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Abstract

Background: Signaling by Tumor Necrosis Factor-Related Apoptosis Inducing Ligand (TRAIL) and Fas ligand (FasL) has been
proposed to contribute to the chemosensitivity of tumor cells treated with various other anti-cancer agents. However, the
importance of these effects and whether there are differences in vitro and in vivo is unclear.

Methodology/Principal Findings: To assess the relative contribution of death receptor pathways to this sensitivity and to
determine whether these effects are intrinsic to the tumor cells, we compared the chemosensitivity of isogenic BJAB human
lymphoma cells where Fas and TRAIL receptors or just TRAIL receptors were inhibited using mutants of the adaptor protein
FADD or by altering the expression of the homeobox transcription factor Six1. Inhibition of TRAIL receptors did not affect in
vitro tumor cell killing by various anti-cancer agents indicating that chemosensitivity is not significantly affected by the
tumor cell-intrinsic activation of death receptor signaling. However, selective inhibition of TRAIL receptor signaling caused
reduced tumor regression and clearance in vivo when tested in a NOD/SCID mouse model.

Conclusions: These data show that TRAIL receptor signaling in tumor cells can determine chemosensitivity in vivo but not
in vitro and thus imply that TRAIL resistance makes tumors less susceptible to conventional cytotoxic anti-cancer drugs as
well as drugs that directly target the TRAIL receptors.
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Introduction

The death receptors DR4 and DR5 activate signaling and

apoptosis in response to the Tumor Necrosis factor-Related

Apoptosis-Inducing Ligand (TRAIL), while Fas/CD95 activates

apoptosis in response to Fas ligand (FasL). These receptors are the

main executioners of the ‘‘extrinsic’’ apoptosis pathway that activate

the apoptosis machinery by forming a complex called the Death

Inducing Signaling Complex (DISC). The DISC is formed when a

ligand-bound receptor complex recruits the adaptor protein FADD,

which leads to the recruitment, dimerization [1], and catalytic

activation of caspase-8 [2–4]. Active caspase-8 directly activates the

effector caspase-3 and stimulates the mitochondrial (intrinsic)

apoptosis pathway by cleaving the BH3 protein Bid. This allows

Bid’s translocation in to the mitochondria and Bax/Bak-dependent

release of cytochrome c and other pro-apoptotic proteins, with

subsequent amplification of effector caspase activity. There is

considerable interest in targeting the TRAIL receptors using pro-

apoptotic receptor agonists [2] and clinical trials using recombinant

TRAIL and antibodies that target DR5 or DR4 are underway.

The TRAIL and Fas pathways are important in anti-tumor and

anti-metastasis responses mediated through the immune system

[3,5]. TRAIL signaling mediates T-cell- and natural killer (NK)

cell-dependent metastasis suppression in xenografts [6–9]. Au-

tochthonous models show that deficiency in TRAIL receptor

signaling promotes tumorigenesis [10] and metastasis [11]. Fas

signaling has also been proposed as a mechanism by which NK

cells can eliminate tumor cells [12]. Conversely, Fas signaling can

also be a mechanism by which tumors counteract immune-

mediated anti-tumor responses [13]. Moreover, both Fas [14] and

TRAIL [15] have non-apoptotic signaling activities that promote

tumor progression if the apoptotic response is blocked. Tumor

cells can become resistant to death receptor signaling through

multiple mechanisms [16]. Some of these mechanisms e.g. down-

regulation of FADD [17] or increased expression of the caspase-8-

like protein FLIP [18] affect both Fas and TRAIL receptors

whereas, other mechanisms are more selective. For example,

somatic mutations in DR5 cause a dominant negative phenotype

that blocks TRAIL signaling through DR4 and DR5, but has no

effect on Fas signaling [19]. Similarly, increased expression of the
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homeobox transcription factor Six1 is a common tumor defect that

arises in the majority of patients with metastatic ovarian or breast

cancer, is associated with poor clinical outcome in multiple tumor

types [20] and causes inhibition of TRAIL but not FasL-induced

apoptosis [21].

Most anti-cancer drugs function by activating the mitochondrial

apoptosis pathway; however, it has been suggested that death

receptor signaling also contributes to the overall anti-tumor

response to diverse chemotherapeutic drugs. Drug and radiation

induced killing of brain tumor [22] and hepatoma [23] cells have

been reported to rely on Fas signaling. Experiments, where

TRAIL signaling was inhibited by silencing DR5 [24] or by

increasing the expression of the decoy receptor DcR2 [25], led to

the conclusion that chemosensitivity to 5-fluorouracil, doxorubi-

cin, and etoposide depends on TRAIL receptor signaling. These

effects have been demonstrated in vitro with cell lines, suggesting

they are intrinsic to tumor cells. These effects can also be achieved

by increased expression of death receptors and/or ligands that

create a tumor cell-intrinsic autocrine signaling loop. Similar

mechanisms of death receptor up-regulation have been proposed

as an explanation for how various cytotoxic chemotherapeutic

agents synergize TRAIL receptor-targeted agonists [26].

However, it is unclear if the Fas and TRAIL receptor pathways

are really important contributors to tumor chemosensitivity. Since

the activation of the mitochondrial apoptosis pathway leads to

efficient cell killing, one would expect that drugs that are able to

activate the mitochondrial pathway (i.e., most anti-cancer agents)

should not require additional death receptor signaling in order to

die, unless the pro-apoptotic signal from the mitochondria was

insufficient to force the cell to cross its apoptotic threshold. It is less

clear if the same considerations apply in vivo, where other inputs

(e.g., from other cell types) may play a role. To address this question,

we constructed isogenic tumor cell lines that are functional for both

TRAIL and FasL signaling, inhibited for both or inhibited for just

TRAIL signaling. We show that even in a cell line in which blocking

death receptor-induced apoptosis has no detectable effect on the

sensitivity to various chemotherapeutic agents and other apoptotic

inducers in vitro, inhibition of TRAIL receptor signaling in vivo

affects sensitivity to an anti-cancer drug. These data indicate that

the presence of a functional TRAIL receptor apoptosis pathway can

regulate chemosensitivity through tumor cell extrinsic mechanisms.

Results and Discussion

Selective inhibition of death receptor signaling with
FADD-DD mutants

FADD is required for both TRAIL- and FasL-induced

apoptosis. One way signaling can be inhibited by these receptors

is by overexpressing a version of FADD (FADD-DD) that contains

the FADD death domain, but lacks the death effector domain that

binds to caspase-8. This molecule has been thought to inhibit

signaling by competing with endogenous FADD protein for

binding to the activated death receptors. However, based on data

showing that FADD must self-associate via its death effector

domain in order to bind to death receptors, it has been proposed

that the isolated FADD death domain should be unable to bind to

or efficiently inhibit Fas signaling [27]. Therefore, we first tested if

we could obtain effective and selective inhibition of death

receptor-induced apoptosis using FADD-DD and FADD-DD

V108E, a mutant that was selected for its inability to bind to Fas,

while retaining the ability to bind to TRAIL receptors [28]. Dose

response curves (Figure 1A) using FasL or TRAIL with three

isogenic BJAB cell lines expressing, GFP, GFP-FADD-DD or

GFP-FADD-DD (V108E) showed that FADD-DD and FADD-

DD (V108E) effectively inhibited apoptosis induced by TRAIL

and agonistic TRAIL receptor antibodies. However, only the

wildtype FADD-DD molecule inhibited FasL-induced death.

To test if inhibition of receptor-induced apoptosis was due to

binding of the FADD-DD molecules to the activated receptors, we

performed DISC immunoprecipitation experiments (Fig. 1B).

Upon activation of the receptor, FADD-DD was recruited to both

Fas and TRAIL receptors instead of the endogenous FADD

protein, which was recruited in the control cells. The V108E

mutant was recruited only to activated TRAIL receptors. These

data indicate that FADD-DD molecules are effective inhibitors of

death receptor signaling and that their mechanism of action is

through recruitment to the activated receptor in place of

endogenous FADD protein. However, because the level of the

FADD-DD mutants (Fig. 1A) in the cells is about 200-fold higher

than the endogenous FADD protein, while the amount of the

FADD-DD recruited to activated receptors is similar to the

amount of endogenous FADD that is recruited, our data are

consistent with the conclusion of Sandu et al. [27] that the isolated

death domain is less efficiently recruited to the receptors compared

with the endogenous protein. Fig. 1C demonstrates that the

FADD-DD molecule also blocks both FasL and TRAIL-induced

activation of downstream kinase pathways activating JNK and

causes degradation of IkB. The V108E mutant only affects

TRAIL-induced activation of these pathways, which are known to

be activated in a FADD-dependent manner [29].

Inhibition of Fas and TRAIL receptor-induced apoptosis
has no effect on the efficiency of tumor cell killing by
diverse chemotherapeutic agents and apoptotic stimuli
in vitro

To test whether death receptor signaling alters the sensitivity of

tumor cells to other agents, we assessed dose response curves for the

three isogenic cell lines with agents that work by different

mechanisms. Overlapping dose response curves (Fig. 2) showed

that they had no measurable effect on tumor cell killing by various

types of agents that target activities that are relevant for anti-cancer

treatment. We observed this for a toposiomerase inhibitor

(etoposide), histone deactylase inhibitors (oxamflatin, MS275), an

anthracycline (doxorubicin), a proteosome inhibitor (MG132),

DNA damaging agents (UV, temozolomide) and an antimetabolite

(5-fluorouracil). Similarly, there was no effect of FADD-DD or the

V108E mutant on tumor cell killing by general apoptotic stimuli

including the broad-spectrum protein kinase inhibitor staurospor-

ine and increased hyperosmolar stress (sorbitol). MTS assays assess

cell viability over a relatively short term and thus are not truly

comparable to long-term tumor growth responses in vivo. To

ensure that the selective inhibition of TRAIL-induced death

without affecting survival in response to cytotoxic chemotherapy

affected long-term growth, we performed a cell grow back assay by

treating cells for 24 hours with TRAIL or etoposide then washing

out the drug and allowing any surviving cells to grow back. Figure 3

shows that the TRAIL-treated FADD-DD expressing cells

displayed equivalent growth over 7 days to untreated cells whereas

the same cells died in response to etoposide treatment. Thus even

with a more rigorous tumor cell survival assay where any surviving

cells had several days to recover and grow in the absence of drug,

FADD-DD provides no protection against etoposide-induced

death, while providing complete protection against TRAIL.

These data run counter to some other studies. For example, Liu

et al. [25] concluded that increased expression of DcR2, which is a

decoy receptor that selectively inhibits TRAIL signaling, reduced in

vitro chemosensitivity to doxorubicin and etoposide, while Wang

Chemosensitivity and TRAIL
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and El-Deiry concluded that knockdown of the TRAIL receptor

DR5 conferred resistance to 5-fluorouracil [24]. We therefore

repeated our studies in a colon cancer cell line that was used by

other investigators who reported effects on chemosensitivity.

Figure 4 shows that HCT116 cells expressing FADD-DD were

resistant to both TRAIL and FasL, while the FADD-DD (V108E)

expressing cells were resistant only to TRAIL. However, neither of

these cell lines displayed significantly increased resistance to 5-

fluorouracil, etoposide, or doxorubicin. Additionally, we deter-

mined whether combination treatments with TRAIL and other

anti-cancer agents demonstrated a requirement for death receptor

signaling for optimal activity of the other drug. Combination

treatments using TRAIL with 5-FU, Doxorubicin, or etoposide all

showed increased tumor killing compared with treatment with the

cytotoxic agent alone. However FADD-DD or FADD-DDV108E

expression only blocked the component of the death due to the

death receptor agonist (data not shown). These data indicate that

tumor cell intrinsic signaling through the Fas and TRAIL receptors

does not significantly contribute to the killing activity of the other

stimuli in BJAB cells or in HCT-116 cells.

Inhibition of TRAIL receptor-induced apoptosis promotes
tumor growth and confers chemoresistance in vivo

We next tested whether the FADD-DD constructs conferred an

effect in vivo by growing xenograft tumors with each of the

isogenic BJAB cell lines and treating with one of the agents

(etoposide) that had no effect in vitro. Figure 5 shows that

etoposide treatment caused almost complete tumor regression for

the wildtype BJAB cells; whereas, the cells expressing FADD-DD

or FADD-DD (V108E) displayed significantly less tumor regres-

sion (p,0.05) by etoposide. These data indicate that the same

tumor cells whose sensitivity to etoposide is not affected by FADD-

DD or the V108E mutant in vitro (in both short- and long- term

assays), do display reduced chemosensitivity in vivo. Western

blotting of tumor tissue showed that the tumors retained similar

levels of expression of the GFP-tagged proteins in each case. This

shows that the death receptor-dependent aspect of etoposide

function is achieved through a tumor cell extrinsic mechanism.

Because the FADD-DD and FADD-DD V108E mutants were

equally effective at blocking tumor regression caused by etoposide,

we conclude that signaling through TRAIL receptors alone is

sufficient to cause these effects.

The FADD-DD mutant is a useful tool, because it is highly

specific and effective; however, such dominant negatives have not

been found in human tumors. Therefore, to test whether these

effects also apply when tumor cells are resistant to TRAIL through

a mechanism that is relevant in human tumors, we compared

isogenic BJAB cells that do or do not express the homeobox

transcription factor Six1. Previously, we have shown that Six1

confers TRAIL resistance, but has little effect on FasL sensitivity

Figure 1. Selective inhibition of FasL and TRAIL or TRAIL-induced signaling and apoptosis. In panel A, isogenic BJAB cells expressing GFP
or GFP-FADD-DD and FADD-DDV108E were treated with increasing doses of Fas ligand, TRAIL, or agonistic anti-DR4 and anti-DR5 antibodies. The
differences in responses indicate that both FADD-DD expressing cell lines were resistant to all TRAIL R targeted drugs, but that only FADD-DD
expressing cells are resistant to FasL. In panel B, DISC IP experiments precipitating Fas or DR5 followed by western blotting for casp-8 or FADD
demonstrate an increased recruitment of FADD-DD in place of endogenous FADD to the receptors. Panel C, illustrates that on activation of other
signaling pathways leading to IkB degradation, and JNK phosphorylation, FADD-DD blocks signaling. This block leads to these events for both FasL
and TRAIL, and that FADD-DD V108E blocks signaling only for TRAIL.
doi:10.1371/journal.pone.0014527.g001

Chemosensitivity and TRAIL
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[21]. Six1-expressing BJAB cells are TRAIL-resistant (Fig. 6A) to a

somewhat lesser degree than FADD-DD expressing cells (Fig. 1).

However, these Six1-expressing cells do not demonstrate altered

FasL or etoposide sensitivity in vitro. Furthermore, these cells

displayed reduced chemosensitivity to etoposide (p,0.05) when

tested in vivo (Fig. 6B). Thus, the in vivo dependence of TRAIL

receptor signaling for maximal chemosensitivity to another drug

like etoposide also applies for a TRAIL resistance mechanism that

is commonly found in human tumors and associated with poor

clinical outcomes.

Conclusions
Using isogenic tumor cells that differ only in their ability to

undergo apoptosis in response to Fas or TRAIL receptor

activation, we found that various anti-cancer agents display no

significant difference in their ability to be killed in vitro by anti-

cancer drugs. This shows that, in general, cancer chemotherapy

drugs do not need to work through the death receptors. However,

our results demonstrate a quite different and surprising result in

vivo; etoposide, which was unaffected in vitro by TRAIL receptor

or TRAIL and Fas receptor inhibition was significantly less

effective in vivo and was unable to cause regression of these

tumors. Instead, treatment led to stable tumor size when death

receptor signaling was inhibited in the tumor cells. The lack of

correlation between the in vitro and in vivo experiments carried

out with the same cells indicates that even in tumor cells where

activation of TRAIL receptors is not an important component of

tumor cell killing in response to chemotherapy, tumor regression

and clearance after treatment with a DNA damaging agent

requires TRAIL receptor signaling.

This work suggests that tumors, which have evolved TRAIL

resistance mechanisms [16] such as Six1 overexpression will not

only respond less well to drugs such as Apo2L/TRAIL, lexatumu-

mab, mapatumumab, ApoMab, AMG 655 etc. [2] that directly

Figure 2. FADD-DD and FADD-DD V108E do not inhibit killing by other apoptotic stimuli. Isogenic BJAB cell lines were treated with
increasing doses of etoposide, MS-275, oxamflatin, doxorubicin, MG132, UV, temozolomide, 5-FU, staurosporine or sorbitol as indicated followed by
MTT assay to assess cell viability. All dose response curves overlap for each stimulus.
doi:10.1371/journal.pone.0014527.g002

Chemosensitivity and TRAIL
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activate TRAIL receptors, but may also respond less well in vivo to

conventional cytotoxic chemotherapy. The tumors were grown in

NOD/SCID mice that lack T cells, but not Natural Killer cells or

macrophages, suggesting that these cells are most likely the source of

the TRAIL signal. Recent work has demonstrated the importance

of the adaptive immune system, especially T cells, to the overall

effectiveness of cancer chemotherapy (for review see [30]). Our data

suggest that immune cell-mediated mechanisms working through

TRAIL contribute to efficient tumor clearance after cytotoxic

chemotherapy even without T cell involvement and these effects

may add to any T cell mediated tumor clearance occurring after

chemotherapy treatment. These data suggest that efforts to bypass

TRAIL resistance would improve the efficacy of chemotherapy as

well as improving the usefulness of drugs that are specifically

targeted to TRAIL receptors.

Materials and Methods

Ethics Statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Animal Care and Use Committee of

the University of Colorado, Anschutz Medical Campus (protocol

# 72609(12)1E).

Cell Lines
Parental BJAB cells were described previously [19], the various

resistant cells expressing FADD-DD and FADD-DD V108E were

made by stably expressing the respective cDNAs in pcDNA3.1

puro(+)-GFP. Six1-expressing cells were made by stably expressing

the cDNA in pcDNA3.1 puro (+). All cell clones were derived from

representative single clones isolated by limiting dilution. Cells were

grown in RPMI 1640 with 10% FBS, sodium bicarbonate, and

glucose in a 5% CO2 humidified atmosphere at 37uC. The BJAB

cells used in these studies were DNA profiled using the Identifiler

kit (Applied Biosystems) in January 2010. We have not found any

publication of a DNA profile for BJAB cells, nor are there any

profiles for these cells or ones that have a matching profile in our

own database (CK) or in publicly available databases. These

include the consolidation of the DSMZ, ATCC, JCRB, and Riken

databases of DNA profiles of cell lines now available at DSMZ

website (www.DSMZ.de). Therefore, it is impossible to compare

our sample of these cells to samples of this line used in other

reports. However, this analysis did exclude contamination with

any common cell lines that have been previously profiled. The

profile we obtained for these cells is the following: Amelogenin: X;

CSF1PO: 8,10; D2S1338: 18, 21; D3S1358: 16; D5S818: 12, 13;

D7S820: 10, 11;D8S1179: 14, 15; D13S317: 9,11; D16S539:9, 11;

D18S51: 16, 22; D19S433: 12, 14; D21S11: 27, 28; FGA: 27, 28;

THO1: 7; TPOX: 6,9; vWA: 14, 16.

DISC IP
Fas Ligand—2.56107 cells were suspended in 25 ml of culture

medium, incubated with SuperFasLigand (Enzo Life Sciences,

Plymouth Meeting, PA) at 1.25 mg/ml at 37uC for 20 min, washed

in phosphate-buffered saline three times, and then lysed in IP

buffer (150 mM NaCl, 25 mM Tris?Cl, pH 7.5/1% Triton X-

100, 4 mM EDTA) supplemented with complete protease

inhibitors (Roche Applied Science) for 1 hr at 4uC. After the

lysates were centrifuged (15 min at 13,000 rpm), lysates were

precleared for 1 hr at 4uC with Glutathione-Agarose beads

(Sigma, St. Louis, MO). Anti-Flag M2 beads (Sigma, St. Louis,

MO) were added and lysates were incubated at 4uC overnight.

The beads were washed six times with IP buffer and Flag Peptide

(Sigma, St. Louis, MO) was added at 200 ug/ml. Samples were

eluted at room temperature and concentrated. Samples were then

subjected to Western blotting analysis. Anti-DR5—TR2J (Human

Genome Sciences) was crosslinked with anti-human IgG Fc

(Sigma, St. Louis, MO) in a 1:1 ratio for 30 minutes prior to

incubation with cells. Cells (2.56107) were suspended in 25 ml of

culture medium, incubated with TR2J/IgG at 1 mg/ml at 4uC for

30 min, transferred to 37uC for another 1 hr, washed in

phosphate-buffered saline three times, and then lysed in IP buffer

for 1 hr at 4uC. After the lysates were centrifuged, lysates were

precipitated at 4uC overnight. The beads were washed six times

with IP buffer supplemented with 0.5 M NaCl and samples were

subjected to Western blotting analysis.

Cell death assays
BJAB cells were plated in 96 well plates at 40,000 cells per well.

TR2J (anti-DR5) and Mapatumumab (anti-DR4) both provided

by Human Genome Sciences were cross-linked with anti-human

IgG Fc for 30 min prior to serial dilution. The following drugs

were prepared according to manufacturer’s instructions and

were applied in serial dilution format: TRAIL (R&D Systems,

Minneapolis, MN), SuperFas Ligand (Enzo Life Sciences, Ply-

mouth Meeting, PA), 5-Fluorouracil (5-FU), Doxorubicin Hydro-

chloride, Etoposide, Oxamflatin, Temozolomide, Sorbitol, MS-

275, and Staurosporine (Sigma, St. Louis, MO), MG132 (EMD

Biosciences, Gibbstown, NJ). UV irradiation was performed in a

UV Stratalinker (Stratagene, La Jolla, CA) in a 24 well plate and

then media and cells were transferred to a 96 well plate for MTS

analysis after 48 hrs. An MTS Assay was performed after 24 hours

incubation according to the manufacturer’s (Promega, Madison,

WI) recommendations. For long-term assays of cell survival/

growth, 1 million cells expressing GFP control or FADD-DD were

treated with TRAIL or etoposide for 24 hours, then washed

and replaced into growth media for 7 days. Cell growth was

Figure 3. FADD-DD blocks TRAIL-induced but not etoposide-
induced death in long-term assays. Isogenic control or FADD-DD
expressing BJAB cells were treated with TRAIL or etoposide as indicated
for 24 hours, then washed and replaced into growth media. Long term
growth of surviving cells was determined by counting viable cells.
Control BJAB cells died rapidly and were unable to recover any long
term growth. Etoposide treated cells were completely unable to recover
growth capacity whether or not FADD-DD was expressed. However
FADD-DD expression protected the TRAIL-treated cells as demonstrated
by overlapping growth curves with the untreated controls.
doi:10.1371/journal.pone.0014527.g003

Chemosensitivity and TRAIL
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Figure 4. FADD-DD and FADD-DD V108E do not inhibit chemotherapy-induced death in HCT-116 cells. HCT-116 cells transfected with
GFP, FADD-DD or FADD-DDV108E expression constructs were treated with increasing doses of TRAIL, FasL, etoposide, 5-FU, or doxorubicin as
indicated and cell viability was assessed. FADD-DD and FADD-DDV108E inhibited FasL and TRAIL as in BJAB cells, but had no effect on tumor cell
killing by the chemotherapy drugs.
doi:10.1371/journal.pone.0014527.g004

Figure 5. FADD-DD and FADD-DDV108E reduce the effectiveness of tumor eradication by etoposide in vivo. Panel A, isogenic BJAB
cells expressing GFP control, GFP-FADD-DD and GFP-FADD-DDV108E were implanted subcutaneously and tumors grown for 10 days prior to
treatment with etoposide. Untreated tumors continued to grow. In control BJAB cells, etoposide caused tumor eradication; whereas, in tumors
expressing either FADD-DD or FADD-DDV108E, etoposide treatment led to stabilization of tumor mass but no eradication (p,0.05 by t-test at 18 for
the control versus FADD-DD and FADD-DDV108E expressing cells). Panel B, Western blot of tumor tissue from GFP control, GFP-FADD-DD and GFP-
VFADD-DD V108E demonstrating similar expression of the GFP-tagged protein in all tumors.
doi:10.1371/journal.pone.0014527.g005

Chemosensitivity and TRAIL
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determined by counting viable cells; the ability of surviving cells

to grow was demonstrated by an increase in the total number of

cells.

Immunoblotting
Cells (16106) were harvested and lysates were prepared by

boiling in SDS buffer 5 min prior to gel electrophoresis. Lysates

were resolved on 12% SDS-polyacrylamide gels. Proteins were

transferred to Immobilon-P Transfer Membrane (Millipore

Corporation, Bedford, MA). Blots were blocked with 5% milk in

TBST and incubated with antibodies that recognize IKappaB-

alpha, phospho-JNK, JNK, Caspase 8, Caspase 3 (Cell Signaling

Technologies, Danvers, MA), FADD (BD Biosciences, Franklin

Lakes, NJ). Blots were then incubated with anti-rabbit or anti-

mouse horseradish peroxidase-conjugated secondary antibodies

(Cell Signaling Technologies, Danvers, MA). Detection was

performed using chemiluminescent ECL reagent (Millipore

Corporation, Bedford, MA) and developed on Blue X-Ray film

(Life Science Products, Inc., Frederick, CO).

Transfection of HCT116
Cells (16106) were plated in a 6 well dish and transfected with

GFP, GFP-FADD-DD, or GFP-FADD-DD V108E using Lipo-

fectamine 2000 (Life Technologies Corporation, Carlsbad, CA).

Transfection efficiency was verified using fluorescent microscope

24 hrs after transfection. Cells were trypsinized and replated at

16,000 cells per well in a 96 well plate and then allowed to sit

down overnight. Cell death assays were then conducted.

Tumor Treatment studies
Groups of 3–4 NOD/SCID mice were subcutaneously injected

at two sites/mouse with 16107 BJAB cells and tumors allowed to

grow to a size of ,200 mm3 prior to randomization into control or

treatment (IP injection of etoposide (15 mg/kg twice a week) groups.

Tumor size was monitored every other day using vernier digital

calipers in three dimensions and calculated as a spheroid tumor

volume (h6w6l60.523). Tumor growth in the treated animals was

compared between groups using t-test. For tumor western blotting,

Paraffin-embedded tumors were deparaffinized in xylene, rehy-

Figure 6. Six1-mediated TRAIL resistance reduces the effectiveness of etoposide in vivo, but not in vitro. Panel A, parental BJAB cells
and BJAB cells expressing Six1 were treated in vitro with increasing doses of TRAIL, FasL and etoposide, and cell viability was assessed by the MTT
assay. Six1 caused TRAIL resistance but had little effect on FasL or etoposide-induced cell death. Panel B illustrates how etoposide treatment of
subcutaneous tumors from BJAB or BJAB-Six1 cells reduces the growth of both tumors relative to untreated controls, but is less effective in the Six1-
expressing cells (* p,0.001 by t-test at day 14 for the control versus Six1 expressing cells).
doi:10.1371/journal.pone.0014527.g006

Chemosensitivity and TRAIL
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drated in graded ethanol, immersed in distilled water, and air-dried.

Tumors were diced into small pieces and homogenized in RIPA

buffer containing 2% SDS. Samples were heated at 100uC for

20 min and then incubated at 60uC for 2 hrs. Debris was

centrifuged twice to leave the supernatant for western blotting.
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