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Abstract: Early detecting the presence of neurodevelopmental disorders plays an important role in
the effectiveness of the treatment. In this paper, we present a novel tool to extract motion features
using single camera video recordings of infants. The Movidea software was developed to allow the
operator to track the movement of end-effectors of infants in free moving conditions and extract
movement features automatically. Movidea was used by different operators to analyze a set of video
recordings and its performance was evaluated. The results showed that Movidea performance did
not vary with the operator, and the tracking was also stable in home-video recordings. Even if the
setup allowed for a two-dimensional analysis, most of the informative content of the movement was
maintained. The reliability of the measures and features extracted, as well as the easiness of use,
may boost the uptake of the proposed solution in clinical settings. Movidea overcomes the current
limitation in the clinical practice in early detection of neurodevelopmental disorders by providing
objective measures based on reliable data, and adds a new tool for the motor analysis of infants
through unobtrusive technology.
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1. Introduction

Early detection of neurodevelopmental disorders is of paramount importance. Indeed, providing
timely interventions during infancy maximizes the outcomes of the long-term prognosis of affected
children, capitalizing on the high neuroplasticity characterizing this period of life [1].

Motor skills shown during infancy have been found to be predictors of cognitive impairments
arising in later developmental stages [2,3], thus indicating motor assessment as a valuable tool to early
detect signs of neurodevelopmental disorders in infants.

Currently, in clinical practice, several tests are used to evaluate the motor performances of children
at different ages. Nonetheless, such approaches suffer from major shortcomings. Some tests require the
children to perform specific actions or to interact with objects [4,5], thus limiting their application to
infants. Other tests rely on the subjective observation and rating of parents [6]. However, it should be
noted that tests adopted depend on the subjective evaluation, rating, and experience of the examiner.

Another technique allowing the early detection of neuromotor diseases of infants is the Prechtl
method of general movements (GMs) assessment [7]. GMs consist of complex movements in which
all parts of the body participate. Typical general movements are characterized by complexity and
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variation, whereas atypical general movements exhibit a limited repertoire of movement variants [8].
There is wide consensus that GMs are expression of the young developing brain, and their quality
is an index of the integrity of the developing cortical network [8]. Their assessment according to
Pretchl’s method has been proven to predict cerebral palsy with a sensitivity greater than 91% and
a specificity greater than 81% [9]. Moreover, GMs quality has also been associated with cognitive
impairment, attention-deficit-hyperactivity disorder, and minor neurological dysfunction [10,11].

This method involves the qualitative evaluation by an expert observer of the features characterizing
spontaneous general movements, recorded while the infant is in an awake calm state, lying in
the supine position [12]. Even if GMs assessment is one of the most reliable methodologies for
neurodevelopmental disorders detection, the need for a trained expert observer and the subjective and
qualitative nature of the GMs assessment reduce the widespread and applicability of this assessment
in daily clinical practice [13,14].

Technology-based automatic analysis of motor performances may represent a solution for
providing low-cost objective evaluations. With this goal, different approaches have been proposed to
track, quantify, and analyze the motor behavior in infants.

Wearable sensors such as accelerometers [15] and electromagnetic tracking systems [16] have been
used to estimate the motion of the infants’ limbs. These systems result in being too cumbersome to be
applied to infants and require accurate calibration and positioning procedures.

Optical motion capture systems have also been proposed [17] to perform movement analysis
of children’s limbs. In [17], an optoelectronic system (6 cameras, 18 markers) was used to describe
the movement of the infants. A set of metrics was computed on the basis of the extracted kinematic
data, and the findings showed these metrics as being able to identify infants with spasticity correctly.
Even if this approach ensures an accurate motion tracking and measurement, it requires devoted
high-cost equipment and a time-consuming preparation process, making it not applicable outside of
dedicated labs.

In [18], the kinematics of hand movements in infants was studied using video analysis to identify
markers of neurodevelopmental disorders. Although the results showed that kinematics in infants with
neurodevelopmental disorders present characteristics identifiable through video movement analysis
of upper limbs, the applicability of the method was limited by the setup used. Two video cameras
were needed to monitor a single limb, and a visual marker (i.e., wristband) was applied to the infants’
wrist for analysis, affecting the conditions of the recorded infants.

Another approach is presented in [19], where a 3D camera was used to capture RGB and depth
information from infants lying on their back, and an anatomical model was used to fit the data and
reconstruct the movement. The study showed the applicability of this approach to GMs analysis, but its
actual usage requires very high computational power, the storage of a large amount of data, and the
manual intervention of a technical expert. These limitations limit the transferability of this approach to
everyday clinical practice. A review of the currently available technology used to perform movement
analysis in newborns for assessing GMs investigated the automatic analysis of video recordings [20].
The potential of this technique relies on the high availability of commercial video cameras and in the
large amount of information recorded.

In the present study, we introduce a novel software (Movidea) that is based on semi-automatic
video-based analysis of infants’ motor performance. Movidea involves the tracking of infants’ limbs
using video recordings acquired by a single camera and the extraction of features for the description
and evaluation of infants’ motion during free movement conditions.

2. Materials and Methods

2.1. Video Database of the NIDA Network

The Italian Network for early Detection of Autism spectrum disorder (ASD) (NIDA network) is the
largest Italian cohort of infants at risk for AS. The NIDA network enrolls high risk infants (i.e., siblings
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of children with a diagnosis of ASD, preterm newborns, and small for gestational age newborns) and
low risk infants (i.e., siblings of typically developing children) after delivery with the aim of recording
and assessing infant crying and spontaneous movements at 10 days, and 6, 12, 18, and 24 weeks of age.
In addition, a comprehensive clinical evaluation of the infants/toddlers was performed at 6, 12, 18, 24,
and 36 months. The study was carried out according to the standards for good ethical practice and the
guidelines of the Declaration of Helsinki. The study protocol was approved by the Ethics Committee
of the Istituto Superiore di Sanità (Approval Number: Pre 469/2016). Written informed consent from
a parent/guardian of each participant was obtained.

The video recording of the infant’s movements was generally performed at home while the child
was lying on a bed, upon a green blanket provided by the NIDA network. The camera was placed 50
cm above the child, at chest height. The recording took place for at least 5 min with the aim of acquiring
images of spontaneous movement of the full body of the child. To be analyzed with Movidea, each
video recording was edited offline. A preliminary analysis of the videos showed that the high-quality
video of all segments (i.e., without external interferences) did not exceed 3 min. Thus, we decided
to save a 3 min video segment that represented the shorter high-quality frame for each recording.
One author cut each video to ensure the same properties: 3 min length, infant in supine position, in a
condition of well-being and spontaneous motor activity, without crying episodes. If videos showed
more than 3 min of high quality frame, we decided to analyze the first high quality 3 min. Videoframes
containing interferences by the operator and parents, as well as accidental movements of the camera,
were excluded from the analysis.

For this study, 300 videos from the NIDA database were analyzed. A total of 90 infants were
video recorded (mean gestational age at birth = 39.05 ± 1.35 weeks, mean body weight at birth
3300.98 ± 383.78 g, mean body length at birth = 50.27 ± 1.76 cm). Infant risk status, sex, and age at
recording are reported in Table 1.

Table 1. Characteristics of infants video-recorded using a 2D camera.

Subjects Age of Recording

Risk Sex 10 days 6 weeks 12 weeks 18 weeks 24 weeks
n n n n n

Low risk
M 14 23 22 20 18
F 8 15 16 9 11

High risk M 13 14 16 16 13
F 13 14 16 16 13

Infant risk status, sex, and age at recording using a 3D camera are reported in Table 2.

Table 2. Characteristics of infants video-recorded using a 3D camera.

Subject Risk Sex Age of Recording

1 Low risk F 12 weeks
1 Low risk F 18 weeks
1 Low risk F 24 weeks
2 Low risk M 12 weeks
2 Low risk M 24 weeks

2.2. Movidea Software

Movidea develops upon the arising need to identify early markers of neurodevelopmental
disorders in infants, obtained through objective measures taken outside the clinical settings. In order
to respond to this need, the software was designed to extract kinematic features of limbs from
single-camera video recordings acquired in free movement conditions. The features were computed
using two different approaches. On one hand, the trajectories covered by the infant’s limbs during
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the free movement were extracted using a semi-automatic limbs’ tacking procedure. On the other
hand, movement quantification was performed through image processing techniques applied to
the video frames. The software was developed using MATLAB ver. R2017a and its standard tools.
The Movidea software was implemented for and is owned by the Italian research governmental
institution, Istituto Superiore di Sanità, and by the Ministry of Health that funded the NIDA Network
project. The software was implemented exclusively for research purposes.

The overall workflow of the software is reported in Figure 1.
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Figure 1. Movidea workflow.

The software was designed to allow the operators to go easily through the complete software
workflow. A Graphical User Interface was developed to guide the software operator through each
step. The operators were equipped with a user manual describing the software and all the interaction
modalities, but no specific training was provided by technical experts. This aspect highlights the
general usability of the software and easiness of operation deriving from the proposed approach.

2.3. Movement Tracking

The absolute distance could not be measured using one camera setup, and thus the 2D tracked
trajectories needed to be measured in pixels. Indeed, the relation between the pixel and the actual
distance measure depended on several factors such as camera resolution and camera–subject distance,
making this relation not constant outside the single video framework. Thus, using the pixel as the
measurement unit did not allow for the comparison of the data among different videos.

To overcome this issue, the measure, in pixels, of the head length was used to normalize the data
as anthropometric-related information suitable for allowing comparisons along time and subjects.
The selection of the head length measure was the first step required by the software before proceeding
with the tracking, and it was performed by manually setting the starting and the ending point of the
line connecting the forehead and the chin of the infant in a video frame where both the points were
clearly visible (Figure 2).
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Figure 2. Head length line drawing. The red line connecting the forehead to the chin represents the
head length measure taken by the operator.

Besides the head length, the operator was requested to select the central line of infant’s body
(symmetry line) as the perpendicular line running down the surface of the body passing from the
midpoint of the clavicle-line to the midpoint of inferior margin of the pelvis (Figure 3). This operation
allowed the operator to compute the body orientation in the image frame and, therefore, to represent
the trajectories with standard orientation and to perform a final visual check of the data quality.
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Once the reference measures were taken, the limbs tracking can be performed. For each
limb, the tracking required the operator first to identify the limb by selecting the central point of
the end effector (i.e., hand, foot). The selected point was then tracked frame by frame using the
Kanade–Lucas–Tomasi (KLT) algorithm [21]. To reduce the computational load and false positives,
the algorithm was configured to search for the matching point in a squared area with a side size
equal to 25% of the head length, centered in the coordinates of the point identified in the previous
frame. In case the algorithm failed to locate the point in a frame, the operator could manually re-set
the point to be tracked. If the tracked end effector was not visible in the frame (e.g., hidden by other
body segments), the operator could skip the frame, avoiding producing invalid data.

The result of the tracking process for each limb was a N × 2 matrix containing the coordinates of
the end effector’s reference point in the image for each of the N frames of the video (Figure 4).
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The trajectories were then normalized by the head length, and a linear interpolation was applied
to compensate the missing values corresponding to the skipped frames. Indeed, if a limb was not
tracked for a long time period, the interpolation may produce an artificial trend in the data and may
compromise the informative content. For this reason, the data were not interpolated in case the limb
presented more than five consecutive missing values. As the sampling rate of the analyzed videos was
12.5 Hz, the maximum time interval for the interpolation of missing data was equal to 400 ms.

The preprocessed trajectories were used for the computation of a set of movement features
meaningful for the identification of pathological motion patterns [17]:

Velocity and Acceleration—The velocity was computed for each limb as the Euclidian distance of the
reference point’s location between two subsequent frames. The fast oscillations of the velocity profiles
were then canceled through a third order low-pass Butterworth filter, with a cut-off frequency equal
to the 95% of the Nyquist frequency. The acceleration of each limb was computed as the difference
between two subsequent velocity samples. The mean velocity and mean acceleration of each limb
was computed.

Cross-correlation (CC)—The zero-lag cross correlation between the velocity of each pair of limbs
was computed as reported in [14], using the following equation:

CCv1v2 =
σv1v2√
σ2

v1 ∗ σ
2
v2

(1)

where CCv1v2 is the cross-correlation between the velocity v1 and the velocity v2, σv1v2 is the covariance
of v1 and v2, σ2

v1 is the variance of v1, and σ2
v2 is the variance of v2.

CC is a measure of the synchronicity of the movements of the limbs, and it is a suitable marker of
neurodevelopmental disorders in infants [17].

Area differing from moving average (Ama)—For both the x and y components of the trajectory of each
limb, the moving average was computed over the whole recording by using a window with a size of
30 samples according to the following equation:

xi =
1
k

i+ k
2∑

j=i− k
2

x j (2)

where xi is the moving average computed at the i-th frame, k is the window’s size, and x is the point
position in the j-th frame.
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The window size was chosen to average over 2 s, as reported in [17]. For each sample of the
trajectory, the difference between the trajectory and the moving average was computed according to
the following equation:

Amax =

l− k
2∑

i= k
2

∣∣∣xi − xi
∣∣∣ (3)

where Amax is the area differing from the moving average of the x component and l is the total number
of frames of the recording.

Moreover, the total Ama was calculated for the lower and the upper limbs as the sum of the
area differing from the moving average of the two components of the two hands and the two feet,
respectively. The Ama represents an index of the smoothness of the movements and it is a marker of
neurodevelopmental disorders in infants [17].

Periodicity (P)—Periodicity is a parameter defined in [17] aimed at measuring the presence of
repetitive movements in the motion of the limbs. To compute the periodicity, the recording was
split into windows of 500 samples. In [17], the size of the window corresponded to one third of the
total recording duration. To keep the computation coherent independently from the video length,
the window’s size was chosen to guarantee the same time span of 40 s used in [17]. For both the
components of the movement of each limb, the mean of the trajectory was computed over each window,
and the intersections of the trajectory with the mean were detected. The mean distance d and the
standard deviation σd between consecutive intersections were computed. Finally, the periodicity P
was computed by combining the parameters mentioned above, according to the following equation:

P =
1

d + σd
(4)

2.4. Image Processing

The image processing approach leverages on the movement quantification from the changes
occurring in the image from one frame to the next one. To this goal, the first step of the processing was
the creation of motion images where only the pixels changed in one frame with respect to the previous
one due to the infant’s movement were represented. In motion images, each pixel can assume only
a value of 1 or 0, 1 (white) representing the occurrence of movement, and 0 (black) representing the
absence of movement.

To obtain the motion images, the image of each frame was converted to black and white, and the
difference with the black and white image of the previous frame was computed, resulting in a new
image representing the changes occurring between the two frames. In order to account only for the
changes related to the infant’s movement, a 2D median filter was applied to 5 × 5 pixel areas to remove
salt and pepper noise. The pixels overcoming a predefined threshold were then set to 1, and all the
other pixels were set to 0. The threshold was chosen as the optimal value for reducing the noise
due to change in the light conditions and presence of blurry images, avoiding at the same time the
suppression of actual movements of the limbs. For removing the residual noise present on the images,
a convolutional filter with a 3 × 3 equally weighted kernel was finally applied.

The motion images were used to compute several features related to the pathological
conditions [22]:

Quantity of motion (Q)—is the number of pixels where the movement has occurred, divided by the
total number of pixels in the image. The mean (Qmean), the standard deviation (Qsd), and the maximum
value (Qmax) are computed [22].

Centroid of motion (C)—is a parameter representing the central point of the infant’s movement
in a given motion image. C is computed as the centroid of the cluster resulting from the application
of a one-cluster k-means to the movement pixels of each motion image. The mean values Cxmean
and Cymean of C in x and y directions are computed over the recording together with the standard
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deviations Cxsd and Cysd [14]. The mean and the standard deviation of the velocity (Vmean, Vsd) and
the acceleration (Amean, Asd) of the centroid are also computed.

2.5. Software Validation

In order to verify the independence of measures extracted from the operator, a subset of 10 videos
was analyzed through Movidea by two independent users, sharing the same instructions on how to
operate the software.

The trajectories obtained by the scoring were compared between the two operators by computing
the zero-lag correlation coefficient. Indeed, this approach allowed for a trend comparison rather than
a comparison of the absolute position of the tracked point, which did not affect the final measures.

In addition, the consistency of the features extracted by the two operators was tested. To this
scope, the intraclass correlation coefficient (ICC) [23] was computed using a two-way random single
measure absolute agreement model [24]. The ICC was computed only for the features extracted from
the trajectories, as the image processing features were automatically extracted and were independent
of the operator intervention.

The tracking failure rate was computed as the percentage of the number of times the operator
had to manually re-set the tracking point, with respect to the total number of frames. This score was
computed on a sample of 300 analyzed video segments.

Another important issue to be verified involving assessing the methodology that was implemented
in Movidea was the dimensionality of the information. The single camera setup resulted in a reduction
of the three-dimensional motion of the limbs to a bidimensional space implying a reduction of
information. Given these considerations, it is useful to quantify the information loss. For this purpose,
we recorded five infants’ videos using a 3D camera (RealSense D435, Intel, Santa Clara, CA, USA).
Through the 3D camera, the RGB video and the depth information were recorded. The depth and RGB
images were registered to obtain the 3D coordinates of the recorded points. The RGB videos were
analyzed using Movidea, and the tracked trajectories were mapped in the new 3D space. The features
previously described were computed on the 3D trajectories. The z-axis contribution was estimated
on the features computed on the single axes (i.e., Ama, nint, d, and P) as the percentage of the feature
computed on z with respect to the sum of the features computed on x, y, and z.

3. Results

Movidea was successfully used by non-technical operators to analyze over 300 video segments of
infants, without major issues reported and without the intervention of a technical expert.

The mean correlation coefficients were computed between the trajectories obtained by the two
operators for each video analyzed. The mean values of the correlation coefficients are reported
in Table 3.

Table 3. Trajectories’ correlation coefficients. For each axis of each limb, the mean ± SD of the
correlation coefficients computed between the trajectories obtained by the two operators in each
analyzed video is reported.

Limb Axis Correlation Coefficient

Right Hand x 0.991 ± 0.004
y 0.990 ± 0.005

Left Hand
x 0.992 ± 0.003
y 0.980 ± 0.035

Fight Foot x 0.989 ± 0.005
y 0.966 ± 0.037

Left Foot
x 0.973 ± 0.028
y 0.964 ± 0.034
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The results show that the tracked trajectories were highly correlated and, thus, the tracking
procedure was stable across different operators.

The ICC coefficients reported in Table 4 were higher than 0.75 for all the features,
indicating an excellent degree of agreement between the measures taken from the two operators [25].

Table 4. Intraclass correlation coefficients (ICCs) for the features extracted from the tracked trajectories.
The ICC coefficients were computed using the features extracted from a set of five videos analyzed by
two operators.

Feature ICC

Mean velocity 0.98
Mean acceleration 0.99

Area from moving average 0.97
Cross-correlation coefficient 0.96
Intersections mean distance 0.87

Total number of intersections 0.94
Periodicity 0.97

The results of the analysis of the third-dimension impact reported in Table 5 show that the
information loss due to the dimensionality reduction was 36.7% on average with a maximum of 53%,
highlighting that the two-dimensions features accounted for most of the informative content, but that
the analysis may have taken advantage of a three-dimensional data acquisition setup easily obtainable
thanks to the wide availability of mainstream commercial RGB and depth cameras, their encumbrance,
and costs.

Table 5. Contribution of z-axis to the total. For each feature, the mean ± SD contribution of the z-axis to
the feature value is reported.

Feature Name z Contribution (%)

Amarh Area from moving average right hand 36.7 ± 3.4
Amalh Area from moving average left hand 41.6 ± 5.5
Amarf Area from moving average right foot 37.9 ± 4.4
Amalf Area from moving average left foot 35.7 ± 1.4
drh Intersections mean distance right hand 16.8 ± 6.9
dlh Intersections mean distance left hand 11.3 ± 1.1
dr f Intersections mean distance right foot 16.5 ± 6.2
dlh Intersections mean distance left foot 18.0 ± 4.3

Tinrh Total number of intersections right hand 44.0 ± 10.0
Tinlh Total number of intersections left hand 53.9 ± 2.5
Tinr f Total number of intersections right foot 45.9 ± 10.8
Tinl f Total number of intersections left foot 43.4 ± 8.1
Prh Periodicity right hand 46.2 ± 10.1
Plh Periodicity left hand 52.4 ± 1.7
Pr f Periodicity right foot 49.1 ± 11.8
Pl f Periodicity left foot 47.2 ± 12.7

Finally, in Table 6, the mean percentage of the tracking failures with respect to the total number of
frames is reported for each end-effector.
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Table 6. Mean ± SD percentage of tracking failures. For each tracked limb, the percentage of frames in
which the operator reset the tracking point is reported.

End-Effector Failure (%)

Right hand 9.7 ± 6.7
Left hand 10.3 ± 6.7
Right foot 15.2 ± 9.3
Left foot 14.5 ± 9.2

4. Discussion

The goal of this paper was to evaluate if an automatic extraction of quantitative measures from
video recordings could describe motor behaviors of infants. To this aim, we developed and tested
a software implementing a semi-automatic analysis of movements in infants using single-camera
video recordings. The software computes a set of features chosen according to their reported relevance
in the literature and the occurrence of neurodevelopmental disorders. In particular, two different
classes of features for the description of movement in infants were investigated: features extracted
from the analysis of the trajectories of the limbs and features extracted from the analysis of movement
images. The first class of features included the set of variables that in [17] were shown to be correlated
with the occurrence of neurodevelopmental disorders. Such features relied on the extraction of
infants’ kinematics from the sequence of images recorded in the video, as well as on the computation
of parameters able to describe such kinematics. The second class of features implemented the
metrics identified as predictors of the occurrence of neurodevelopmental disorders in [14] and in [22].
Differently from the first class of features, these parameters did not rely on kinematic information but
take advantage of the changes in the sequence of images to infer information on the infant’s motion.

Movidea software is a valuable tool for several reasons. First, the performed analysis showed that
the implemented approach was user-independent, even if the operator had to interact with the software
in the data extraction phase. The tracked trajectories and the features extracted did no vary when
different users operated the analysis. This aspect is of paramount importance to assure the homogeneity
of the measures when multiple operators elaborate a large amount of data. Second, the low percentage
of failures in the tracking process showed that the tracking strategy implemented in Movidea well
fitted recordings in real-life settings, allowing wide spreading of the method. Third, the choice to use a
single camera approach highly enhances the usability of Movidea. Indeed, the use of unobtrusive and
off-the-shelf technology may boost the uptake of technological solutions to investigate early motor
development in populations at risk. The longitudinal assessment of motor functioning in populations
at risk for neurodevelopmental disorder is worth exploring further because it may be useful in detecting
social disorder or other developmental disorders [26–28]. By extracting meaningful information and
objective, reliable data through a light setup and an easy to use tool, Movidea overcomes the current
limitation, resulting in it being effectively applicable in multicentric and large population studies.

The results presented, nonetheless, showed that some information was lost due to the
dimensionality reduction. Even if this loss did not compromise the validity of the approach, the use of
3D information may have added value to the analysis. To this purpose, an alternative solution for the
data acquisition using a 3D camera combining RGB and depth information was proposed.

Overall, the results showed that Movidea is a reliable tool for the description of infants’ movements
from 2D video recordings. This is a promising approach that raises attention to the automatic
analysis of movement. Indeed, recent studies have proposed different tools for the analysis of video
recordings of infants. For example, in [27], an explorative methodology for the pose estimation of
joints of infants in video recordings was reported, whereas in [28], a platform was implemented for
performing video recordings of infants and for extracting the velocity and the acceleration of the
limbs. Nonetheless, these studies aimed at facilitating the visual inspection of the recordings for
the identification of GMs. Movidea takes a step forward, producing a large set of features, both from
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kinematics analysis and motion images, with the aim of moving from a qualitative visual analysis to
a quantitative analysis of infants’ movements.
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