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Fucoidan has received increasing attention in anti-(lung) tumors. However, the effect of
fucoidan on the gene changes of lung cancer cells (LCCs) has not been examined
systematically. Herein, we investigate the effect of fucoidan on the phenotypes of LCCs
and their gene expression by transcriptome sequencing analysis. The phenotypes of LCCs
are significantly inhibited by fucoidan. Importantly, compared to LCCs, 1mg/ml fucoidan has
no effect on the phenotypes of normal cells. Further, 6,930 differentially expressed genes
(DEGs) in the transcriptome of LCCs (3,501 up-regulated and 3,429 down-regulated genes)
are detected viaRNA-sequencing between the fucoidan and control groups. GeneOntology
analysis confirms that DEGs are reflected in DNA replication, cell-substrate junction,
regulation of cell cycle phase transition, apoptosis, focal adhesion, cadherin binding, and
cell adhesion molecule binding. Thus, our findings on the transcriptomic level highlight the
therapeutic potential of fucoidan for lung cancer treatment.
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INTRODUCTION

In the last few decades, marine polysaccharides from algae have gained considerable attention from the
fundamental research and practical biomedical applications owing to their inherent (bio)physicochemical
characteristics, such as favorable biocompatibility and biodegradability, remarkable bioactivity, as well as
outstanding structural functionalities (Bilal and Iqbal, 2020; Zheng et al., 2020; He et al., 2021; Jing et al.,
2021; Yang et al., 2021). In particular, fucoidan is a water-soluble fucose-based sulfated polysaccharide,
which has remarkable multiple bioactivities, including antioxidant, antimicrobial, antithrombotic,
anticoagulant, anti-inflammatory, antifibrotic, immunomodulatory, and antitumor functions (Lin
et al., 2020a; Apostolova et al., 2020; Etman et al., 2020; Hao et al., 2020; Zhu et al., 2021a; Hao
et al., 2021; Zheng et al., 2021). Among them, its characteristic of anti-cancer cells makes it a promising
candidate in the therapy of tumors, which has recently attracted increasing attention in healthy food and
biomedicine (Chung et al., 2020; Etman et al., 2020; Oliveira et al., 2020). The antitumor feature of
fucoidan has been reported for various cancers in vitro and in vivo (Lin et al., 2020b).

Among them, lung cancer is the second most diagnosed tumor and one of the deadliest cancers
around the world, resulting in long-standing cough, chest infections, persistent and breathlessness
(Minna et al., 2002; Herbst et al., 2018; Howlader et al., 2020). Conventional chemotherapy has
serious side effects, such as lowered white blood cell counts, increased risk of infection, and issues
with heart function (Chen et al., 2006; Lee et al., 2014). Therefore, it is vital to find naturally derived
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anti-cancer agents with no or minimal side effects. As reported,
fucoidan has the ability to effectively destroy lung cancer cells
without significant side effects (Oliveira et al., 2020; Qiu et al.,
2020). For instance, Lee et al. reported that fucoidan had the anti-
metastatic ability on lung cancer cells (A549 cell line) through
affecting ERK1/2, Akt-mTOR, and NF-κB signaling pathways,
inhibiting the migration and invasion of A549 cells (Lee et al.,
2012). Boo et al. found that fucoidan caused apoptosis of A549
cells via hindering p38 and PI3K/Akt as well as inducing the
ERK1/2 MAPK pathway (Boo et al., 2011). However, the effect of
fucoidan on the gene changes of lung cancer cells has not been
examined systematically in a high-throughput manner.
Elucidating how fucoidan modulates the responses of lung
cancer cells plays a critical role in treating lung tumors efficiently.

Inspired by the observations above, in this work, fucoidanwas used
to investigate its effect on the phenotypes of lung cancer cells and their
gene expression by transcriptome sequencing analysis. The effects of
fucoidan on the adhesion,morphology, proliferation, andmigration of
normal and lung cancer cells were detected. Particularly, the
transcriptomics analysis of lung cancer cells was performed.

MATERIALS AND METHODS

Materials
Fucoidan derived from Undaria pinnatifida [Molecular weight
(Mw) = 276 kDa, purity ≥95%, sulfate: 29.65% (Table 1)] was
provided by Qingdao Bright Moon Seaweed Group Co., Ltd.
(China). Dextran sulfate and monosaccharide standards,
including rhamnose, galactose, glucose, arabinose, xylose,
mannose, and fucose, were supplied by Sigma Chemical Co.,
Ltd. (United States). Human lung squamous cell line (H226) and
bronchial epithelial cells (16HBE) were obtained from the
American Type Culture Collection (ATCC, Manassas,
United States). All chemicals were used as received without
further purification.

Cell Culture
16HBE, a commonly used lung bronchial epithelial cell, was
represented as normal lung cell in this study. H226, a
commonly used lung squamous cell carcinoma cell, was
represented cancer cells in this study. These cells were
incubated in MEM/EBSS or RPMI-1640 Medium (Hyclone)
containing 10% fetal bovine serum (FBS, Gibco, Amarillo, TX),
0.1 mg/ml streptomycin (ThermoFisher, United States), and 100
U/mL penicillin (ThermoFisher, United States) at 37 °C in a
humidified 5% CO2 atmosphere. Fucoidan was dissolved in a
serum-free medium and then sterilized by a 0.45 µm filter. The
cells were co-cultured with the above fucoidan solution with
various concentrations (i.e., 0, 1, 10, and 100 mg/ml).

Cell Adhesion Assay
Cells were seeded in 96-well plates with a density of 2 × 104 cells/
well and incubated with fucoidan/medium solutions for 1 day.
Cells were fixated with 4% paraformaldehyde for 10 min and then
rinsed three times with PBS. Afterward, cells were permeabilized
with Triton X-100 (Solarbio, Beijing, China) at 0.5% (v/v) for

5 min, and then rinsed three times with PBS. Finally, the cells
were stained with FITC-Phalloidin and DAPI (Solarbio, Beijing,
China) and imaged by the High Content Analysis System-
Operetta CLS™ (PerkinElmer, Waltham Mass, United States).
The expression of the actin cytoskeleton, cell density and
elongation were analyzed by ImageJ software. Firstly, open the
figure in the software and set it to 8-bit format. Then select the
parameters such as area, integrated density to be measured, and
analyze to obtain quantitative data.

Cell Proliferation Assay
Cells were seeded in 96-well plates with a density of 3,000 cells/
well and incubated with fucoidan/medium solutions for 1, 3, and
5 days. Afterward, the medium was exchanged with a fresh
medium containing cell counting kit 8 (Dojindo labs,
Kumamoto, Japan). The ratio of serum-free medium to CCK8
was 10:1 and then incubated for 2 h at 37°C. The optical density
(OD) values were measured using a microplate reader
(SynergyH1/H1M, Bio-Tek, China) at 450 nm.

Cell Migration Assay
H226 cells were seeded in 12-well plates with 2.5 × 104 cells/well
and cultured for 1 day to reach confluence. Afterward, a 200 µL
pipette tip was used to make a straight scratch. Images at 0, 12, 24,
and 48 h after scratches were collected using the Olympus
inverted fluorescence microscope (Olympus, Tokyo, Japan),
and the results were calculated with ImageJ software.

Transcriptome Analysis
Illumina transcriptome sequencing (Novogene, Beijing, China)
was performed on abundant H226 cells co-cultured with different
concentrations (0 and 1 mg/ml) of fucoidan. Next, differentially
expressed genes (DEGs) were analyzed using DESeq2 1.16.1
software. We used |log2(Fold Change) |>0 & p < 0.05 as the
screening criteria. Results of DEGs were presented as a volcano
plot and a heatmap. Moreover, to analyze the DEGs at the
functional level, Genetic Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomics (KEGG) analyses were
performed using the DAVID database as previously described (Ju
et al., 2019). There were three biological replicates in each group.

Statistical Analysis
All data were shown as mean ± standard deviation (SD).
Statistical analyses were evaluated using Graphpad Prism 8.
The student’s t-tests were used to determine the difference
between the two groups. A value of p < 0.05 was considered
to be statistically significant.

RESULTS AND DISCUSSION

Effect of Fucoidan on the Adhesion of H226
and 16HBE Cells
Cellular adhesion has been considered as the initial and critical
response of the cell with its surrounding microenvironment,
which determines the subsequent behaviors of the cell, such as
morphology change, migration, proliferation, and
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functionalization (Zhou et al., 2018; Li et al., 2019; Mierke, 2020;
Zhou et al., 2020). The adhesion of H226 and 16HBE cells in
different concentrations of fucoidan solutions after 1day of cell

culture was investigated with a double-label fluorescence staining
of the actin cytoskeleton (green) and nucleus (blue). As shown in
Figure 1A, compared to the control group, the number of

FIGURE 1 | (A) Fluorescence images of H226 and 16HBE cells treated with different concentrations of fucoidan. (B–D)Quantitative results of the expression of the
actin cytoskeleton, cell density and elongation in H226 and 16HBE.
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attached H226 cells significantly reduced and cell spreading also
decreased in 1 mg/ml fucoidan, while the morphology and
adhesion of 16HBE cells were not affected in 1 mg/ml
fucoidan. It indicates that the effect of 1 mg/ml fucoidan on
H226 cells may specifically be modulated by attenuating the
attachment of cancer cells but not by cytotoxicity. With
increasing the fucoidan concentration from 1 to 100 mg/ml,
for both types of cells, the expression of the actin cytoskeleton,
cell density and elongation greatly decreased.

To better understand the effect of fucoidan on cell adhesion,
the expression of the actin cytoskeleton, cell density and
elongation were quantified by the analysis of the positively
stained cells using ImageJ software as indicated in Figures
1B–D. For H226 cells, the expression of the actin
cytoskeleton, cell density and elongation greatly decreased with
an increased concentration of fucoidan, suggesting that fucoidan
remarkably inhibited cancer cell adhesion. For 16HBE cells, the
expression of the actin cytoskeleton, cell density and elongation in
1 mg/ml fucoidan had no significant difference with the blank
control. However, with increasing the fucoidan concentration
from 1 to 100 mg/ml, the cell parameters greatly reduced, which
reveals that high fucoidan concentration suppressed 16HBE cells
adhesion. This phenomenon may be due to the down-regulation
of adhesion signal by 1 mg/ml fucoidan in cancer cells. These
results are consistent with previous reports. Zhang reported that
fucoidan inhibited osteosarcoma cell adhesion by suppression of
the phosphorylation of FAK and paxillin (Zhang et al., 2020). In
addition, fucoidan suppressed mouse hepatocarcinoma Hca-F
cells adhesion via downregulating L-selectin and upregulating
protein levels of tissue inhibitor of metalloproteinases (TIMPs)
(Wang et al., 2014). Taken together, these results indicate that
1 mg/ml fucoidan could significantly suppress cancer cell
adhesion but had no effect on normal cells.

Effect of Fucoidan on the Proliferation of
H226 and 16HBE Cells
Unregulated proliferation is considered a key hallmark of cancer
development and progression (Hanahan and Weinberg, 2011).
Inhibiting cancer cell proliferation is fundamental to cancer
therapy (Chen et al., 2021). To detect the effect of fucoidan on
the proliferation of H226 and 16HBE cells, a CCK-8 viability assay
was performed on 1, 3, and 5 days as shown in Figure 2. It was found
that the viability of H226 greatly reduced with the increment of
fucoidan concentration, indicating that fucoidan could significantly
inhibit the proliferation of cancer cells (Figure 2A). Particularly,
when the fucoidan concentration increased from 1 to 10mg/ml, the
viability of H226 decreased abruptly. However, there was no
significant difference between 10 and 100mg/ml.

Although inhibition of cancer cell proliferation is crucial, we
expect it would not affect the proliferation and activity of normal
cells. We tested the effect of the fucoidan on the proliferation of
16HBE. Interestingly, compared to the blank control, 1 mg/ml
fucoidan had no effect on the viability of 16HBE. When the
fucoidan concentration increased from 1 to 10 mg/ml, the
viability of 16HBE reduced abruptly. However, there was no
significant difference between 10 mg/ml and 100 mg/ml, which is
a similar trend to the result of H226 (Figure 2B). These may be
due to the effect of 10 mg/ml and 100 mg/ml fucoidan on cells is
caused by its own toxicity. Taken together, 1 mg/ml fucoidan
could be a suitable concentration that significantly inhibited the
proliferation of H226, and had no effect on the proliferation of
16HBE. These results suggest that 1 mg/ml fucoidan may
specifically interact with the proliferation-related genes in
H226 cells, but not cytotoxicity.

Effects of Fucoidan on the Migration of
H226 Cells
The invasion and metastasis of cancer cells is another major
feature of cancer development and progression (Hanahan and
Weinberg, 2011). Previous studies have reported that fucoidan
could suppress the migration of cancer cells, such as gastric
cancer (Xu et al., 2020), pancreatic cancer (Etman et al.,
2021), and triple-negative breast cancer (Hsu et al., 2020).
However, the effect of fucoidan in lung cancer is still
unknown. A wound-healing assay was carried out to test the
influence of 1 mg/ml fucoidan on the metastasis of lung cancer
cells. It was found that the migration of H226 greatly reduced
with the increment of the fucoidan concentration from 0 to 1 mg/
ml (Figure 3A). Quantitative results showed 1 mg/ml fucoidan
group significantly inhibited wound closure ratio compared with
the blank control (Figure 3B). These results indicate that 1 mg/ml
fucoidan could inhibit the migration of lung cancer cells.

Effect of Fucoidan on the Gene Expression
of H226 Cells
To investigate the impact of fucoidan on genome-wide gene
expression of lung cancer cells, RNA transcriptome sequencing
was carried out on the H226 cells treated with 1 mg/ml fucoidan.
To ensure the sequencing date reliable, we conducted quality
control on the biological repetition of samples. The results show
that there was no significant difference in the distribution of gene
expression levels between the exposed 1 mg/ml fucoidan group
and the blank control (Figure 4A). Moreover, analysis of inter-
group sample difference and intra-group sample repetition
showed that the correlation coefficient is close to 1

TABLE 1 | The Mw and chemical composition of fucoidan.

Samples Mw (kDa) Total sugar Sulfate (%) Uronic acid
(%)

Monosaccharidea (%)

L-fucose Galactose Mannose Rhamnose D-glucose

Fucoidan 276 78.61 29.65 2.01 54.26 42.19 1.6 1.1 0.85

aTaking total monosaccharide as 100%.
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(Figure 4B). This indicates that the repeatability of the sample is
good and the sequencing data is reliable.

Furthermore, DEGs were analyzed using DESeq2 software.
Compared to the blank control, the volcano plot showed that
6,930 DEGs (3,501 up-regulated and 3,429 down-regulated
genes) were identified (Figure 4C). Among these DEGs, some
genes which with cell cycle (PRKDC, CDC20, CCNB1), cell
apoptosis (CTSB, CTSD) and focal adhesion (COL4A2,
COL1A1, ACTN1) were identified. Moreover, the DEGs were
combined and analyzed by clustering. The heat map
demonstrated that the DEGs were mainly protein-coding

genes (Figure 4D). These results indicate that 1 mg/ml
fucoidan may play anti-tumor roles by significantly
modulating some protein-coding genes.

Pathway Analysis of Fucoidan-Induced
DEGs
To better understand the function of those DEGs regulated by
fucoidan, GO and KEGG analysis was performed via DAVID.
GO analysis indicated these DEGs were significantly enriched in
many biological processes (BP), cellular component (CC),

FIGURE 2 | Cell proliferation of (A) 16HBE and (B) H226 cells after being treated with different concentrations of fucoidan in 1, 3, and 5 days.

FIGURE 3 | (A) The migration changes of H226 with the treatment of 1 mg/ml fucoidan by wound-healing assay. (B)Wound closure ratio of H226 after treated with
1 mg/ml fucoidan in 12, 24, and 48 h.
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molecular function (MF), including DNA replication, cell-
substrate junction, regulation of cell cycle phase transition,
focal adhesion, cadherin binding, and cell adhesion molecule
binding (Figures 5A,B). It has been well-demonstrated that DNA
replication is one of the fundamental biological processes in
which dysregulation can cause genome instability (Ubhi and
Brown, 2019). DNA replication stress should drive cancer
development and be considered a hallmark of cancer
(Macheret and Halazonetis, 2015). Cell-substrate junction is

associated with the EMT process and then affects cancer cells
migration (Baronsky et al., 2017); (Paddillaya et al., 2019). Cell
cycle phase transition is very finely regulated. The abnormal cell
cycle, especially uncontrolled G1/S phase transition, is a key step
in carcinogenesis (Rubin et al., 2020). Focal adhesion is a protein
complex containing integrins that are regulated by a network of
interactions between hundreds of proteins (Zhu et al., 2021b).
The focal adhesion signal hub is composed of a variety of pro-
survival signal molecules, including integrins and growth factor

FIGURE 4 | (A) Violin plot of the gene expression distribution between control and 1 mg/ml fucoidan exposed group. A1, A2, A3 indicate 0 mg/ml fucoidan
exposed group; B1, B2, B3 indicate 1 mg/ml fucoidan exposed group. (B) The heat map of Pearson correlation between samples. (C) The volcano plots of DEGs. The
red dots indicate upregulated genes, green dots indicate downregulated genes, and blue dots indicate non-differentially expressed genes. (D) The heat map of DEGs
between the 0 mg/ml fucoidan exposed group and 1 mg/ml fucoidan exposed group.
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receptors, which strictly regulate cellular behavior, affect the
survival of tumor cells (Eke and Cordes, 2015). Cadherin is a
class of Ca2+ dependent transmembrane glycoproteins that
mediate intercellular adhesion and play an important role in
maintaining cellular polarity and maintaining the stability of
intercellular adhesion (Nose and Takeichi, 1986). In tumor
cells, the loss of this connective complex leads to the decrease
of cell-cell adhesion, promotes the detachment of tumor cells
from the primary lesion and the ability to cross the basal
membrane, which is conducive to tumor metastasis (Kaszak
et al., 2020). Adhesion-mediated cell adhesion is a key step in
cancer invasion and metastasis, including integrins, selectin,

cadherin, immunoglobulin superfamily, and CD44 (Mousa,
2010). Moreover, KEGG analysis showed the top 20 pathways,
including “cell cycle”, “DNA replication”, and “apoptosis”
(Figures 5C, D). Apoptosis is an active programmed cell
death, which ensures a homeostatic balance between the rate
of cell formation and cell death (Obeng, 2021). Once this balance
is broken, it will lead to cancer. Recent studies showed apoptosis
is the main way of cell death induced by various anticancer drugs
(Ball and Borthakur, 2020; Tanaka et al., 2021). All these suggest
fucoidan may induce dysregulation of DNA replication and cell
cycle, reduce cell adhesion, cause cell death in the form of
apoptosis, to achieve the effect of anti-cancer (Figure 6).

FIGURE 5 | (A,B) GO functional enrichment analysis of DEGs. (C,D) KEGG pathway analysis of DEGs.
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CONCLUSION

In summary, the adhesion, proliferation, and migration of H226 cells
as well as their gene expression were greatly modulated by fucoidan.
Moreover, the H226 cell responses were significantly dependent on
the concentration of fucoidan. Importantly, 1 mg/ml fucoidan
suppressed lung cancer cell adhesion and proliferation but had no
effect on normal cells. A transcriptome sequencing study
demonstrated that DEGs were reflected in DNA replication, cell-
substrate junction, regulation of cell cycle phase transition, focal
adhesion, cadherin binding, and cell adhesion molecule binding. It
was found that apoptosis and cell cycle-related DEGs were up-
regulated in 1mg/ml fucoidan. Thus, our work demonstrated on
the transcriptomic level that fucoidan modulates the phenotype and
gene expression of LCCs, displaying great potential for the treatment
of lung tumors.
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