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Abstract: In recent years, the inhibition of beta-amyloid (Aβ) aggregation has emerged as a poten-
tial strategy for Alzheimer’s disease. KLVFF, a small peptide corresponding to the aminoacidic
sequence 16-20 of Aβ, reduces Aβ fibrillation dose dependently. Therefore, the toxic and func-
tional characterization of its brain activity is fundamental for clarifying its potential therapeutic
role. Accordingly, we studied the modulatory role of KLVFF on the cholinergic receptors regulating
dopamine and noradrenaline release in rat synaptosomes. Nicotinic receptors on dopaminergic nerve
terminals in the nucleus acccumbens are inhibited by KLVFF, which closely resembles full-length
Aβ1-40. Moreover, KLVFF entrapped in synaptosomes does not modify the nicotinic receptor’s
function, suggesting that external binding to the receptor is required for its activity. The cholinergic
agent desformylflustrabromine counteracts the KLVFF effect. Remarkably, muscarinic receptors on
dopaminergic terminals and nicotinic receptors regulating noradrenaline release in the hippocampus
are completely insensitive to KLVFF. Based on our findings, KLVFF mimics Aβ1-40 as a negative
modulator of specific nicotinic receptor subtypes affecting dopamine transmission in the rat brain.
Therefore, new pharmacological strategies using the anti-aggregative properties of KLVFF need to be
evaluated for potential interference with nicotinic receptor-mediated transmission.

Keywords: KLVFF; β-amyloid; synaptosomes; Alzheimer’s disease; nicotinic receptors; muscarinic
receptors; dopamine release; noradrenaline release

1. Introduction

Alzheimer’s disease (AD) remains a sword of Damocles hanging over our heads. The
lack of significant improvements has blocked private investment in this area of the health
sector [1]. In recent decades, we have witnessed the devaluation and revaluation of the
main theories related to AD. The “amyloid hypothesis” is probably the most important
and it has characterized the last several decades of AD research [2]. To date, clinical trials
targeting beta-amyloid (Aβ) have largely failed their primary endpoints. In June 2021, the
Food and Drug Administration (FDA) approved Aducanumab, which revived the amyloid
cascade theory but left serious doubts [3,4]. This new drug is a monoclonal antibody
selective for aggregated forms of Aβ. The scientific community has been divided because
the supporting data are limited in terms of biomarker characterization and clinical efficacy.
However, preclinical studies repeatedly provide evidence for the validity of the Aβ cascade
in AD progression. Different reasons can explain the discrepancies between preclinical
and clinical results. Aβ exists in different forms and can interact with many targets in the
brain [2,5,6]. Therefore, it is difficult to counteract all the pathways involved. Moreover,
the protein has a hormetic profile that oscillates between physiological and pathological
effects that are not yet fully clarified [7]. Accordingly, the idea of blocking enzymatic
production has not produced convincing results [8]. The need to protect patients from
physiological effects has prompted researchers to investigate the reasons for pathological
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accumulation and aggregation [9,10]. It is known that aggregation is caused by multiple
triggers and is often induced by a partially unfolded protein, resulting in the formation of
an intramolecular interaction [11,12]. Given these studies, many researchers agree that one
of the promising therapeutic approaches is aimed at modulating Aβ aggregation [13,14].
A recent paper summarizes the potential therapeutics able to interfere with amyloid’s
aggregation [15]. The authors describe peptides as the most promising tools among metal
chelators, nanostructures, organic molecules, peptide mimics, and antibodies. The literature
consistently shows that a short peptide (KLVFF), derived from the cleavage of Aβ, can
interfere with amyloid aggregation [16–18]. Considering the possibility of using this
peptide therapeutically, we need to define the pharmacological and toxicological profile
and highlight the potential targets involved. The monomeric form of Aβ interferes with
different synaptic processes such as exocytosis, endocytosis, and trafficking. It is plausible
that some of these processes are sequence-selective and that therefore they can be mimicked
by specific fragments. Interestingly, we demonstrated in a previous publication that Aβ

modulated cholinergic receptors, both muscarinic and nicotinic subtypes, and bound
differently in or out active sites [19]. This modulation differently affects dopamine and
noradrenaline neurotransmission in rat brain, describing a part of the neurotransmitter
homeostasis affected by the full-length peptide [20–22]. Consequently, in the present work,
we decided to study the impact of KLVFF on synaptic integrity and cholinergic receptors
regulating neurotransmitter release in rat brain synaptosomes.

2. Materials and Methods
2.1. Animals and Brain Tissue Preparation

Adult male rats (Sprague–Dawley, 200–250 g) were housed at constant tempera-
ture (22 ± 1 ◦C) and relative humidity (50%) under a regular light–dark schedule (light
7.00 a.m.–7.00 p.m.). Food and water were freely available. The animals were sacrificed by
decapitation and the brain was quickly removed at 0–4 ◦C. Fresh tissue was prepared accord-
ing to atlassections between Bregma 0.7 and 2.2 mm for nucleus accumebens (NAc). The
experiments were approved by the Ethical Committee of the Pharmacology and Toxicology
Section, Department of Pharmacy, following the European legislation (2010/63/EU) and
were approved by Italian legislation on animal experimentation (Protocol No. 124/2003-A).
Every effort was made to minimize animal suffering and to use the minimum number of
animals necessary to obtain reliable results.

2.2. Preparation of Aβ Solutions

Synthetic human Aβ1-40 was dissolved in a CSF at a concentration of 100 M (stock
solution). Then, this solution was filtered through a Millipore membrane with 0.2 µm
pores and stored in small aliquots at −80 ◦C. Working solutions were freshly prepared
by diluting an aliquot of the Aβ1-40 stock solution to the final concentrations used for
in vitro analysis immediately prior to administration. Regarding the properties of the Aβ

peptides that we used in our study, we previously showed that under our experimental
conditions, the solutions of Aβ were mainly formed from Aβ monomers. However, we
could not completely rule out the presence of small amounts of Aβ oligomers, since the
aggregation is a concentration- and time-dependent process [23].

2.3. Release Experiments from Synaptosomes

Crude synaptosomes from rat NAc or hippocampus were prepared according to [24].
In release experiments, NAc synaptosomes were incubated for 20 min at 37 ◦C with [3H]
Dopamine ([3H] DA; final concentration 0.03 µM) in the presence of 6-nitroquipazine (final
concentration 0.1 µM), to avoid false labeling of serotonergic terminals and desipramine
(final concentration 0.1 µM) and mislabeling of noradrenergic terminals. In a series of
experiments, hippocampal synaptosomes were incubated with [3H] Noradrenaline ([3H]
NA; final concentration 0.03 µM) in the presence of 6-nitroquipazine. Identical portions of
the synaptosomal suspension were then layered onto microporous filters at the bottom of
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parallel superfusion chambers set at 37 ◦C [25,26]. Synaptosomes were superfused with
standard physiological medium at 0.5 mL/min. Starting from t = 36 min to t = 48 min of
superfusion, four consecutive 3 min fractions (b1–b4) were collected. Synaptosomes were
exposed to agonists or to depolarizing agent (4-aminopyridine) at t = 39 min, until the end of
superfusion, while other drugs (antagonists, peptides, antibody, allosteric modulators) were
added 8 min before agonists. To introduce a specific amount of KLVFF into synaptosomes,
we used an experimental approach previously used [27,28]. When indicated, rat NAc was
homogenized in buffered sucrose containing Aβ1-40 (2 µM, 200 nM, 20 nM, and 2 nM)
or 6E10 monoclonal antibody (1 mM) in order to entrap these agents into subsequently
isolated synaptosomes. Based on estimates made by entrapping of [3H] sucrose, the
intrasynaptosomal concentration of the compounds was approximately 5% of the original
concentration in the homogenization medium [27]. The collected samples and superfused
synaptosomes were then counted for radioactivity (fractional efflux). The agonist-induced
effect was expressed as % induced overflow and evaluated by subtracting the level of
neurotransmitter released in the four fractions collected under baseline conditions (no
added drug) from the level released in the presence of the stimulus.

2.4. Flow Cytometric Analysis (FACS)

Crude synaptosomes from rat hippocampus were prepared according to the proto-
col. Consequently, 100 µL aliquots were separated to label the synaptosomes. Viability
after 1 h incubation with KLVFF was assessed using a flow cytometer. Double staining
allowed differentiation of early apoptosis and viable neuronal particles. Annexin-V (Mil-
tenyi Biotec GmbH, Bergisch Gladbach, Germany; conjugate PE, order n◦ 130-118-363)
has a high specificity and affinity for phosphatidylserine (PS); binding of Annexin-V to
the membrane with exposed PS provides a highly sensitive method for detecting early
cellular apoptosis [29,30]. Moreover, the viability was described by Calcein-AM (Biotium,
Fremont, CA, USA; catalog n◦ 30026); this acetoxymethyl ester of calcein is a lipid-soluble
diester fluorogenic esterase substrate that passively crosses the cell membrane and that is
frequently used to stain viable cells. Within cells, it is converted by intracellular esterases
into a polar lipid-insoluble fluorescent product (calcein) that is retained by particles with
intact membranes but released from damaged neuronal buttons [31]. All assays were per-
formed by Guava® easyCyte™ Luminex Corporation Austin, TX, USA. Before incubation
with Annexin-V, the sample was resuspended in 95 µL Annexin-V Binding Buffer. The
synaptosome preparation was then enriched with 5 µL of Annexin-V conjugate, incubated
for 15 min in the dark at room temperature, and finally washed again with binding buffer.
Meanwhile, Calcein-AM working-solution was prepared, final concentration—2 µM (2 mM
Calcein-AM stock solution diluted in PBS). An amount of 40 µL of the working solution
was added to the sample and incubated at 37 ◦C for 30 min, then washed with MP. Some
samples were labeled with both Annexin-V and Calcein-AM, to describe the ratio between
apoptotic and non-apoptotic particles. In the latest phases of setting, Propidium iodide (PI)
(Miltenyi Biotec, order n◦ 130-093-233) was added as a membrane integrity marker. It is
excluded from viable vesicles but can penetrate membranes of dead or dying cells.

2.5. Statistical Analysis

Data are provided as mean ± SEM. Student’s t-test was applied to compare two
independent groups. ANOVA with Tukey’s post hoc test was performed to compare more
than two groups. For all tests, p < 0.05 was considered significant.

2.6. Chemicals

[7,8-3H] Dopamine (21.2 Ci/mmol (0.784 TBq/mmol)) and [1-7,8-3H] Noradrenaline
(12.1 Ci/mmol (0.448 TBq/mmol)) were purchased from Perkin Elmer, Monza, Italy.
Nicotine hydrogen tartrate salt was from Sigma (Sigma-Aldrich, St. Louis, MO, USA).
5-iodo-A-85380, α-conotoxin MII, oxotremorine, desformylflustrabromine hydrochloride,
beta-amyloid (1-40) were from Tocris (Tocris Bioscience, Bristol, UK). AnnexinV conjugate
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PE was from Miltenyi Biotec GmbH (order n◦ 130-118-363) and CalceinAM was from
Biotium (catalog n◦ 30026). KLVFF (segment Aβ16-20) and VFLKF peptide were purchased
from Aurogene s.r.l. (Rome, Italy)

3. Results
3.1. Flow Cytometry of Striatal Synaptosomes Exposed to KLVFF

The first step was to determine whether KLVFF causes damage to synaptosomes when
administered directly at the concentration used to verify its modulating effect on mem-
brane receptors. For this reason, we started cytofluorometric analysis of brain terminals
(Figure 1A,B) preloaded with Calcein and Annexin V (Figure 1C). According to data in the
literature [29,32,33], this experimental protocol can define viable and apoptotic particles.
Interestingly, the exposure of synaptosomes for 1 h to 100 nM KLVFF does not increase the
percentage of apoptotic signaling, describing the lack of apparent toxic effects (Figure 1D).
Under the same conditions, we documented the absence of apoptotic signs also in the
presence of scramble peptide VFLKF (Figure 1E). We had previously demonstrated that
amyloid could interfere with synaptic receptors also binding cytoplasmatic targets [19].
Therefore, we decided to enrich inside synaptosomes with KLVFF taking advantage of the
entrapping technique. Also in this configuration, KLVFF does not modify the viability of the
synaptosomes (Figure 1F). The same protocol was used in the hippocampus to investigate
different synapses. Figure S1 confirmed the absence of direct synaptotoxicity.
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Figure 1. Flow cytometric analysis of striatal synaptosomes exposed to in or out KLVFF, or scramble 
peptide (VFLKF). (A) Representative density plot of synaptosomal preparation. (B) Singolet distri-
bution of synaptosomal particles. (C) Calcein AM fluorescence versus Annexin V fluorescence for 
control synaptosomal particles. (D) Calcein AM fluorescence versus Annexin V fluorescence for 
KLVFF-treated synaptosomes (1 h). (E) Calcein AM fluorescence versus Annexin V fluorescence for 

Figure 1. Flow cytometric analysis of striatal synaptosomes exposed to in or out KLVFF, or scramble
peptide (VFLKF). (A) Representative density plot of synaptosomal preparation. (B) Singolet distri-
bution of synaptosomal particles. (C) Calcein AM fluorescence versus Annexin V fluorescence for
control synaptosomal particles. (D) Calcein AM fluorescence versus Annexin V fluorescence for
KLVFF-treated synaptosomes (1 h). (E) Calcein AM fluorescence versus Annexin V fluorescence for
VFLKF-treated synaptosomes (1 h). (F) Calcein AM fluorescence versus Annexin V fluorescence
for KLVFF-entrapped synaptosomes. The percentage of total particles is shown for each quadrant.
Particles positive for both markers are in the upper right quadrant.

3.2. KLVFF-Mimics Aβ1-40 in the Regulation of nAChRs Modulating Dopamine Release

Nicotinic receptors (nAChRs) regulating dopamine release in striatal synaptosomes
are sensitive to 5IA85380, a selective α4β2 and α6β2 agonist (Figure 2). As previously
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demonstrated, 100 nM Aβ1-40 reduces the evoked dopamine overflow when administered
to the nerve terminals during the perfusion phase [19]. Interestingly, the anti-aggregative
peptide KLVFF mimics the full-length peptide, suggesting that the aminoacidic sequence
16–20 is crucial for the modulation of nAChRs. Accordingly, Figure 3 shows that the time
courses of KLVFF and Aβ1-40 are almost overlapped. Consistent with the specificity of this
mechanism, we found that VFLKF, a scramble, is completely ineffective under the identical
experimental conditions.
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per group). *** p < 0.001 (compared to 5IA85380); ## p < 0.01 (compared to 5IA85380 plus KLVFF)
one-way ANOVA followed by Tukey’s post hoc test.
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presence or in the absence of amyloid peptides. The results represent the fractional release obtained
in the superfusion protocol. Data are mean ± SEM (n = 6 per group). * p < 0.05 ** p < 0.01 (compared
to MP) two-way ANOVA followed by Tukey’s post hoc test.
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3.3. Subtype-Selective Modulation of Nicotinic-Induced Dopamine Release

Since nAChRs inducing dopamine release can be distinguished into α-conotoxin MII
sensitive and insensitive ones [34,35], we decided to investigate the effect of KLVFF on
these different subtypes. Figure 4 shows that 5IA85380-induced overflow is significantly
counteracted by α-conotoxin MII administration. These results confirm the presence
of α6 containing nicotinic subtypes at the striatal nerve endings. Furthermore, the co-
administration of Aβ1-40 or KLVFF does not alter α-conotoxin MII inhibition, suggesting
that the peptides are also active in this subtype population.
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3.4. KLVFF Effects on nAChRs Modulating Noradrenaline Release from Hippocampal Nerve
Terminals

It is well known that noradrenergic terminals express α3β4 subtypes, a group of presy-
naptic receptors particularly distinct from those active on dopaminergic neurons [36]. The
specificity of amyloid regulation of nAChR function is confirmed examining norepinephrine
release from hippocampal synaptosomes. Figure 5 shows that the nicotine-evoked nora-
drenaline overflow is completely insensitive to both Aβ1-40 and KLVFF.
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3.5. Effects of Entrapped KLVFF on Nicotinic and Muscarinic Receptors

In a previous work [19], we demonstrated that Aβ1-40 antagonizes both nicotinic
and muscarinic receptors on dopaminergic terminals. In particular, using the entrapping
protocol, we found that Aβ must cross synaptosomes to regulate muscarinic receptors.
Otherwise, nicotinic receptors are insensitive to amyloid when treated with the entrapped
peptide, suggesting the presence of an external binding site in their structure. Accordingly,
entrapped KLVFF does not block nAChRs (Figure 6). Curiously, KLVFF is also inactive at
muscarinic receptors when introduced into the cytosol. This finding seems to indicate that
the amyloid active sequence on metabotropic cholinergic receptors is different from that
affecting nAChRs.
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3.6. Desformylflutrabromine Counteracts KLVFF on Dopaminergic nAChRs

The negative modulation of nAChRs by KLVFF requires a full characterization and
additional experiments are fundamental. Although, the possibility that KLVFF is a negative
allosteric modulator on α4β2 subtypes is supported by the results shown in Figure 7. In fact,
desformylflutrabromine (DFBr), a positive allosteric modulator of this nicotinic subtype,
completely antagonizes the activity of KLVFF.
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Figure 7. Effect of DFBr on the KLVFF modulation of 5IA85380-induced [3H] dopamine overflow
from striatal synaptosomes. Data are mean ± SEM (n = 9 per group). * p < 0.05, (compared to
5IA85380) one-way ANOVA followed by Tukey’s post hoc test.

4. Discussion

Alzheimer’s disease is a terrible pathology without meaningful care [37]. In addi-
tion, the drug research process has failed in recent years on this issue. As if that were
not enough, the last drug to be approved, Aducanumab, opens a great deal of debate
about its effectiveness and safety [3,4]. Overall, despite great effort, the steps taken are
not sufficient and any new therapeutic strategies are welcome. Accordingly, the pos-
sibility of intervening in the pathological aggregation of beta-amyloid is a compelling
opportunity [9,10,14,15,38,39]. Starting with this project, we need to keep in mind that
amyloid is an endogenous mediator in the healthy brain [7,40–42]. Strong evidence has
extensively demonstrated that amyloid is important in LTP and memory consolidation [43–45].
The second point is that amyloid appears to be a wide-spectrum modulator, interfering
with a plethora of targets [19,46–51]. Therefore, the ability to block only the derangement
of this protein could be relevant to the success of the amyloid-based strategy. Different
compounds can interfere with amyloid aggregation and, in particular, promising results
have been obtained using amyloid fragments [16–18].

The KLVFF-based prototypes have been extensively discussed in the literature [16–18].
The scientific community agrees on the anti-aggregative properties of this small frag-
ment [52–54]. At present, the possibility that the therapeutic use of this peptide will
exhibit unexpected effects and primary side effects remains a stealth zone. Intriguingly,
amyloid peptides, after integration with the membranes, promote the formation of calcium-
permeable channels [55]. The first hypothesis that we formulated describes the possibility
that KLVFF produces synaptotoxicity when administered to synaptosomes. Our cytoflu-
orimetric analysis of synaptosomes showed that an amyloid fragment did not cause loss
of viability when administered to the synaptosomes for 1 h. Supplementary results also
confirmed safety when administered to hippocampal nerve endings.

Second, we speculated that KLVFF might maintain amyloid’s ability to modulate
ionotropic or metabotropic receptors. Consistent with this hypothesis, our group gained
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good experience describing Aβ1-40 synaptic activities. A few years ago, using the en-
trapping technique during synaptosome formation, we demonstrated that amyloid has
a different site of action at dopaminergic synapses [19]. We confirmed that amyloid has
a specific affinity for the cholinergic targets. Nicotinic and muscarinic receptors, which
regulate the release of dopamine, are inhibited by this peptide. Synaptosomes are an
ideal model to study the functional interplay between amyloid and native targets [56].
Furthermore, by delivering the peptide directly into the cytoplasmic space, we found that
external binding is essential to modulate nicotinic receptors. Conversely, the intracellular
modulation of muscarinic receptors depends on an intracellular action of Aβ [6]. The
lack of biophase due to the continuous perfusion of synaptosomes during the functional
experiments ruled out the possibility that amyloid-peptides crossed the membrane to act
on the muscarinic external binding site. Then, we decided to probe KLVFF in the same
way to identify potential synaptic targets. The analysis revealed that KLVFF mimicked
the full-length peptide and reduced dopamine release induced by the nicotinic agonist
5IA85380. This is surprising since little is known about the active sequence of amyloid
on nicotinic receptors. This is true even though we have studied nicotinic receptors and
amyloid compounds for many years. Interestingly, Pym and collaborators found that
fragment 25–35 did not mimic all the effects of the full-length peptide on recombinant
nicotinic subtypes [57].

The possibility of non-specific modulation is excluded by the absence of an effect when
using the scrambled peptide. The time course of KLVFF closely resembles the modulation
that occurred when we studied Aβ1-40. Nicotinic receptors that modulate dopamine
release at the striatal level are ligand ion channels divided into different subtypes [36].
McIntosh revolutionized the characterization of these subtypes a few years ago by intro-
ducing the use of α-conotoxin MII [35]. This antagonist distinguishes two different groups
of nicotinic receptors based on the presence of the α6 subunit. According to the literature,
KLVFF mainly regulates α4-containing receptors. Furthermore, we can speculate that
KLVFF modulates nicotinic receptors in an allosteric-reversible manner since a Positive
Allosteric Modulator (PAM) such as DFBr is able to reverse the inhibition caused by the
fragment. Several endogenous ligands have been reported to have negative allosteric
influences on nAChRs such as anandamide, progesterone, neurosteroids, and proteins such
as Lynx-1 [58]. The selectivity of KLVFF modulation for specific nicotinic receptor subtypes
is confirmed by our data on hippocampal noradrenergic synaptosomes. Accordingly, α3β4
nicotinic receptors are expressed at these nerve terminals. KLVFF is ineffective on these
subtypes, confirming the lack of effects of the full-length protein. Accordingly, data in
the literature describe different allosteric modulators for α4β2 and α3β4 subtypes [58].
Hippocampal norepinephrine release may be a fundamental target in the memory impair-
ment that characterizes AD [59]. In addition, norepinephrine release is involved in the
inflammatory cascade that occurs in several neurodegenerative diseases [60,61]. Our data
indicate that nicotinic receptors at noradrenergic terminals in the hippocampus are not a
functional target for the monomeric peptides. Additional studies are needed to investigate
the role of noradrenergic transmission in AD and the effects of amyloid. Interestingly,
KLVFF entrapped in the cytoplasmic space of synaptosomes failed to modulate either
nicotinic or muscarinic receptors, which stimulated dopamine release. This is a funda-
mental step in describing the selectivity of amyloid at cholinergic receptors. In fact, we
have previously shown that Aβ1-40 modulates muscarinic receptors (probably M5) under
the same conditions. Figure 6 seems to indicate that the active sequence of amyloid on
muscarinic receptors may differ from that inhibiting nicotinic receptors. To the best of our
knowledge, this is the first time that functional data have suggested distinct active amyloid
domains affecting the cholinergic receptors. Obviously, this is an indication and further
experiments are essential to describe this feature.
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5. Conclusions

The KLVFF fragment possesses modulatory functions at nicotinic receptors located on
dopaminergic terminals. Furthermore, we highlighted the absence of direct synaptotoxicity
of this compound by describing the lack of apoptotic damage during a relatively prolonged
exposure of synaptosomes at nanomolar concentrations. This research is a first step towards
a deeper understanding of the potential interactions of this promising anti-aggregative
peptide to reduce side effects in AD patients.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines10092231/s1, Figure S1: Flow cytometric analysis
of hippocampal synaptosomes exposed to KLVFF.
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