the roller speed was set up in advance and the dope syringe was
fixed to the left side of the roller. The needle tip was parallel to the top of the roller
with a separation distance of 50 mm. With the start of winding, the dope was
pulled out from needle tip and fixed on the top of the roller with the help of sharp
stainless tweezers and then the motor was switched on to reel the RSFs. All of the
above methods were conducted in a chemical fume hood with necessary
precautions.

Preparation of conductive silk/carbon nanotube solution. One gram CaCl2
(Sigma-Aldrich, USA) was added in 20 g formic acid (Sigma-Aldrich, USA) solu-
tion, followed by the addition of 100 mg MWCNT (Sigma-Aldrich, USA). After
ultrasonication for 1 h at room temperature, 1 g degummed silk fiber was added in
solution with intense shaking to obtain the conductive silk/MWCNT solution. All
steps are required to be conducted in a chemical fume hood with the necessary
protection.

Mechanical testing. First, a 50 mm RSF was cut into two RSF segments with
lengths of 20 and 30 mm, respectively. The 20 mm RSF segment was used to
measure the CSA, and the 30 mm RSF segment for the tensile test. For tensile
testing, the 30 mm RSF segment was mounted on a hard cardboard frame with a
base length of 10 mm and fixed with cyanoacrylate. After the cyanoacrylate was
totally dried overnight, the frame was mounted in the testing machine and the side
support of the frame was cut away so that the force was transmitted through the
RSF. Meanwhile, the initial length of the fiber was measured with a caliper at zero
load point (the point in which the RSF is tight but no force exerted on it). The
mechanical tests were carried out by using an Instron 3366 machine (Instron,
Norwood, USA) in tensile mode at 25 °C and 50% RH with a tensile speed of 0.5
mmmin−1. In terms of CSA measurement, the 20 mm RSF was fixed with cya-
noacrylate, and after drying overnight the samples were sectioned into three seg-
ments in liquid nitrogen directly using fresh razor blades. Then these three samples
were mounted onto SEM stubs and sputter coated with a 5-nm-thick Pd/Pt layer.
The cross-sections were observed by SEM (Ultra 55 field emission scanning elec-
tron microscope, Carl Zeiss AG, Harvard University Center for Nanoscale Sys-
tems). The smooth cross-sections of RSF segments were observed and the CSA was
estimated by ImageJ software (NIH). The average area of three segments was used
as the CSA of adjacent RSFs and then used for stress calculations.

FTIR spectroscopy measurements. The structures of degummed silk fibers and
RSFs with different reeling speeds were characterized by FTIR spectroscopy in ATR
mode (Jasco FTIR-6200, Jasco Instruments, Easton, MD). For each measurement,
64 interferograms were co-added and Fourier-transformed employed a Genzel-
Happ apodization function to yield spectra with a nominal resolution of 4 cm−1.
Deconvolution of amide I bands was carried out using PeakFit 4.1279–81. The
numbers and positions of peaks were defined from the results of second derivative
spectra and fixed during the deconvolution process. A Gaussian model was selected
for the band shape and the bandwidth, which was automatically adjusted by the
software. It should be noted that each spectrum shown was from a single experi-
ment, but the data obtained from the spectra (e.g., β-sheet content) were the
average of five separate deconvolutions from different samples. FTIR dichroism has
been widely used to determine the molecular orientation in silk fibers, using the
dichroism of amide bands81, 82. The spectra were recorded in ATR mode with
infrared red light polarized either parallel or vertical to the long axis of the fiber. All
spectra were normalized by the intensity at 1450 cm−1 assigned to anti-symmetric
bending of the methyl group. This band was used as it is insensitive to the con-
formation of silks81, 82.

Computational simulations. A RSF was modeled by a bundle of SMFs with each
of them modeled by a 1D coarse-grained elastic network composed of a series of
mass beads (with m= 5.5 × 10−10 g for each bead, corresponding to the density of
silk) connected by nonlinear elastic springs, as we have used to simulate the
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mechanics of a spider web83. The equilibrium length of a spring, which is the same
as the inter-bead distance of the neighboring beads of the initial model, was of
r0= 7.1 µm to define the coordinates of each mass bead in the SMF. The interaction
between the two nearest neighboring mass beads was modeled by a nonlinear
elastic spring with the bond energy (Ek) given by a Morse potential as:

Ek ¼ D � 1� e�α r�r0ð Þ
h i2

; ð1Þ

where D is the bond energy, α is the parameter control the stiffness of the bond,
and r is the bond length in the simulation. By adjusting the numerical values of the
parameters (D, α), different force-extension curves of the pristine silk fiber were
generated. Referring to the test on the thinnest RSF in experiments, assuming all
SMFs deform homogeneously in tension, the numerical values of
D= 1.41 × 10−8 J and α= 2.14 × 106 m−1 are generated that give the force-strain
curve (Fig. 3h) with Young’s modulus of 11.2 GPa and toughness of 3.0 MJ/m3. The
SMFs were arranged in the close-packed form as shown in Fig. 3f, with neighboring
fibers separated by σ= 10 µm, as σ the diameter of a SMF. The bending stiffness of
a SMF is modeled by an angular spring between two neighboring springs, with the
spring stiffness KB ¼ EIt

2r0
¼ Eσ4

128r0
¼ 1:2 ´ 10�7J and equilibrium angle of 180°.

The interaction between beads in different SMFs is modeled by a simple
Lennard-Jones potential Elj, given by

Elj ¼ 4ε Rð Þ � σ

r

� �12
� σ

r

� �6
� �

ð2Þ

with ε the interacting energy and r is the distance between beads. Here, we take ε as
a function of RSF radius (R) by considering the fact that R value is the result of
different reeling speeds, which yields different shearing stress in spinning and is
given by

ε Rð Þ ¼ 1
R
� 1
R2

� �
ε1 � ε2
1
R1
� 1

R2

þ ε2 ð3Þ

where R1= 0.026 mm as the thinnest silk fiber and ε1= 0.6 × 10−8 J that gives the
inter-fiber interaction energy of unit area the same as the SMF toughness,
R2= 0.09 mm as the thickest silk fiber and ε2= ε1/6, according to former study59,
which shows the shearing deformation increases the silk inter-molecular
connectivity by six times.

Each SMF in the model was modeled as 1000 µm in length, and only simulated
the unit section of the RSF in tension (Fig. 3f). To allow sliding of SMFs, we fixed
the left end of SMFs with odd index and applied force to the right end of SMFs
with even index in the simulations. The effect of defects was considered by
randomly deleting the constituting mass beads and associated springs in a RSF
model before running simulations in tension. We simulated the mechanics of RSFs
of different diameters by applying a constant strain rate of 10 s−1 with a time step
of 5 × 10−8 s by running molecular dynamics simulations with LAMMPS code
package84.

Cell culture on RSFs. HDFs derived from the dermis of human newborn foreskin
were a generous gift from Garlick lab at Tufts University and cells of passage 14
were used for the experiment. The cells were cultured in Dulbecco’s Modified Eagle
Medium (Invitrogen) supplemented with 10% fetal bovine serum (Sigma-Aldrich),
and 100 Uml−1 penicillin, 100 μg ml−1 streptomycin (Invitrogen) at 37 °C, 5% CO2.
Silk fibers were sterilized in 70% ethanol and thoroughly rinsed in sterile distilled
water. The fibers were incubated in growth medium with the aforementioned
compositions for 24 h before cell seeding. Cells were seeded on fibers by incubating
fibers in a cell suspension of 0.5 × 106 cells ml−1, and then the fibers were trans-
ferred to fresh medium after 4 h. Cell medium was changed every 2 days. The
viability of the HDFs on silk fibers was assessed by
live/dead assay (Molecular Probes). The cells were incubated in medium containing
2 μM calcein-AM and 4 μM EthD-1 at 37 °C for 15 min. The stained RSF/cell
constructs were then observed with a Keyence BZX710 fluorescent microscope
(Keyence). The presence of dead cells was analyzed by careful examination of red
channel images and differentiating signals belonging the cells and the underlying
fibers.

Characterization. The texture of the SMF solution and the orientation of RSFs
were assessed by polarizing optical microscope (Olympus BX51-P, Japan). The
morphology of RSFs was characterized by SEM (Ultra 55 field-emission scanning
electron microscope, Carl Zeiss AG, Harvard University Center for Nanoscale
Systems) at an acceleration voltage of 5 kV. To prevent electrical charging, all
specimens were coated with a 5-nm-thick Pd/Pt layer before observation. The
conductivities of conductive RSF-based materials were assessed using a Fluke 87 V
Digital multimeter. Before the tests, the conductive RSF ends were firmly fixed to
multimeter test leads. The conductive RSF length between two leads was fixed to
10 cm for all of the tests. To record the resistances of conductive RSFs at different
RH, a conductive RSF was gradually incubated at various RH levels controlled by
specific saturated salt solutions with known RH: K2CO3 (43%); NaBr (59%); KI
(70%); NaCl (75%); and KCl (85%). In terms of finger-touching and breathing
measurements, the conductive RSFs with the length of ~15 cm were woven into

clothes and masks, and their ends firmly fixed to multimeter test leads. The whole
processes of time-response measurements were recorded by video camera, the
related time and resistance values were directly extracted from each frame of
recorded video with a time resolution of ~0.3 s.

Data availability. The authors declare that all data supporting the findings of this
study are available within the article and its Supplementary Information Files or
from the corresponding author on reasonable request.
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