
Frontiers in Immunology | www.frontiersin.

Edited by:
Li Wen,

Yale University, United States

Reviewed by:
Aditi Arun Narsale,

San Diego Biomedical Research
Institute, United States

Aloysius Klingelhutz,
The University of Iowa,

United States

*Correspondence:
Danny Zipris

zdanny@innatebiotechnologies.com

Specialty section:
This article was submitted to

Immunological Tolerance
and Regulation,

a section of the journal
Frontiers in Immunology

Received: 29 April 2021
Accepted: 19 July 2021

Published: 04 August 2021

Citation:
Zipris D (2021) Visceral Adipose
Tissue: A New Target Organ in
Virus-Induced Type 1 Diabetes.

Front. Immunol. 12:702506.
doi: 10.3389/fimmu.2021.702506

REVIEW
published: 04 August 2021

doi: 10.3389/fimmu.2021.702506
Visceral Adipose Tissue: A New
Target Organ in Virus-Induced
Type 1 Diabetes
Danny Zipris*

Innate Biotechnologies LLC, Denver, CO, United States

Type 1 diabetes (T1D) is a proinflammatory pathology that leads to the specific destruction
of insulin producing b-cells and hyperglycaemia. Much of the knowledge about type 1
diabetes (T1D) has focused on mechanisms of disease progression such as adaptive
immune cells and the cytokines that control their function, whereas mechanisms linked
with the initiation of the disease remain unknown. It has been hypothesized that in addition
to genetics, environmental factors play a pivotal role in triggering b-cell autoimmunity. The
BioBreeding Diabetes Resistant (BBDR) and LEW1.WR1 rats have been used to decipher
the mechanisms that lead to virus-induced T1D. Both animals develop b-cell inflammation
and hyperglycemia upon infection with the parvovirus Kilham Rat Virus (KRV). Our earlier in
vitro and in vivo studies indicated that KRV-induced innate immune upregulation early in
the disease course plays a causal role in triggering b-cell inflammation and destruction.
Furthermore, we recently found for the first time that infection with KRV induces
inflammation in visceral adipose tissue (VAT) detectable as early as day 1 post-infection
prior to insulitis and hyperglycemia. The proinflammatory response in VAT is associated
with macrophage recruitment, proinflammatory cytokine and chemokine upregulation,
endoplasmic reticulum (ER) and oxidative stress responses, apoptosis, and
downregulation of adipokines and molecules that mediate insulin signaling.
Downregulation of inflammation suppresses VAT inflammation and T1D development.
These observations are strikingly reminiscent of data from obesity and type 2 diabetes
(T2D) in which VAT inflammation is believed to play a causal role in disease mechanisms.
We propose that VAT inflammation and dysfunction may be linked with the mechanism of
T1D progression.

Keywords: type 1 diabetes, Kilham rat virus, Inflammation, visceral adipose tissue (VAT), beta cells
INTRODUCTION

Type 1 diabetes (T1D) is a multi-step proinflammatory pathology that culminates in the specific
destruction of islet b-cells and lack of insulin secretion (1–3). The Centers for Disease Control and
Prevention have estimated that ~1.25 million Americans are currently living with T1D and 40,000
new cases of T1D are being diagnosed in the U.S each year and it is estimated that five million
Americans will live with T1D by mid-century (4).
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It is thought that both genetic and environmental factors are
key players in the mechanism that triggers diabetes (5–7). The
risk for T1D development is substantially increased in relatives of
T1D patients, since ~6% of children of a diabetic parent, 5% of
siblings and 50% of monozygotic twins develop T1D compared
to only 0.4% in the general population (8, 9). More than 50 T1D
genetic risk loci have been identified to be associated with disease
progression (10).

There is ample evidence from humans and animals
supporting the notion that the environment plays a key role in
mechanisms that trigger b-cell autoimmunity (11–18), and
viruses have been postulated to play a pivotal role in these
mechanisms (16, 17, 19–27). Due to ethical reasons, it is
almost impossible to establish a causal role for microbial
infections in triggering T1D, or address virus-induced disease
mechanisms in humans. Furthermore, identifying microbes
involved in triggering T1D may be hindered since by the time
T1D is detected, the individual might have been infected with
multiple viruses and the virus triggering the disease might have
been cleared (28, 29). We have therefore used the BBDR and
LEW1.WR1 rat models that develop T1D following infection
with Kilham Rat Virus (KRV) (30) to identify how infections
lead to b-cell inflammation and destruction.

Emerging evidence suggests that inflammation plays a key
role in triggering numerous inflammatory disorders (31–35). We
recently hypothesized that innate immune upregulation is
associated with promoting virus-induced T1D (30, 36–43). Our
recent data provided for the first time evidence linking
inflammation in VAT with mechanisms of T1D (44).
Inflammation in VAT is detectable soon after infection prior
to insulitis and hyperglycemia and is characterized by infiltration
of macrophage to the site of inflammation and proinflammatory
cytokine and chemokine upregulation and tissue dysfunction
(44). On the basis of these observations, we hypothesize that
VAT inflammation and dysfunction may be associated with
T1D mechanisms.
KILHAM RAT VIRUS

KRV is a rat-specific virus environmentally ubiquitous and a
member of the Parvoviridea, a virus group of small single‐
stranded DNA viruses with an average genome size of 5 Kbp
encapsidated by protein in an icosahedral non‐enveloped particle
(45). This virus group infects various animal species, including
humans (46) and rodents (47). KRV encodes three overlapping
structural proteins, VP1, VP2, and VP3, and two overlapping
nonstructural proteins, NS1 and NS2 (47). There human
parvovirus B19 has been linked with pro-inflammatory
autoimmune disorders like acute myocarditis (48, 49),
rheumatoid arthritis (50), systemic lupus erythematosus (51),
and Sjögren’s syndrome, as well as other autoimmune
conditions (50). Infection with B19 has been associated with
the appearance of elevated levels of autoantibodies against
nuclear antigens and double‐stranded DNA (50). KRV
infection can occur in natural environment leading to T1D
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without the need for virus injection (52). Known routes by
which KRV transmission may occur are direct contact, aerosol,
and oral (52).
RAT MODELS OF VIRUS-INDUCED T1D

There are two inbred rat strains that have been most used to
address virus-induced T1D mechanisms, the BBDR and
LEW1.WR1 rats. These animals are the only genetically un-
manipulated animal models in which infection with a virus
triggers anti-ß-cell autoimmunity (41). BBDR rats have normal
levels and function of peripheral T cells (53, 54), and
spontaneous diabetes does not develop in viral antibody–free
BBDR rats (55). However, insulitis, hyperglycemia, and severe
ketosis occur in animals after inducing innate immunity with
Poly(I:C) plus elimination of regulatory ART2+ T cells (55), or
following virus infection (52). T1D in the BBDR rat is mediated
by the immune system since the transfer of lymph nodes from
animals with diabetes to RT1u MHC compatible T cell deficient
WAG nu/nu rats results in diabetes progression (56).

The LEW1.WR1 rat has also normal levels and function of T
lymphocytes (57). The LEW1.WR1 rat has a higher degree of
disease penetrance compared with that of BBDR rats as
evidenced by the observation that elimination of ART2.1+ cells
by itself can result in diabetes (57). As seen in the BBDR rat, KRV
infection leads to hyperglycemia by specific loss of islet ß-cells,
glycosuria, ketonuria, and polyuria (55, 57).

Infecting LEW1.WR1 and BBDR rats with KRV leads to
specific b-cell inflammation, islet cell death and permanent T1D
occurring following insulitis, 2-4 weeks following virus
inoculation with disease rate of ~20 and 60%, respectively (30,
34, 35, 52). It is noteworthy that the ability of virus infection to
trigger T1D or inflammation in the rat is not limited to KRV,
since b-cell autoimmunity in the rat can be triggered by two
other viruses, rat CMV (58). Furthermore, Poly I:C, a synthetic
analogue of double stranded RNA which mimics viral infection,
synergizes with low KRV titers, that by themselves do not induce
T1D, on disease progression (41). Because double stranded RNA
molecules can be expressed by different viruses, this may suggest
that microbes other than KRV could also be associated with
initiating T1D development (44). Indeed, multiple viruses have
been hypothesized to be involved in triggering human T1D (5, 6,
16, 17, 19–26, 59).

A key factor linked with the mechanism leading to T1D in
both animals and humans is likely to be linked with
proinflammatory pathways that can potentially be upregulated
by different virus groups (60). It is therefore plausible to
hypothesize that while a human KRV homologue may not
necessarily be involved in triggering T1D in humans, viruses
that induce proinflammatory pathways similar to those induced
by KRV may be linked with promoting b–cell autoimmunity in
genetically susceptible individuals. Identifying mechanisms of
KRV-induced T1D in rat models of virus-induced T1D could
therefore provide valuable data on mechanisms mediating the
human disease.
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The relevance of the BBDR and LEW1.WR1 rat models to the
human disease is supported by data from our laboratory and
others. T1D in the rat better resembles the human disorder than
the mouse model with respect to histopathology (61). Similar to the
rat, there is no significant infiltration of immune cells around the
islet (“peri-insulitis”) prior to disease onset and insulitis is
morphologically mild and more similar to that detected in
human T1D (62–64). As seen in humans, disease in the rat is
not influenced by gender (65) and is MHC-dependent (61, 66).

The mechanism of T1D in the LEW1.WR1 rat is believed to
be fundamentally different than that leading to T1D in the NOD
mouse. In contrast to the rat, T1D development in the mouse is
not dependent on microbial infections as germ-free mice retain
the ability to develop disease (67). While b-cell autoimmunity in
the mouse appears to be independent of the MyD88 signaling
pathway (68), our studies demonstrated that the disease in the rat
is mediated via the MyD88-TLR9 signaling axis (40). Finally,
innate immune activation with exogenous activators of TLR2,
TLR3/MDA-5, TLR4, TLR7/8, and TLR9, and exacerbates T1D
in the rat (41, 69), but protects NOD mice from b–cell
autoimmunity (70–73).

Innate Immunity and Inflammation
Inflammation is a physiological reaction of the innate immune
system to microbial infection or tissue injury leading to the
secretion of numerous inflammatory mediators, such as
cytokines and chemokines, which orchestrate cellular defense
mechanisms and injured tissue repair (74, 75). In contrast to
adaptive immunity that identifies antigenic molecules using
highly specific receptors expressed on T and B lymphocytes,
inflammation is the less specific arm of the immune system (76).

Innate immune sentinel cells such as dendritic cells (DCs),
macrophages, and neutrophils and recognize invading microbes
via pattern recognition receptors (PRRs) activating downstream
innate immune pathways aiming to eliminate infections (77, 78).
A key PRR group is the Toll‐like receptors (TLRs) family each
member of which recognizes a different type of conserved
pathogen-associated molecular patterns (PAMPs), such as
TLR2 that senses cell wall molecules of gram-positive bacteria
lipoteichoic acid and TLR3 and TLR9 that sense double stranded
RNA and microbial DNA, respectively reviewed in refs. (79–
88). Recognition of PAMPs by PRRs induces proinflammatory
responses and activation of host defense mechanisms (79–88).
The interaction of TLRs with their agonists induces in addition
to proinflammatory cytokine and chemokine responses, the
expression of MHC Class II and costimulatory molecules on
antigen presenting cells (APCs), thus enabling these cells to
effectively activate antigen-specific T cells to specifically attack
invading pathogenic microbes (79–88). In addition to sentinel
cells, innate immunity also has a humoral arm comprised of
pattern recognition molecules (PRMs), such as lectin, ficolins,
pentraxins, and the complement component C1q (89, 90).

Role of Inflammation in KRV-Induced T1D
Infection with KRV induces a global innate immune
upregulation detected in various lymphoid organs, such as the
spleen, pancreatic lymph nodes, Peyer’s patches and thymus
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involving the induction of numerous proinflammatory
cytokines, including IL-1ß, IFN-g, and IL-12 3-5 days after
infection, prior to insulitis and diabetes (30, 34, 35, 66). The
rats develop humoral and cellular anti-KRV responses and clear
the virus (91). We proposed that KRV-induced inflammation is
associated with mechanisms of disease development (30, 36–43).
We were the first to implicate TLR signaling in T1D progression
(40, 41). We demonstrated that innate immune activation with
ligands of TLRs synergizes with KRV infection on T1D
development (41). Furthermore, we observed that the highly
homologous H-1 parvovirus does not activate the innate
immune system and fails to induce diabetes development in
the BBDR rat (41). Our in vivo studies have shown that blocking
IL-1 signaling with IL-1RA (39), or suppressing inflammation
with a number of immunomodulatory agents, such as steroids
(69), histone deacetylase inhibitor (38), antibiotics (30), or short
chain fatty acids (92) prevents diabetes. Our hypothesis on the
role of innate immunity in T1D is further supported by earlier
data implicating TLR9 pathways in KRV-induced T1D
mechanisms (40). We demonstrated that in vitro KRV-induced
innate immunity is blocked by inhibitors of TLR9 and blockers of
PKR and NF-kB (40). Finally, pharmacological suppression of
TLR9 in vivo prevents T1D (40).

COVID-19 and T1D
Given that COVID-19 induces robust inflammation in infected
individuals, it has recently been hypothesized that this virus
could potentially drive T1D via mechanisms associated in part
with immune upregulation (93, 94). The data on the ability of
COVID-19 to induce autoimmunity are mixed and clear
evidence that COVID-19 activates anti-b–cell autoimmunity is
not yet available (94–103). Moreover, the observations
implicating COVID-19 in T1D development are based
primarily on anecdotal data (95–101). Because hyperglycemia
is only the end stage of the anti-islet autoimmune process that
may start many years prior to disease onset (104–106), long-term
follow up epidemiological studies will be required to determine
whether COVID-19 infection increases the risk for T1D
development in genetically-susceptible individuals.
KRV-INDUCED INFLAMMATION IN
VISCERAL ADIPOSE TISSUE (VAT)

In the course of our studies on the role of inflammation in virus-
induced T1D, we observed that infection of LEW1.WR1 rats with
KRV leads to inflammation in VAT detectable as early as day 1
post-infection, long before b-cell inflammation and
hyperglycemia. This inflammation is characterized by an influx
of CD68+ macrophages into VAT seen in the interstitial space
surrounding adipocytes in KRV-infected animals but not control
rats injected with PBS. In sharp contrast to VAT, subcutaneous
adipose tissue (SAT) was observed to be free of cell infiltration
(44). Activation of innate immunity with Poly (I:C) in the
absence of virus also induces VAT inflammation. Because i.p.
injection of KRV induces inflammation in proximal and distal
organs, and since Poly (I:C) itself, in the absence of virus, can
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induce VAT inflammation, it is unlikely that the route of virus
inoculation or site of infection play a critical role in triggering
VAT inflammation. Unlike VAT, the exocrine tissue and islets
from day 5-infected rats are insulitis-free, whereas ß-cells from
day-14-infected animals are inflamed or show signs of tissue
destruction (44). KRV induces the expression of virus transcripts
and proinflammatory cytokines such as IL-1ß, IL-6, and IL-
12p40 and chemokines in VAT in vivo and in purified adipocytes
in vitro (44). Furthermore, KRV induces ER and oxidative stress
response and activation of apoptotic pathways in infected VAT
in vivo (44). KRV also downregulated the expression
of adipokines and genes associated with mediating insulin
signaling in VAT (44). Brief therapy with dexamethasone early
in the disease course (days 1-5) prevents VAT inflammation and
T1D. Based on these data, we hypothesized that VAT
inflammation and dysfunction may be linked with early
mechanisms of virus-induced disease development.
ROLE OF ADIPOSE TISSUE IN GLUCOSE
METABOLISM AND IMMUNITY

There are several types of adipose tissue, i.e. white adipose tissue
(WAT), brown adipose tissue (BAT) and beige adipose tissue
(107). WAT is the most abundant fat accounting for 5% to 50%
of human body weight (107). It plays a key role in metabolic
homeostasis by storing fat for long-term survival and by
functioning as an endocrine organ (107–109). WAT is a main
source of many adipokines, peptides or proteins with hormone-
like properties that regulate metabolic homeostasis through local
paracrine effects and endocrine effects (107–109). The metabolic
characteristics of WAT is determined by its location in the body,
commonly classified into subcutaneous fat and visceral fat depots
(107–109). Adipose tissue can release and respond to cytokines
and may therefore exert immune modulatory functions on non-
adipose tissues (107). The discovery of leptin and adiponectin
was the first indication that adipose tissue is an endocrine organ
with the ability to regulate systemic energy homeostasis and
glucose metabolism as well as mediate immunity. The metabolic
effects of leptin and adiponectin on target tissues were observed
to be robust (110).

Why KRV induces inflammation in VAT and not SAT is
unclear. It may be that this is the result of differences in the
function of VAT versus SAT. SAT is less active metabolically
than VAT (111). It has been shown that adipocytes of VAT
undergo more lipolysis than SAT and therefore contribute larger
amounts of fatty acids to the circulation (111–113). On the other
hand, SAT is considered to have a better capability of storing
fatty acids, implying that it could store energy in periods of
excess nutrition and supply fatty acids in periods of
starvation (111).

Leptin has been suggested to play a key role in T2D
development (reviewed in ref. 104). The long form of the
leptin receptor (ObRb) capable of intracellular signaling is
expressed in ß-cells, and exogenous leptin inhibits insulin
Frontiers in Immunology | www.frontiersin.org 4
production and secretion from human islets implying a direct
action of leptin on b-cell function (105, 106, 114–118).
Furthermore, mice deficient of leptin have increased appetite,
weight gain, insulin resistance and diabetes, conditions that can
be improved with leptin therapy (104, 119–124). In addition to
its role in controlling energy balance, leptin can also influence
immune functions reviewed in ref. (119). Indeed, macrophages
express the leptin receptor (119) and leptin can increase the
proliferation of monocytes and induce the expression of
inflammatory cytokines such as TNF-a and IL-6 and other
surface activation molecules (125).

Adiponectin has been shown to have beneficial effects on
insulin sensitivity (110, 126) and b-cell regeneration in mice with
STZ-induced diabetes (127). Adiponectin has also been
demonstrated to protect ß-cells from the detrimental effects of
free fatty acids (128) via as yet unidentified mechanisms (118).
Adiponectin is an endogenous insulin sensitizer in the skeletal
muscle and liver, and administering mice with adiponectin results
in lower blood glucose levels and the reversal of insulin resistance
in mouse models of obesity (119). The receptor for adiponectin is
expressed in macrophages, and adiponectin can suppress the
production of TNF-a and IL-6 and induce the production of the
anti-inflammatory mediators IL-10 and IL-1 receptor antagonist
(119). Mice deficient in adiponectin have increased numbers of
activated M1 macrophages in their adipose tissue with increased
production of TNF-a, IL-6, and MCP-1 (119).
CROSSTALK BETWEEN INNATE
IMMUNITY AND GLUCOSE METABOLISM

The hypothesis that there is interplay between the innate
immune system and glucose metabolism emerged after it was
observed that administering low doses of lipopolysaccharide
(LPS) leads to hyperglycemia mediated primarily by IL-1
pathways (129). Innate immune mediators such as IL-1 may
play a beneficial role in maintain a normal glucose homeostasis
by inducing insulin secretion and biosynthesis and b-cell
proliferation reviewed in ref. (130).

In obesity, increased fat mass can result in adipocyte
hypertrophy, hypoxia, death and ER stress response reviewed
in refs. (119, 130). The adipose tissue death and dysfunction lead
to the induction of chronic inflammation associated with the
expression of proinflammatory cytokines such as IL-1, IL-6 and
TNF-a and chemokines such as MCP-1 in adipocytes. MCP-1
and other chemokines released by adipocytes and immune cells
in fat tissue further promote infiltration of monocytes and other
immune cells into adipose tissue (130–132). Macrophages are the
most abundant innate immune cells infiltrating and
accumulating into adipose tissue of obese individuals (133).

Chronic inflammation in adipose tissue is believed to play a
key role in the development of insulin resistance that is a
hallmark of T2D in obese individuals reviewed in ref. (133).
Insulin resistance may culminate in aberrant glucose uptake and
glycogen synthesis (134). Consequently, ß-cells attempt to
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compensate for insulin resistance by increasing insulin secretion
to restore normal glucose homeostasis (134). A further decline in
insulin sensitivity makes the ß-cells exhausted, leading to
hyperglycemia and T2D (135).
VAT INFLAMMATION AND DYSFUNCTION
IN KRV-INDUCED T1D VERSUS T2D

The underlying mechanisms and pathways critically involved in
KRV-induced inflammation and T1D remain to be identified.
The data from our laboratory implicating VAT inflammation
and dysfunction in T1D development are highly reminiscent of
observations from obesity and T2D in which VAT inflammation
and dysfunction have been hypothesized to play a causal role in
mechanisms that result in islet damage and diabetes progression
(136–143). Although the level of the proinflammatory response
detected in VAT from infected LEW1.WR1 rats is substantially
greater than that typically seen in adipose tissue from T2D (44,
136, 137, 141, 142, 144–155), one cannot ignore the remarkable
commonalities between inflammation observed in KRV-induced
T1D versus T2D. Most notably, in both conditions, VAT is
targeted by the innate immune system. Moreover, VAT
inflammation in both disorders is linked with 1) macrophage
infiltration into VAT, 2) expression of proinflammatory
cytokines such as IL-1, IL-6 and TNF-a and as well as
chemokines such as CCL2, CCL5, and CXCL-10, 3) oxidative
stress response, 4) apoptosis, 5) adipocyte death, and 6) tissue
dysfunction (136, 137, 141, 142, 144–155).
Frontiers in Immunology | www.frontiersin.org 5
ROLE OF VAT INFLAMMATION AND
DYSFUNCTION IN VIRUS-INDUCED T1D

Whether and how VAT inflammation and dysfunction play a role
in KRV-induced T1D mechanisms remain to be further
elucidated. We propose a model that may explain how VAT
inflammation and dysfunction lead to T1D (see model in
Figure 1). We hypothesize that infection with KRV results in
VAT infection and TLR-induced macrophage activation and
infiltration into VAT. Inflammation in VAT associated with a
robust proinflammatory cytokine response may lead to adipose
tissue hypoxia, ER and oxidative stress responses and apoptosis
and consequently aberrant adipokine expression (118, 119, 133,
156, 157). In Obesity, free fatty acids, and lipid intermediates
synergistically induce adverse effects on both b-cell mass and
function contributing to the progressive loss of functional b-cell
mass reviewed in ref. (118). Likewise, circulating factors such as
cytokines released from inflamed tissues such as adipose tissue
and activated innate immune cells can adversely affect ß-cells by
impairing their functions and limiting cell mass (118). In a similar
manner, KRV-induced excessive lipolysis resulting from
adipocyte death can result in excess of free fatty acids in the
circulation, which can induce lipotoxicity. KRV-induced
proinflammatory cytokines such as IL-1ß can enter the
circulation and from there to the pancreas where it may exert
toxic effects on islets, potentially leading to metabolic and cellular
stress in ß-cells (136, 158). Furthermore, a rise in glucose levels
in the microenvironment of ß-cells can activate the
inflammasome in pancreatic ß-cells, further increasing the
FIGURE 1 | A schematic representation of the hypothesized role of KRV-induced VAT inflammation and dysfunction in the mechanism of KRV-induced T1D.
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expression of IL-1ß (136, 158). Consequently, IL-1ß released
from ß-cells may trigger the recruitment and activation of
innate immune cells, which may then release more IL-1ß. IL-
1ß in the islet microenvironment can exacerbate ß-cell
dysfunction, and trigger apoptosis in ß-cells (30, 36, 40, 136,
158). Finally, islet impairment and damage may ultimately
signal innate and adaptive immunity to attack and destroy ß–
cells leading to permanent hyperglycemia (159–162).
CONCLUSIONS AND FUTURE
PERSPECTIVES

Earlier data demonstrated that the mechanism of KRV-induced
T1D is associated with innate immune activation early in the
disease course. We recently reported that infection with KRV
results in VAT inflammation and dysfunction detected soon
after infection. There are marked similarities between
inflammation detected in VAT from infected LEW1.WR1
rats and inflammation detected in VAT from T2D patients.
Frontiers in Immunology | www.frontiersin.org 6
Whether as found in T2D, a cause-and-effect relationship exists
between VAT inflammation and islet autoimmunity remains to
be determined. As discussed in this Review, there is crosstalk
between the innate immune system and glucose metabolism. We
propose a paradigm by which virus-induced global innate
immunity resulting in proinflammatory cytokine and
chemokine upregulation and aberrant adipokine profile and
lipolysis in VAT lead to metabolic stress and b–cells
inflammation and destruction. Future studies will identify the
interplay between the innate immune system and metabolic
pathways and its role in triggering virus-induced disease.
Identification of critical metabolic and immune pathways
linked with b–cell autoimmunity will open new avenues for
the development of targeted therapies for disease amelioration.
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