
Frontiers in Oncology | www.frontiersin.org

Edited by:
Silvia Cammelli,

Università di
Bologna, Italy

Reviewed by:
Luca Boldrini,

Agostino Gemelli University Polyclinic
(IRCCS), Italy
James Chow,

University of Toronto, Canada

*Correspondence:
Sebastien A. A. Gros

sgros@luc.edu

Specialty section:
This article was submitted to

Radiation Oncology,
a section of the journal
Frontiers in Oncology

Received: 15 September 2021
Accepted: 16 May 2022
Published: 30 June 2022

Citation:
Gros SAA, Santhanam AP, Block AM,
Emami B, Lee BH and Joyce C (2022)
Retrospective Clinical Evaluation of a

Decision-Support Software for
Adaptive Radiotherapy of Head and

Neck Cancer Patients.
Front. Oncol. 12:777793.

doi: 10.3389/fonc.2022.777793

ORIGINAL RESEARCH
published: 30 June 2022

doi: 10.3389/fonc.2022.777793
Retrospective Clinical Evaluation
of a Decision-Support Software
for Adaptive Radiotherapy of Head
and Neck Cancer Patients
Sebastien A. A. Gros1*, Anand P. Santhanam2, Alec M. Block1, Bahman Emami1,
Brian H. Lee1 and Cara Joyce3

1 Loyola University Chicago, Loyola University Medical Center, Stritch School of Medicine, Department of Radiation
Oncology, Cardinal Bernardin Cancer Center, Maywood, IL, United States, 2 Department of Radiation Oncology, University of
California, Los Angeles, Los Angeles, CA, United States, 3 Department of Public Health, Stritch School of Medicine, Loyola
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Purpose: This study aimed to evaluate the clinical need for an automated decision-
support software platform for adaptive radiation therapy (ART) of head and neck cancer
(HNC) patients.

Methods:We tested RTapp (SegAna), a new ART software platform for deciding when a
treatment replan is needed, to investigate a set of 27 HNC patients’ data retrospectively.
For each fraction, the software estimated key components of ART such as daily dose
distribution and cumulative doses received by targets and organs at risk (OARs) from daily
3D imaging in real-time. RTapp also included a prediction algorithm that analyzed
dosimetric parameter (DP) trends against user-specified thresholds to proactively
trigger adaptive re-planning up to four fractions ahead. The DPs evaluated for ART
were based on treatment planning dose constraints. Warning (V95<95%) and adaptation
(V95<93%) thresholds were set for PTVs, while OAR adaptation dosimetric endpoints
of +10% (DE10) were set for all Dmax and Dmean DPs. Any threshold violation at end of
treatment (EOT) triggered a review of the DP trends to determine the threshold-crossing
fraction Fx when the violations occurred. The prediction model accuracy was determined
as the difference between calculated and predicted DP values with 95% confidence
intervals (CI95).

Results: RTapp was able to address the needs of treatment adaptation. Specifically, we
identified 18/27 studies (67%) for violating PTV coverage or parotid Dmean at EOT. Twelve
PTVs had V95<95% (mean coverage decrease of −6.8 ± 2.9%) including six flagged for
adaptation at median Fx= 6 (range, 1–16). Seventeen parotids were flagged for exceeding
Dmean dose constraints with a median increase of +2.60 Gy (range, 0.99–6.31 Gy) at EOT,
including nine with DP>DE10. The differences between predicted and calculated PTV V95
and parotid Dmean was up to 7.6% (mean ± CI95, −2.7 ± 4.1%) and 5 Gy (mean ± CI95,
0.3 ± 1.6 Gy), respectively. The most accurate predictions were obtained closest to the
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threshold-crossing fraction. For parotids, the results showed that Fx ranged between
fractions 1 and 23, with a lack of specific trend demonstrating that the need for treatment
adaptation may be verified for every fraction.

Conclusion: Integrated in an ART clinical workflow, RTapp aids in predicting whether
specific treatment would require adaptation up to four fractions ahead of time.
Keywords: adaptive radiotherapy, head and neck cancer, clinical workflow, deformable image registration (DIR),
prediction model
1 INTRODUCTION

The use of intensity-modulated radiation therapy (IMRT) and
volumetric-modulated arc therapy (VMAT) techniques to treat
head and neck cancer (HNC) enables the delivery of highly
conformal radiotherapy (RT) treatments with complex dose
distributions. Initial issues in RT delivery, such as patient setup
and localization errors, were addressed by the International
Commission on Radiation Units and Measurements (ICRU) in
the 1980s and 1990s with the recommendations for the
delineation of gross tumor volume (GTV), clinical target
volume (CTV), and planning target volume (PTV) structures
(1–3) and minimized by the continuous improvement of
imaging modalities for patient setup verification. The latest
image-guided radiation therapy (IGRT) solutions have pushed
the limits of reducing PTV-to-CTV margins to only a few
millimeters (4–6), generating a greater sparing of organs at risk
(OARs). However, these smaller margins leave very little room
for errors, as an inadequate PTV coverage could lead to
treatment failure. The proximity of critical structures to GTVs,
the change in volume, the displacement of targets and OARs, and
weight loss during treatment are now the new challenges faced by
radiation oncologists, as they all constitute risks for target under-
dosage, leading to possible local failure or radiation toxicities (7–
11). Successful strategies to improve HNC patients’ quality of life
after RT include sparing the parotid glands (PGs) and the
mandible to decrease the risks of xerostomia (12) and
osteoradionecrosis (13).

Adaptive radiotherapy (ART) involves all methods that aim to
adapt RT treatments and delivered dose distributions to any
specific patient anatomical changes (14). The main potential
benefits of ART are to ensure the adequate dosimetric coverage
of targets and to limit OAR doses throughout the treatment,
assuming that it will increase the therapeutic ratio and provide
better outcomes for cancer patients (15). ART encompasses
offline, online, and real-time strategies to mitigate the effects of
anatomic shifts and setup errors (16). While both offline and
online ART involve imaging to review the current anatomy and to
assess the need for a new plan, most common ART methods
allowed by current technologies for HNC patients are variants of
offline strategies (17–22), as these are well suited for the slow
progressing nature of anatomic changes observed during HNC RT
treatments (8, 20, 23). Online methods are more appropriate to
address the effects of stochastic patient setup errors (24, 25), such
as those caused by the inter-fractional variation in shoulder
position (26, 27) or the loose fitting of the immobilization mask
org 2
due to weight loss. They are, however, only commercially available
for HNC treatment on dedicated adaptive RT systems such as the
Halcyon with Ethos (28) (Varian, Palo Alto, CA), Radixact (29)
(Accuray, Sunnyvale, USA), or the MRIdian (Viewray, Cleveland,
USA) and Unity (Elekta, Stockholm, Sweden) combined MRI-
linac platforms (30). MR-guided online ART is a promising
avenue for HNC treatment, as it would allow for daily online
adaptation (important for fast responding HN tumors) and may
allow for the online monitoring of tumor response with functional
MRI protocols without the additional dose delivered with nuclear
imaging (30). Real-time ART introduces additional sophisticated
patient monitoring to correct intra-fractional anatomic shifts in
real time during treatment delivery (31) and seems excessive for
HNC treatments. In contrast, offline ART can readily be
imp lemented wi th the cur rent bas i c c l in i ca l RT
treatment resources.

Clinical offline ART workflows follow four key steps: imaging,
assessment, re-planning, and quality assurance (QA) (16). It is
recommended that HNC patients be monitored with CT or
CBCT imaging acquired frequently (daily or weekly)
throughout the treatment (32, 33). These images are reviewed
by a radiation oncologist who then decides whether the
treatment plan is to be adapted. The re-planning decision is
based on a review strategy, which typically consists of assessing
anatomic variations and their impact on the dosimetry of targets
and OARs. After the registration of the periodic CBCT images to
the initial plan CT, an initial qualitative evaluation visually
compares the structure contours from the periodic CBCT
images against pretreatment volumes. Subsequent quantitative
assessments require specialized software tools to compute
similarity and distance metrics between the initial volumes and
the new structures and to estimate the treatment dose from the
most current patient anatomy. The determination of patient-
and plan-specific thresholds based on treatment site,
fractionation, and outcome is key to optimize the ART
workflow and to provide an individualized approach well
suited for HNC patients. However, the ART tasks performed
after periodic patient imaging requires several hours of expert
physicians, physicists, and dosimetrists, consuming resources
that most radiation oncology facilities cannot afford. As no
commercial automated ART offline workflow is yet available
with gantry-mounted linacs, quantitative changes for targets and
OAR structures of interest cannot be estimated in a feasible time
for the majority of HNC patients. The time-consuming nature of
offline ART workflows leads to delays until the new plan is
available for treatment. Consequently, clinicians might continue
June 2022 | Volume 12 | Article 777793
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to administer RT according to the original treatment plan, which
may reduce the efficacy of the radiation treatment sought by
triggering a plan adaptation. Therefore, there is a current need
for an automated and quantitative framework that will process
the daily imaging, generate the contoured structures, compute
the dose to be received by the structures of interest, and predict if
a re-planning is required to maintain the current plan quality.
Such automated workflow would ideally include the
implementation of predictive models to allow for the
instantiation of clinical adaptive re-planning ahead of time.

This manuscript reports on our experience with a newly
developed commercial decision-support software platform for
ART, RTapp™ (SegAna, Orlando, FL), which automatically
tracks and analyzes daily anatomical changes throughout an
entire course of RT and predicts when treatment plans will
exceed dose constraints. Most software tasks are optimized to run
on a graphics processing unit (GPU) and allow the presentation of
the results in near real time (19). A feasibility study of the ART
workflow introduced by RTapp was conducted retrospectively with
HNC patient data to assess if RTapp could help determine the need
for adaptive re-planning during treatment, based on a set of
hypothetical PTV coverage and OAR dose thresholds.
2 MATERIALS AND METHODS

2.1 Retrospective Cohort
2.1.1 Enrollment Criteria
An initial set of 81 HNC patients treated with external beam
radiation therapy (EBRT) between January and December 2019
with VMAT was surveyed for the retrospective analysis, under
Institutional Review Board (IRB) protocol (# LU213253).
Exclusion criteria included patients who received prior HNC
RT (n=2) or EBRT with sequential boost (n=4) or treatment
adaptation (n=4), as these require a new CT scan; patient not
imaged with daily kV-CBCT (n=4); and any patient for whom
complete PTV and PG volumes were not included in the CBCT
field of view (n=24) for all treatment fractions due to the need to
track dose constraints based on full volume coverage. Additional
exclusion criteria were applied to sinus and nasal cavity sites
(n=3) and lips (n=3) due to target locations with initial limited
interest for adaptation. The above selection criteria were fulfilled
by 37 patients, out of which 27 were randomly selected for
analysis. The diversity of HNC sites (Table 1) was representative
of the HNC patient population treated at our institution. Table 2
summarizes the distribution of treatment prescriptions and
targets included in this study.
Frontiers in Oncology | www.frontiersin.org 3
2.1.2 Treatment Planning, Delivery, and Imaging
The treatment planning images were acquired on a 32-slice
Siemens SOMATOM CT Open AS scanner (Siemens
Healthineers, Erlangen, Germany) with a reconstructed slice
thickness of 3 mm and metal artifact reduction (MAR) enabled
by default. All HNC patients were immobilized with a Q-fix
Fiberplast® Portrait S-frame Head and Shoulder thermoplastic
immobilization mask (Qfix, Avondale, PA). The GTV and nodal
CTV targets were contoured by the treating physician prior to
applying 2–3 mm PTVmargins defined as follow: high-risk (HR)
PTV, intermediate-risk (IR) PTV, and low-risk (LR) PTV. A
dosimetrist contoured all normal structures and OARs. The plan
optimization followed the list of dose constraints required by the
treating physician for each individual plan. All patients were
treated on a Varian Truebeam linear accelerator (Varian Medical
Systems, Palo Alto, CA) with 6 MV VMAT in 30–35 fractions.
Daily patient setup and verification was performed with the On-
Board kV Imaging (OBI) system. Each CBCT image set was
comprised of 93 frames with 2 mm separation. Table 3 lists the
planning dose constraints for our patient cohort. Each patient
dataset, composed of treatment plan CT, structure set, 3D dose,
and daily 3D kV-CBCTs, was anonymized prior to be exported
as DICOM RT objects for processing by RTapp.

2.2 Overview of the Adaptive
Software Platform
RTapp is a stand-alone and vendor agnostic application. As such,
it can be employed with any treatment delivery platform, as long
as 3D imaging is available for analysis.

2.2.1 Software Front-End
The front-end of the application (Figure 1) displays treatment-
specific data, anatomic visualization windows (Figures 1A–F)
and panels with graphical data (Figures 1G–I) to guide the ART
decision-making process for the selected patient study.

2.2.2 RTapp Workflow
The main purpose of RTapp is to estimate the dose received by
each structure at any treatment time point. A predictive
algorithm analyzes the trend of user-defined structure and
specific dosimetric parameters (DPs) against predetermined
dosimetric endpoint (DE) values to forecast if, and so when,
TABLE 1 | Distribution of HNC sites from the patient cohort.

Diagnoses per Sites # Cases

Pharynx 17
Oral cavity 3
Larynx 5
Salivary glands 1
Lymph nodes 1
TABLE 2 | Treatment plans prescriptions from patient cohort.

SIB
Doses
(Gy)

Dose per
fraction
(Gy)

Total #
fractions

Targets #
cases

60/54 2/1.8 30 Post-operative bed/nodal basin 9
70/63/
56

2/1.8/1.6 35 GTV/CTV/nodal basin 15

66/60/
54

2.2/2/1.8 30 GTV/CTV/nodal basin 1

66/54 2.2/1.8 30 GTV/CTV 1
59.4/
54.12

1.8/1.64 33 High risk mucosa & ipsilateral node
basin/at risk contralateral nodes

1

June 2022 | Volume 12 | Article 7
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any dose constraint would be violated. The automated RTapp
workflow can be divided in three steps, as outlined in Figure 2.

Step 1. For each treatment fraction, the initial treatment plan
CT images and structures are deformed to match the daily setup
CBCT images. An optical flow-based deformable image
registration (DIR) algorithm (34) automatically registers the
initial and daily 3D image sets and generates a deformation
vector field (DVF).

Step 2. The DVF is then employed to deform the initial plan
structures and dose into daily deformed structures and dose, as
Frontiers in Oncology | www.frontiersin.org 4
described in Qi et al. (19). The deformation results can be verified
via DIR confidence metrics.

Step 3. The daily dose distribution within any structure is
calculated from the deformed structures and dose. The dose
volume histograms (DVHs) for the day of treatment (DVHday)
and up to the current treatment time are generated from the
estimated dose distribution (Figure 1G). The day of treatment
DVH represents the daily dose scaled to the whole course of
treatment, assuming that the daily anatomy would be maintained
for the whole course of treatment. The sum DVH (DVHsum)
TABLE 3 | Treatment planning dose constraints and structure specific dosimetric endpoints (DE) .

Organ/volume of interest Parameter Planning goal Warning DE Adaptation DE

PTVs V95 >95% 95% 93%
Hotspot <110% Rx dose 110% 110%

Spinal cord Dmax <45 or 50 Gy Planning goal 10%
Brainstem Dmax <45 or 50 Gy Planning goal 10%
Oral cavity Dmax No hotspot 110% 110%
Spared parotida Dmean <20 Gy Planning goal 10%
Contralateral parotidb Dmean N/A Planning goal 10%
Cervical esophagus Dmax No hotspot 110% 110%
Mandible D1cc 65–75 Gy Planning goal Planning goal
Cochlea Dmean <35 Gy Planning goal 10%
Larynx Dmax No hotspot 110% 110%
Brachial plexus Dmax 65 or 66 Gy Planning goal Planning goal
June 2022 | Volume 12
The DEs serve as thresholds to trigger the plan review for adaption in an adaptive radiotherapy workflow with RTapp.
aIf planning goal achieved, DE relative to 20 Gy. If not and Dmean < 21 Gy, DE are relative to 21 Gy.
bIf planned PG Dmean < 26 Gy then DE relative to 26 Gy.
DE, dosimetric endpoint.
FIGURE 1 | RTapp software user interface. (A–C) Initial plan CT, structures, and 3D dose. (D–F) The final fraction’s CBCT with plan structures (solid line), deformed
contours to current day’s position (dotted line), and initial 3D dose. (G) DVH showing the plan dose (solid line), delivered dose up to the current fraction (DVHsum,
dotted line), and day of treatment dose scaled to full treatment (DVHday, dashed line). (H) Trend for parotid’s mean dose; (I) tumor volume regression throughout the
treatment. The red arrows indicate notable effects of RT and weight loss on the left parotid (1), PTVs (2), external neck contour (3), and inconsistent shoulders
repositioning (4).
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summarizes structure doses accumulated up to the current
fraction, scaling the latest fraction dose to the remaining
course of treatment, assuming that the most current structure
anatomy and dose distribution would hold for the remaining
treatment fractions. Specific dosimetric parameters DPday and
DPsum are calculated from the DVHday and DVHsum to populate
dose trend graphs displayed on the software front-end
(Figure 1H). A linear predictive model analyzes the trends of
DPsum to forecast their values over the next four fractions, hence
providing quantitative data to guide the decision to
adapt proactively.

2.2.3 Implementation Environment
RTapp was tested as a standalone application installed on a
Microsoft Windows 10 workstation equipped with a 2.3-GHz
intel Core i-9 CPU, 32 GB RAM, and a Nvidia GeForce RTX2070
(8 GB RAM). The processing of a single fraction data set (93
CBCT images and ~30 structures) typically took <1 min.

2.3 Evaluation of DIR Quality
The quality of the deformation was first assessed by visually
comparing overlaid initial and deformed structures contours on
the CBCT viewing panels (Figures 1D–F). A quantitative
evaluation was then performed with two DIR confidence
metrics provided by RTapp, following the recommendations
from the AAPM TG-132 report (35). Structures with
normalized cross-correlation (NCC) values <0.85, or for which
the displacement vector of the secondary image voxels of a
structure exceeded a 7-mm “large” displacement threshold
after deformation, were automatically flagged for review. While
the NCC threshold was hard coded into RTapp, the pixel
displacement threshold of 7 mm was selected, as it
qualitatively provided the best trade-off between too many
flags (<5 mm) and missing registration errors (>9 mm) due to
positioning errors on an initial test HNC patient data set. The
DIR algorithm parameters were adjusted before reprocessing a
Frontiers in Oncology | www.frontiersin.org 5
fraction when the flagged structures deformations were assessed
as inaccurate after user review.

2.4 Dosimetric Metrics and Thresholds for
Target Coverage and OARs
The structures monitored for the retrospective study were all
PTV, CTV, GTV, and nodal targets, and parotid glands (PGs),
spinal cord, cochleae, brainstem, mandible, esophagus, and
larynx when applicable. The DPs evaluated against the need
for adaptation were based on the dose constraints required for
the treatment planning of HNC at our institution (Table 3). All
cases had identical requirements for the PTVs (V95 > 95% of
prescription dose; maximum dose Dmax < 110%) and for the PGs
(Dmean < 20 Gy). Additional PG DPs were defined specifically for
this study: Dmean < 21 Gy for cases where the dosimetrist could
not keep the mean ipsilateral PG dose below 20 Gy due to the
overlap with IR PTVs, and Dmean < 26 Gy for spared
contralateral PGs. Other OAR constraints varied per plan.

2.5 Adaptive Review Strategy
Each patient data set was fully processed with RTapp. The
DVHday and DVHsum generated by RTapp for the final dose
(Figure 1G) were compared to the initial plan DVH (DVHplan).
Any violation of dose constraints at end of treatment (EOT) were
tallied as potential case for adaptation. For every dose constraint
violation, the DPsum trend (Figure 1H) was reviewed to
determine the fraction when the violation occurred. For this
work, a hypothetical “warning” threshold (V95 < 95%) was
chosen to investigate the impact of daily setup variation on
PTV coverage, and an “adaptation” threshold of −2% (V95 <
93%) was set to trigger a review of this patient’s anatomy for
replanning. A hypothetical OAR “adaptation” dosimetric
endpoint of 10% (DE10) was set uniformly for all Dmax and
Dmean DPs. A set of HNC structure-specific endpoints, which
lists the above structures and associated adaptation thresholds,
was saved in RTapp to conduct this retrospective work.
FIGURE 2 | Schematic of RTapp workflow divided into three steps: 1, generation of the deformation vector field (DVF) from the deformable registration of planning
CT to daily CBCT anatomy; 2, deformation of initial plan structures and dose based on daily DVF; and 3, generation of deformed structures DVH and trend and
prediction of dosimetric parameters.
June 2022 | Volume 12 | Article 777793
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2.6 Prediction Model Accuracy
The accuracy of the prediction model was evaluated by
calculating the difference between the DPsum value at the
fraction when it violated the adaptation threshold and the
predicted pDPsum values from the four fractions preceding the
violation time point. The difference in DPsum was averaged over
all patient studies flagged for adaptation to calculate the 95%
confidence interval as summarized by Equation 1. For a
particular DPsum value crossing a threshold at fraction Fx, the
difference in DPsum from a predicted pDPsum value based on
processed fraction [Fx − i] with i = [4,3,2,1], averaged over all n
flagged studies is given by:

DDPsum½ �Fx−i=
1
non pDPsum½ �Fx−i,n− DPsum½ �Fx

� �
(1)

Finally, this retrospective work was devised to help provide
estimates on the proportion of HNC patients expected to need
ART and gather information on the magnitude of differences
observed between plan results and actual determined DP values
in order to help better plan future prospective analysis with this
software. As such, a potential clinical ART workflow integrating
RTapp in the treatment of HNC patients was proposed based on
our experience.
3 RESULTS

3.1 Adaptive review
The retrospective analysis with RTapp reported 18/27 patient
studies (67%) that failed to meet at least one dose constraint at
EOT. The flagged structures were 12 PTV targets and 17 PGs.
Other structure DPs remained below their warning threshold
values throughout the treatments. Box plots summarizing the
differences between the DVHplan and the DVHsum derived PTV
Dmax and V95, and PG Dmean and spinal cord Dmax are shown in
Figure 3. Overall, PTV dosimetry and coverage decreased while
PG and spinal cord doses increased during RT, with the latter
remaining below thresholds.

3.2 Targets Coverage
The difference in V95 between planned and EOT DPsum values
ranged from 0 to −4.9% for HR PTVs, +0.4 to −13.7% for IR
Frontiers in Oncology | www.frontiersin.org 6
PTVs, and −0.1 to −7.1% for LR PTVs. The difference in PTV
Dmax ranged from +0.74 to −3.7 Gy. While all PTVs met the
minimum V95 > 95% coverage requirement after treatment
planning, 12 PTVs belonging to nine patients were flagged for
under-coverage (V95 < 95%) at EOT. Table 4 summarizes the
changes in targets coverage. The mean PTV coverage decrease
was D�V95 = −6:8 ± 2:9  % resulting in a mean final �V95 = 91:8 ±
2:9% . Six flagged targets were IR PTVs, accounting for the initial
GTVs, involved nodal basin, and areas of microscopic spread
(studies 94, 118, 146, 46, 19, and 18). Four flagged PTVs were
covering postoperative beds (studies 15, 8, and 99), while the last
three flagged PTVs were covering low-risk nodal basin (studies 8,
18, and 19). The example shown in Figure 1, from study 118,
illustrates the effect of internal anatomical changes and weight
loss on the last fraction CBCT (Figures 1D–F). The inwards shift
and the regression of the deformed PTV contour are responsible
for the loss of coverage (dotted line DVHsum on Figure 1G) for
IR PTV63 with an EOT V95 value of 92.86%.

3.3 Trend Analysis of Target
Dosimetric Parameters
The threshold-crossing fraction for V95 < 95% threshold was
extracted from the automated fraction processing reports
(Table 4, “Fraction for V95 < 95%”). The results hinted at a
clustering of PTV coverage constraint violations occurring either
during the first three fractions (early) or after the second quarter
of the treatment (late), with median final V95 values of 91.6% and
92.5%, respectively. However, an independent samples two-
tailed t-test for equality of the mean final V95 values of both
groups indicated no significant difference (p = 0.799). The offline
review of daily setup CBCT images revealed that local setup
errors were responsible for the lack of V95 coverage at the first
fraction due to head and mandible tilts (studies 18 and 19) and
shoulder misalignment (studies 15, 99, and 146). The fractions at
which a specific PTV crossed the V95 < 93% “adaptation”
threshold were determined from their respective V95 DPsum
trend graphs. Figure 4A shows an example dose trend from
study 118 where the PTV coverage decreases during treatment
and crossed the 93% “adaptation” threshold (indicated by the red
background) at fraction 26, as pointed out by the arrow. Six
PTVs from studies 8 (PTV60 and PTV54), 15 (PTV60), 18 (IR
PTV63), 19 (LR PTV56), and 118 (IR PTV63) were flagged for
FIGURE 3 | Boxplot summary of the DP values differences between start and end of treatment for PTVs, PGs, and spinal cord.
June 2022 | Volume 12 | Article 777793
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adaptation before EOT with V95 < 93% at a median fraction of 6
(range, 1–16).

3.4 Parotid Mean Dose
The difference between the planned PGDmean and the DPsum value
estimated at EOT byRTapp ranged from−5.6 to +6.3Gy, with 74%
of the parotids showing an increase in overall PG dose. RTapp
reported 13patients (17flaggedPGs)with at least onePGexceeding
their dose constraint. Eleven studies hadat least onePGcrossing the
20GyDmean threshold at EOT.Three caseswith an initial PGDmean

between 20–21 Gy were reported for exceeding a 21-Gy Dmean
Frontiers in Oncology | www.frontiersin.org 7
by EOT. Three additional contralateral PGs for which the initial
plan kept the PG Dmean < 26 Gy were also flagged. The median
increase in PGmean dose at end of treatment was +2.60 Gy (range,
0.99–6.31 Gy) for all 17 flagged PGs. The mean difference between
start and EOT for PGs violating the 20, 21, and 26 Gy Dmean

constraint were +2.92, +3.49, and +2.51 Gy, respectively.

3.5 Trend Analysis of Parotid
Dosimetric Parameters
Table 5 summarizes all dose constraints (DE0) and DE10
violations for the PGs. The fraction at which the PGs mean
FIGURE 4 | Variation of dosimetric parameters over the full treatments for (A) the V95 trend of PTV63 (study 118) and (B) the increase in PG Dmean for the right PG
(study 81). The dashed lines indicate the DPday value estimated from the day of treatment DVHday. The dotted line represents the variation of the DPsum estimated
from the cumulative DVHsum. The arrows indicate the fraction at which the DPsum values reached their respective adaptation thresholds: V95 < 93% at fraction 26 for
PTV63 (A) and PG Dmean > 26 Gy at fraction 8 (B). Panels (C, D) illustrate the trend prediction in DPsum for the right PG. The data to the left of the current fraction
represent calculated values from daily deformed anatomy. The data to the right predict the variations of the DPday and DPsum for the next four fractions.
TABLE 4 | PTV coverage for patient studies with V95 < 95% coverage at end of treatment.

Study # Target Initial V95 Final V95 D V95 Fraction for V95 < 95% Cumulative dose (Gy)

94 IR PTV60 GTV+nodes 100.00% 93.74% −6.26% 10 20
118 IR PTV63 GTV+nodes 99.43% 92.86% −6.57% 16 32
146 IR PTV63 GTV+nodes 99.43% 93.55% −5.88% 1 2
46 IR PTV63 GTV+nodes 99.27% 94.76% −4.51% 35 70
15 PTV60 98.98% 90.03% −8.95% 3 6
8 PTV60 Post−op bed 98.12% 84.45% −13.67% 9 18
8 PTV54 Nodal basin 98.36% 92.17% −6.19% 13 26
99 PTV60 Post−op bed 94.67% 93.27% −1.40% 1 2
19 IR PTV63 GTV+nodes 99.38% 94.21% −5.17% 31 62
19 LR PTV56 GTV+nodes 96.29% 89.15% −7.14% 2 4
18 IR PTV63 GTV+nodes 99.50% 89.56% −9.94% 1 2
18 LR PTV56 GTV+nodes 99.97% 93.81% −6.16% 3 6
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doses exceeded their respective 10% deviation thresholds was
obtained from the automated fraction processing reports (Table 5,
“fraction for Dmean > DE”). The flagged studies can be divided into
two independent groups. (1) Eight patient studies had a PG DPday
failure occurring within the first two treatment fractions, with an
average PG mean dose difference DDmean = 4.05 ± 1.46 Gy. These
occurred too early to result from radiation treatment and were
most likely due to patients relaxing in their immobilization mask,
leading to inconsistent patient setup throughout the course of
treatment. (2) The second group comprises nine studies with
endpoint failures occurring later during treatment (median
threshold-crossing fraction Fx=20; range, 8–30), with an average
PG mean dose difference DDmean = 1.98 ± 0.78 Gy, likely to result
from gradual body weight loss and internal anatomical shifts
induced by radiation treatment response. Figure 4B presents the
Dmean trend from the right PG (study 81), indicating the 26 Gy
DE0 being exceeded at Fx = 8. An independent samples two-tailed
t-test for equality of the mean PG dose difference between the
early and late groups showed significance (p = 0.005). Nine PGs
were flagged for adaptation with PG Dmean > DE10 before EOT,
with average PG mean dose differences DDmean = 4.68 ± 1.11 Gy
and DDmean = 2.54 ± 0.78 Gy for the early (N=6) and late (N=3)
groups, respectively.

3.6 Predictive Model
Figures 4C, D show the comparison of the model prediction from
study 81 (right PG), where the 26 Gy DE0 was exceeded at Fx = 8
(Figure 4B). The predicted trend at fraction 5 (extended dotted line
to the right of the white vertical line on Figure 4C) indicated that
the right PG Dmean would cross 26 Gy at fraction Fx=8. The
accuracy of the prediction model was estimated for all flagged
studies except those with identified Fx < 5 (in Tables 4, 5) as the
model requires a minimum of five treated fractions to generate
predictions. The overall difference betweenmeasured and predicted
Frontiers in Oncology | www.frontiersin.org 8
PTVV95 ranged from −7.6% to 0.0% (mean ± CI95, −2.7% ± 4.1%),
with the largest differences observed for predictions made four
fractions ahead (mean, −3.2%; CI95, −7.2%, 1.1%) and the most
accurate predictions (mean, −2.2%; CI95, −5.2%, 0.8%) obtained
closest to the threshold-crossing fraction. Figure 5A summarizes
the mean V95 difference results as a function of temporal proximity
defined as the time interval between the threshold-crossing fraction
(Fx) and the last processed fractions (Fx − i) providing the
prediction V95[Fx − i] with i progressing from 4 to 1.
Uncertainties are reported as 95% confidence intervals (CI95). All
model predictions overestimated V95 coverage values. The
variation in prediction accuracy for the PG Dmean is presented in
Figure 5B. The overall difference between the measured and
predicted PG Dmean values ranged from 0.0 to +5.0 Gy (mean ±
CI95, 0.2 ± 1.6 Gy). The largest differences were calculated for
predictions four fractions ahead (mean, 0.65 Gy; CI95, −1.83 Gy,
3.13 Gy), while the highest accuracy was obtained within two
(mean, 0.17; CI95, −1.09 Gy, 1.43 Gy) to one fraction ahead (mean,
0.14; CI95, −0.93 Gy, 1.22 Gy).

3.7 Performance of DIR Algorithm
The automatically calculated NCC and distance confidence
metrics quantitatively identified the structures with
questionable deformations and helped to confirm our
observations from the qualitative visual review. After several
iterations, a single DIR algorithm configuration was found to
optimally process all patient data sets without user adjustment.
Seventeen patients from our cohort had dental implants that
created streak and beam hardening artifacts on daily CBCT
images. The registrations seemed robust against imaging
artifacts for all 17 patient’s PTV and mandible contours
deformations. Figure 6 illustrates the deformation accuracy of
a PTV, mandible, and parotid contours in the presence of severe
artifacts. The only issues encountered when reviewing DIR
TABLE 5 | Parotid glands Dmean violations of the warning dose thresholds (DE0) and of the 10% dosimetric endpoints (DE10) for triggering adaptation.

Study
no.

SIB
doses
(Gy)

Initial plan
Dmean (Gy)

Final RTapp
Dmean (Gy)

D
Dmean

(Gy)

Laterality DE0

(Gy)
Fraction for
Dmean > DE0

Cumulative dose for
Dmean > DE0

Fraction for
Dmean > DE10

Cumulative dose for
Dmean > DE10

46 70/63/56 19.66 22.25 2.60 Left 20 2 4 22 44
81 70/63/56 19.54 25.85 6.31 Left 20 1 2 1 2
79 70/63/56 19.98 23.17 3.19 Left 20 1 2 1 2
137 70/63/56 19.63 24.00 4.37 Left 20 2 4 4 8
94 66/60/54 19.40 20.95 1.55 Right 20 12 24 20 40
105 66/54 19.24 20.23 0.99 Right 20 21 42 – –

22 70/63/56 19.56 20.87 1.20 Right 20 30 60 – –

26 70/63/56 19.91 20.11 2.29 Right 20 16 32 – –

78 60/54 19.57 21.86 2.29 Left 20 9 18 – –

116 60/54 17.62 20.29 2.68 Right 20 16 32 – –

83 70/63/56 19.74 25.44 5.7 Left 20 2 4 2 4
118 70/63/56 20.76 25.72 4.97 Left 21 2 4 9 18
137 70/63/56 20.21 23.77 3.56 Right 21 2 4 5 10
146 70/63/56 20.42 22.37 1.95 Right 21 1 2 – –

81 70/63/56 25.66 29.14 3.48 Right 26 5 10 23 46
79 70/63/56 25.24 26.93 1.69 Right 26 12 24 – –

105 59.4/
54.12

25.47 27.82 2.35 Left 26 1 2 – –
June 2022 | Volum
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Studies 105, 22, 26, 78, 116, 146, and 79 have PGs that did not reach their respective DE10 by end of treatment.
e 12 | Article 777793

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Gros et al. Predictive ART Software for HNC
results were the misidentifications of the immobilization mask
for the external body contour. These mainly occurred during the
second half of treatments, after patients’ weight loss created air
gaps between the skin surface and the shell of the mask.
4 DISCUSSION

This manuscript is the first to report on an automated platform-
agnostic commercial software (RTapp) designed to provide
quantitative data to support the adaptive re-planning decision
process. The retrospective analysis of 27 HNC patients with the
first version of RTapp demonstrated that PTVs and parotid
structures would most likely require daily monitoring for
adaptation throughout the whole course of RT. The review of
daily alignments between CBCTs and the planning CT revealed
clear evidence of gradual body weight loss and internal
Frontiers in Oncology | www.frontiersin.org 9
anatomical changes throughout treatment for the 18 flagged
patients. Our observations agree with published studies on ART
for HNC, which reported on the reduction in target coverage
(9, 25, 26) and on the increase in PG dose (18, 36) and spinal
cord dose (9, 26) without adaptation. It is highly likely that these
18 patients would have dosimetrically benefited from ART if
daily information on the dosimetric impact of anatomical
changes was readily available during treatment.

4.1 Impact of Sub-Optimal Immobilization
Several patients were flagged for adaptation during the first few
treatment fractions. Reviewing daily patient set-up images
revealed that their shoulders’ position differed significantly to
that seen on their planning CT. The immobilization device
clearly failed to provide appropriate and reproducible support
for the shoulders, with a direct impact on the dose coverage of
the inferior cervical lymph nodes included in IR PTVs and on the
A B

FIGURE 5 | Differences between measured and predicted values at threshold crossing for flagged studies for (A) PTV V95 and (B) PG Dmean. Fx identified threshold-
crossing fraction. Fx-i represents the last fraction that was processed to obtain the model predicted value. In this case, Fx-4 represents the first fraction for which a
predicted pDPsum value was available, while Fx-1 identifies the fraction that directly precedes the threshold-crossing fraction. The confidence bands and error bars
indicate the 95% confidence interval.
FIGURE 6 | A demonstration of the deformable algorithm’s ability to account for severe CBCT dental implant artifacts [red arrows, (A)]. The blue (B) and yellow
(C) arrows indicate the deformed mandible and PTV contour, respectively. Both were minimally affected by the streak artifacts.
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PG dosimetry due to the large elasticity of the head and neck
tissue, which resulted in a high variability observed in the DPday
trends for these patients. In the example from Figure 4A, pre-
treatment setup images revealed large daily variations in head
rotation and shoulder positions, indicating that the patient was
able to gradually move within her immobilization mask. This
effect of gradual patient weight loss led to the continuous
decrease in PTV V95 demonstrated by the DPsum trend and
crossing the adaptation threshold at fraction 26. Adapting this
patient’s RT treatment with a new immobilization would have
improved setup reproducibility and raised the PTV coverage.
4.2 Predictive Model
The prediction model implemented in RTapp currently relies on
a linear regression to forecast the temporal changes of all DPsum
values. Our results suggested that such model would most likely
overestimate V95 values. Clinically, this would result in
additional review of target dosimetry in an ART workflow
based on RTapp predictions. The accuracy of the model for the
PG Dmean would currently allow the definition of a 2–3 Gy
deviation threshold for plan review based on an initial planned
PG Dmean in the 20–26 Gy range. Recent decision support
methods developed to identify HNC patients for adaptation
necessitated large patient cohorts to build prediction models
for anatomical changes (37, 38), tumor response (37, 39), and
OARs dose accumulation (38, 40). The approach introduced by
McCulloch et al. (40) was the closest to that implemented in
RTapp. It predicts specific dose metrics values at EOT based on
accumulated doses calculated from daily CBCT anatomy. Their
model achieved >95% sensitivity and specificity to detect a need
for adaptation with predictions based on a minimum of 10 and
15 treated fractions. However, their method involved time-
consuming manual steps to generate the predictions and only
provided the deviation between planned and received dose at a
single time point. In contrast, RTapp relies solely on individual
patient data to generate predictions on a per-fraction basis, in
real time, without user intervention. The current prediction
model accuracy could be improved with the implementation of
a multiple regression model accounting for parameters easily
available within RTapp—some of which have been shown to
correlate with change in OAR dosimetry (41), or with the
occurrence of locoregional control for oropharyngeal cancers
(36, 42, 43) and incidence of xerostomia (44). Ultimately,
machine-learning-based prediction methods might provide the
most accurate trend of OAR and targets DPs (45, 46).
4.3 Selection of Appropriate Dose Metrics
and Deviation Thresholds
The “warning” and “adaptation” threshold for specific DPs are at
the core of the automated adaptive decision-making process.
There is no consensus on which DPs and deviation thresholds
are the most appropriate for triggering adaptation. Therefore, the
hypothetical limits to initiate a plan review or adaptive re-
planning defined in this work were based on physicians’
Frontiers in Oncology | www.frontiersin.org 10
constraints provided for treatment planning. McCulloch et al.
(40) used a PG Dmean of 24 Gy with a 15% (3.6 Gy) threshold
based on published NTCP curves (47) and results from a
prospective study correlating saliva output with PGs dosimetry
(48). Lee et al. (38) analyzed the detection accuracy of their
prediction model using the planned PG Dmean with a deviation
threshold of 10% based on results from Wu et al. (20) but also
included 7.5% and 5% under the justification that “physicians
would welcome any additional sparing of the PGs.” Brouwer
et al. (49) presented a pre-treatment method to select patients for
adaptation, based on a PG Dmean threshold of 22.2 Gy and a
deviation of 3 Gy with a near 80% sensitivity. Other approaches
could include the 95% ICRU (3) dose–volume recommendation
for minimum PTV coverage or use TCP- and NTCP-derived
threshold values for tumors and OARs with specific endpoints.
Regardless of the adaptation threshold selection, RTapp supports
the monitoring of multiple dose or volume metrics on a per-
fraction basis, ultimately allowing the treatment adaptation
decision to be quantitatively based on actual patient-specific
and daily monitored parameters.
4.4 ART Clinical Workflow With RTapp
A proposed clinical ART workflow integrating RTapp to monitor
patients for potential adaptive re-planning can be divided into
three successive steps prior to treatment delivery, as described in
Figure 7. First, the accuracy of the deformation is evaluated by
DIR metrics, with the option to adjust the DIR parameters and
reprocess daily setup images instantly. Second, the treating
therapy staff at the control console compares DPday values to
warning and action thresholds and decide whether to adjust a
daily patient setup. Third, the treatment team can be alerted to
review trends and predictions of any DPsum if a warning or
adaptation threshold is reached. Such information can help with
the decision to trigger adaptive re-planning or to carry on with
the current treatment plan. Patients’ alignment could potentially
be improved daily, or in some cases, urgent adaptive re-planning
may take place while minimizing treatment postponement. The
proposed workflow is not limited to HNC sites and could be
applied to pelvic cancer sites for which differences in daily
bladder and rectal filling may impact the dosimetry of targets
and OARs, or to non-small cell lung cancers stage II and above,
to help with limiting the irradiation of healthy lung tissue caused
by shrinking tumors.
4.5 Clinical Impact
Online ART is commercially unavailable for gimbal mounted
linacs, which constitute the majority of medical linear
accelerators installed worldwide (50). In a typical offline ART
workflow, the successive steps of processing new 3D patient
images (DIR between planning CT and latest CT images),
structures re-contouring, re-planning, evaluation of dosimetric
and volumetric changes, and QA usually take 2–5 days. RTapp
could potentially optimize clinical resources for ART, saving
hours of dosimetrist, physicist, and physician work by processing
June 2022 | Volume 12 | Article 777793
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setup images and reporting dosimetric and volumetric changes
in less than a minute. Such quantitative information is currently
only available on dedicated online ART treatment platforms,
which can perform dose recalculation within times ranging from
15 to 60 min (30, 51). The implementation of the predictive
model would further optimize the use of resources for adaptive
re-planning, by allowing to generate a new treatment plan before
a patient meets the requirements to trigger adaptation. In
addition, vendor-agnostic ART decision support software
applications provide several advantages compared to fully
dedicated online ART systems: they are readily deployable with
any treatment platform equipped with 3D imaging capabilities
and make use of resources already available clinically. Finally,
their cost effectiveness is particularly attractive to bring ART to
patients from remote rural regions hours away from large
academic centers and from low- and middle-income countries.
4.6 Limitations
The small sample size resulted in a low number of studies flagged
for adaptation and in large CI95 for the estimation of the
prediction model accuracy. This is in part due to the exclusion
of patients with only partial PTV or PG volumes in the CBCT
field of view from our original cohort. The limited FOV in the
superior–inferior axis from current CBCT imaging systems is an
important technological limitation for the proposed method and
would require the choice of adaptive DE independent of total
structure volumes. However, full structure volumes could be
recovered by acquiring two CBCTs, to be merged prior to
processing by RTapp at the cost of increased imaging dose, or
with new machine learning-based image processing methods to
estimate the position of structures outside the FOV of a single
CBCT based on the visible anatomy. The first iteration of the
RTapp software employed for this study did not have the
Frontiers in Oncology | www.frontiersin.org 11
capability to export the deformed CT and structures data set.
Therefore, we could not perform a comparison of RTapp’s
estimated dosimetric parameters to those that could have been
obtained from an actual dose recalculation with original
treatment plan.
4.7 Future Work
Once the capability to export deformed data sets is functional,
the software performance will be established by evaluating
sensitivity, specificity, positive and negative predictive values,
and accuracy to determine the need for adaptation for HNC
patients based on the DE chosen for this work. Such step is a
prerequisite to conduct an observational clinical study aimed at
comparing the traditional offline ART workflow, which involves
physician-identified cases, to a hybrid RTapp-based workflow
such as the one proposed in Section 4.4.
5 CONCLUSION

A novel automated decision support software platform for ART
was tested retrospectively with 27 HNC patients’ data. Eighteen
patients were flagged for adaptation at end of treatment. The
trend of PTV coverage and parotid mean doses against specific
dose metrics and deviation thresholds on a per-fraction basis
demonstrated that RTapp could help identify when to trigger
plan adaptation and potentially pro-actively predict when a
physician might consider the need for treatment plan
adaptation. The tools offered by RTapp have the potential to
benefit any clinic equipped with a daily 3D imaging capability
without adequate resources to provide ART for their HNC
patients. The software platform evaluated provides all the tools
and information necessary to design prospective studies aiming
FIGURE 7 | Hybrid ART clinical workflow with RTapp. Decision steps 1–3 occur at the treatment console before treatment delivery. (1) RTapp flags structures with
potential deformation issues. (2) The treatment team at the console reviews the DPday values against warning thresholds and might reposition the patient. (3) The
current and predicted DPsum trends are reviewed prior treatment to assess whether the treatment adaptation is needed within the next four fractions.
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to test whether ART will improve outcome both for TCP and
NTCP in a diverse range of cancer sites and fractionations.
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