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A B S T R A C T   

The new emerging COVID-19, declared a pandemic disease, has affected millions of human lives and caused a 
massive burden on healthcare centers. Therefore, a quick, accurate, and low-cost computer-based tool is required 
to timely detect and treat COVID-19 patients. In this work, two new deep learning frameworks: Deep Hybrid 
Learning (DHL) and Deep Boosted Hybrid Learning (DBHL), is proposed for effective COVID-19 detection in X- 
ray dataset. In the proposed DHL framework, the representation learning ability of the two developed COVID- 
RENet-1 & 2 models is exploited individually through a machine learning (ML) classifier. In COVID-RENet 
models, Region and Edge-based operations are carefully applied to learn region homogeneity and extract 
boundaries features. While in the case of the proposed DBHL framework, COVID-RENet-1 & 2 are fine-tuned 
using transfer learning on the chest X-rays. Furthermore, deep feature spaces are generated from the penulti
mate layers of the two models and then concatenated to get a single enriched boosted feature space. A con
ventional ML classifier exploits the enriched feature space to achieve better COVID-19 detection performance. 
The proposed COVID-19 detection frameworks are evaluated on radiologist’s authenticated chest X-ray data, and 
their performance is compared with the well-established CNNs. It is observed through experiments that the 
proposed DBHL framework, which merges the two-deep CNN feature spaces, yields good performance (accuracy: 
98.53%, sensitivity: 0.99, F-score: 0.98, and precision: 0.98). Furthermore, a web-based interface is developed, 
which takes only 5–10s to detect COVID-19 in each unseen chest X-ray image. This web-predictor is expected to 
help early diagnosis, save precious lives, and thus positively impact society.   

1. Introduction 

A pathogenic member of the coronavirus family, called severe acute 
respiratory syndrome coronavirus 2 (SAR-CoV-2), emerged in 2019, 
affected millions of people worldwide [1]. The disease caused by 
SAR-CoV-2 is known as COVID-19 and announced a pandemic by WHO 
[2]. The coronavirus family comprises a large number of viruses that 

causes mild respiratory illness to severe respiratory infections such as 
the Middle East respiratory syndrome [3]. 

COVID-19 is a highly infectious virus mainly affecting the respiratory 
system. The most common symptoms with COVID-19 are fever, cough 
and tiredness dyspnea. The disease may progress to involve the lower 
respiratory system, and here it causes severe inflammation in the lungs, 
causing pneumonia. Further progression to Acute respiratory distress 
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syndrome is not very uncommon in those affected with pneumonia 
leading to cytokines release syndrome, and consequently which lead 
to multi-organ failure and death [4,5]. COVID-19 spreads through 
respiratory droplets or aerosols secretion during cough, contact, etc., 
with the patient. Therefore, preventive measures, especially social 
distancing, wearing masks and quarantining the infected patient, have 
been suggested for the regulation of infection spread [6]. 

The detection of COVID-19 is determined through a laboratory 
approach that requires the suspected person to undergo a series of po
lymerase chain reaction (PCR) tests [7]. However, the former PCR based 
testing for COVID-19 screening is time-consuming and generates more 
false negatives [8,9]. Contrary to this, an advanced technological 
operation of radiographic imaging like X-rays is used as one of the 
quickest ways of detection [10]. COVID-19 infected patients are often 
screened through X-ray imaging to assess the infection spread in the 
lungs, patient management plan, and follow up [11]. 

The increased number of COVID-19 patients and its manual analysis 
of chest X-ray imaging have a significant burden on radiologists. 
Therefore, there is a need of developing an automatic system for the 
quick screening of COVID-19 infection and timely recovery [12]. Pre
viously, several deep learning-based COVID-19 detection models have 
been designed and successfully deployed [13]. Among other machine 
learning (ML) techniques, well-established CNN models like GoogleNet, 
inception, Xception, etc., using transfer learning (TL), have been 
employed for detection [14,15]. 

Wang et al. developed the COVID-Net model to detect COVID-19 
patients using X-ray images [16]. The COVID-Net achieved an accu
racy (92%) and sensitivity (87%). Similarly, Afshar et al. presented the 
COVID-CAPS model and reported an accuracy of (98%) with a detection 
rate (80%) [17]. However, the models mentioned above achieved a low 
detection rate because of insufficient COVID-19 labelled datasets. 
Therefore, TL has been introduced in state-of-the-art models and 
fine-tuned on a problem-specific chest X-ray dataset. A state-of-the-art 
inception model using TL has been employed to screen COVID-19 with 
a low accuracy of (89.5%) [18]. Likewise, the pre-trained ResNet-50 
CNN has been employed on a limited amount of samples and achieved 
an accuracy of (98%) [19]. Recently, an approach based on existing 
CNNs (ResNet18, squezeNet and DensNet201) has been used to detect 
COVID-19 patients. These models have been fine-tuned using TL on the 
“COVID-Xray-5k” dataset and reported 98% accuracy [20]. All the 
aforementioned models have been implemented on softmax-classifier 
for the screening of COVID-19 patients and thus, only exploited the 
benefits of empirical risk minimization. 

Deep hybrid learning utilized both empirical and structural mini
mization benefits to improve the COVID-19 detection performance. In 
the related works [21,22], features are extracted from the existing 
ResNet-50 CNN model and provided fed to the ML classifier. This re
ported deep hybrid learning-based framework achieved an accuracy of 
(95%). Similarly, deep features from fine-tuned pre-trained ResNet-152 
have been extracted and provided to ML classifiers. Similarly, COVID-19 
detection using Random-Forest and XGBoost classifiers achieved an 
accuracy of (97.3%) and (97.7%), respectively [23]. 

Most of the previous works lack to tackle the following two main 
challenges:  

1. Largely, existing CNN models have been employed on a limited chest 
X-ray dataset, which affects their performance on new and real- 
world datasets. 

2. Additionally, these models have been designed specifically for nat
ural images and fine-tuned for COVID-19 detection. COVID-19 
infected images have a specific pattern and texture that differs 
from natural images. Usually, natural Images are large, simple in 
nature and distinctly different from each other [24]. Contrary to this, 
COVID-19 infection has a specific texture and pattern, and the extent 
of infection varies in patients. The patient with COVID-19 chest 

infection shows patterns of ground-glass opacity, consolidation, and 
reticulation [13]. 

This study addressed the aforementioned research challenges by 
customizing the deep learning models to exploit COVID-19 specific 
texture and patterns using X-ray datasets. Deep learning models have 
shown exemplary performance on images compared to the shallow or 
conventional detection models. Therefore, the proposed COVID-19 
detection scheme consists of two novel deep learning frameworks: 
Deep Hybrid Learning (DHL) and Deep Boosted Hybrid Learning 
(DBHL). In the proposed DHL framework, the deep feature learning 
capacity of the developed COVID-RENet-1 & 2 models is exploited 
individually through an SVM classifier to detect COVID-19 patients. 
While in the proposed DBHL framework consists of two developed base 
models, COVID-RENet-1 & 2, which is fine-tuned on the chest X-ray 
dataset using TL. Furthermore, the deep features are generated from the 
developed models and fused to get a single boosted feature space for 
training the SVM classifier to achieve enhanced performance. The 
COVID-RENets architectures are developed explicitly by looking into 
COVID-19 chest infection characteristics patterns. The key contributions 
of this work are as below:  

1. The new DHL and DBHL frameworks are proposed for effective 
COVID-19 detection in chest X-ray images. In the proposed DHL 
framework, deep feature spaces are extracted from the penultimate 
layers of the developed COVID-RENet-1 & 2 model and individually 
given to the SVM classifier. In COVID-RENet models, Region and 
Edge-based operations are methodically employed to extract region 
homogeneity and boundaries features. Furthermore, TL has been 
utilized in the developed COVID-RENet models to enhance COVID- 
19 detection performance.  

2. In the proposed DBHL framework, rich information boosted feature 
spaces are obtained by concatenating the deep feature spaces of both 
the developed TL-based COVID-RENet-1 & 2. Finally, the boosted 
deep features are reduced using PCA to get the most prominent 
feature set and is then provided to SVM, which has good pattern 
discrimination ability. In the proposed frameworks, the principle of 
structural and empirical risk minimization techniques are exploited 
to improve the discrimination power.  

3. The performance of our proposed COVID-19 detection frameworks is 
compared with several well-established CNN models, and the pro
posed frameworks reduced significantly both false-negatives and 
false-positives.  

4. A web predictor based on the proposed COVID-RENet model is 
developed to assist radiologists in making quick and accurate 
decisions. 

The remaining of the paper proceeds as: In section 2, COVID-19 
detection schemes are explained in detail. Section 3 discusses the 
experimental setup. The results are discussed in section 4, and section 5 
concludes the study. 

2. Proposed COVID-19 detection scheme 

In this research, a novel deep learning COVID-19 detection scheme is 
proposed based on deep CNN and ML techniques. The proposed COVID- 
19 detection scheme employs three different experimental setups. Dur
ing experimentation, training instances are augmented to increase the 
robustness of models. These augmented instances are utilized during the 
training of the proposed techniques. The workflow of COVID-19 detec
tion schemes is illustrated in Fig. 1. 

2.1. Dataset 

In this work, a new chest X-ray dataset is constructed that contain 
healthy instances and COVID-19 patients. These dataset has been 
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generated by collecting the publicly accessible X-ray images marked by 
radiologists in GitHub and Kaggle repositories [25,26]. The accessed 
repositories contain images from different regions, hospitals, and X-ray 
machines. The X-ray images have been captured at different positions 
and orientations relative to the X-ray source and detector panel. This 
work filters COVID-19 and healthy instances from the aforementioned 
repositories, as illustrated in Fig. 2. We have constructed a balanced 
dataset of 3224 COVID-19 infected and 3224 healthy instances. The 
images have different dimensions and are resized to 224 x 224 pixels. 

2.2. Data augmentation 

CNN architectures mostly overfit a smaller number of samples. 
Therefore, an enormous quantity of images is required for intensive 
training and improving the performance of models. Data augmentation 
strategy increases the data instances by performing different trans
formations on original data [27,28]. The implemented augmentation 
strategy includes rotation, reflection and scaling, as shown in Table 1. 

The employed augmented strategy on the X-ray training set improves 
the generalization and robustness of the COVID-19 detection 
framework. 

2.3. COVID-19 detection framework 

The proposed framework employs three different experimental 
setups for COVID-19 detection: (1) the proposed DHL, (2) The proposed 
DBHL, (3) the implementation of well-established CNN models. These 

Fig. 1. Panels (A & B) shows the brief detail, while Panel (C) illustrate the detailed overview of the proposed COVID-19 detection schemes.  

Fig. 2. Panel A illustrates the COVID-19 infected, while Panel B shows healthy instances.  

Table 1 
Data augmentation transformation and parameter values.  

Augmentation Parameters 

Rotate [0, 360] degrees 
Reflection X & Y: [- 1, 1] 
Scale [0.5, 1]  
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well-established models are employed in two ways: (i) The deep features 
are generated from CNN models and assigned to SVM (DHL), (ii) The 
Softmax classifier-based implementation of the developed COVID- 
RENets and well-established CNNs for comparative studies. The afore
mentioned developed COVID-RENets and well-established CNNs are 
trained using TL as well as from scratch on the chest X-ray images. 

2.3.1. Proposed deep hybrid learning (DHL) framework 
In this work, two deep COVID-RENet-1 & 2 models are developed, 

and deep features space are extracted from the penultimate layers of 
these models and finally provided to SVM as shown in Figs. 3 and 4. In 
COVID-RENet models, Region and Edge-based operations are methodi
cally employed to exploit region homogeneity and boundary related 
features. In this regard, we employ average and max-pooling operators, 
interleaving convolution operations in a systematic way for effective 
learning of the COVID-19 specific patterns [15]. 

The developed COVID-RENets are comprised of four feature extrac
tion blocks. Each block contains convolutional layers and ReLU activa
tion function as shown in Eq. (1) to exploit the spatial correlation by 
addressing non-linearity in the dataset. Every block is systematically 
followed by average (xavg) and max pooling (xmax), to extract features 
corresponding to region homogeneity and edges, as illustrated in Eqs. (2 
& 3). The systematic use of the region and edge-based implementations 
exhibit COVID-19 chest infection characteristics patterns. 

xa,b =
∑r

i=1

∑s

j=1
xa+i− 1, b+j− 1fi,j (1)  

xavg
a,b =

1
w2

∑w

i=1

∑w

j=1
xa+i− 1, b+j− 1 (2)  

xmax
a,b = maxi=1,…,w,j=1,…,wxa+i− 1, b+j− 1 (3)  

x=
∑D

d

∑C

c
udxc (4) 

In Eq. (1), input channel and filter of dimension (A×B) and r x s, are 
denoted by x and f, respectively. Where a and b ranges from 1 to A - r + 1 
and B - s + 1, respectively. w denotes the window dimension of average 
and max-pooling, as illustrated in Eqs. (2 & 3). Whereas ud in Eq. (4) 
illustrates the number of neurons. 

Deep hybrid learning utilized both empirical and structural mini
mization benefits to improve the COVID-19 detection performance. 
CNNs are well known for their strong learning abilities. These models 
focus on minimizing the training loss by reducing empirical risk factors 
that often lead to overfitting [29]. While, SVM is an ML classifier that 
minimizes structural risk factors, improving generalization by 
increasing the inter-class margin [30]. Therefore, the proposed DHL 

framework consists of the deep features of CNN and SVM as a robust 
classifier. In this way, DHL exploits the learning potential of 
COVID-RENets that generates diverse features from X-ray images. 
Whereas, softmax in Eq. (5) is substituted with an SVM to improve the 
generalization. 

2.3.2. Proposed deep boosted hybrid learning (DBHL) framework 
Recently, in comparison, deep learning models have shown exem

plary performance on images with shallow or conventional detection 
techniques [31]. Furthermore, feature boosting concatenates different 
individual models to get rich information features for better general
ization performance. Therefore, the deep boosted hybrid learning-based 
model takes the benefit of both deep learning and ensemble learning. 
Finally, deep rich information feature space is provided to the general
ized detection model [32]. 

In this regard, a DBHL framework has been proposed in which TL- 
based fine-tuned deep COVID-RENet- 1 & 2 CNNs are used as base 
models and SVM as a strong classifier. In the proposed DBHL framework, 
the deep feature spaces generated from both the developed COVID- 
RENets are ensembled to get enriched boosted feature spaces, as 
shown in Eq. (6). We generated 64 deep features from the second last 
flattened layer of the developed COVID-RENet-1 & 2 models and 
ensemble them into a 128-dimensional feature vector. After this, 
eigenvector based transformation is applied using principal component 
analysis (PCA) on deep boosted feature spaces (x_Boosted). PCA is a 
dimensionality reduction technique that tries to transform a large set of 
variables into uncorrelated smaller ones by preserving maximum in
formation of the data set. PCA works by initially computing the 
covariance matrix from the dataset. Then, singular value decomposition 
of the covariance matrix has been performed to find the principal 
components. In PCA, eigenvector corresponds to the direction of 
maximum variance, while eigenvalue represent its magnitude. The 
principal components are ranked based upon their variance, and the top 
32 components, which cover approximately 50% of the data variance 
have been selected. The PCA reduced feature space is provided to SVM 
for COVID-19 detection. The proposed framework DBHL for COVID-19 
screening is illustrated in Fig. 5. 

σ(x)= exi

∑K
i=1exk

(5)  

xBoosted = fc(fRENet− 1(x)|| fRENet− 2(x)) (6)   

d(λI - A) = 0                                                                                  (7)  

(λI - A)E = 0                                                                                 (8) 

In Eq. (5), σ and k denote the softmax activation function and the 
number of classes, respectively. Whereas x (Eq. (4)) is the extracted 

Fig. 3. The proposed Deep Hybrid Learning-1 (DHL-1) framework for COVID-19 detection.  
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features from the penultimate layer of COVID-RENets. The deep boosted 
feature space of COVID-RENet-1 & 2 is illustrated by Eq. (6). In PCA, the 
boosted feature space is normalized and then covariance matrix (A) is 
computed. Further, the eigenvalues and eigenvectors (principal com
ponents (PCs)) for the covariance matrix have been computed (Eqs. 7 & 
8). I is the identity matrix of the same dimension as A and ‘d’ is the 
determinant of the matrix. Finally, the top components that are expected 
to capture high variance, are selected and then provided to SVM. 

wT x+ b = 0 (9)  

min
w,ξi

C
∑N

n
ζn +

1
2
‖w‖

2 (10) 

In Eq. (9), the reduced feature space (x) is an input instance, whereas 
wTand b is weight feature-space orthogonal to hyper-plane and bias, 
respectively. SVM constructs an optimal hyper-plane to minimize and 
maximize the intra and inter-class variation, respectively. As a resultant, 
it reduces the miss-classification rate, as shown in Eq. (10). ζ represents 
the miss-classified instances, while C is the misclassification cost that 
makes the trade-off between miss-classification and model 
generalization. 

2.3.3. Implementation of the well-established CNNs 
We implemented several existing CNN models for comparative 

analysis, including VGG-16/19, GoogleNet, InceptionV3, ResNet-18/50, 
SqueezeNet, DenseNet-201, and Xception [33–38]. Some of the CNNs 
have been previously employed for COVID-19 X-ray detection [39]. The 
comparison of complexity detail of the developed and well-established 
CNN models is shown in Table 2. These existing CNN models are 

customized by modifying the initial to be compatible with the input 
feature map dimensions. 

A hybrid-based framework is incorporated in well-established CNN 
models to learn the deep feature hierarchies for ML-based detection. In 
this regard, an additional fully connected (FC) layer is added to fine-tune 
them for COVID-19 X-ray detection, and detection layers of these models 
are customized according to the target class category. Deep features are 
generated from the customized penultimate FC layer of existing CNNs 
and are assigned to SVM for detection. The feature dimension matrix of 
the feature extraction layer (second last customized FC layer) of the 
different well-established train from scratch and fine-tuned using TL 
CNN are 64x2. These models are also optimized in a Softmax-classifier- 

Fig. 4. The proposed Deep Hybrid Learning-2 (DHL-2) framework for COVID-19 detection.  

Fig. 5. The proposed Deep Boosted Hybrid Learning (DBHL) framework for COVID-19 detection.  

Table 2 
Details of the proposed and well-established CNNs.  

Model Depth Convolutional Layers FC Layers 

AlexNet 8 5 3 
COVID-RENet-1 11 8 3 
COVID-RENet-2 13 10 3 
VGG-16 16 13 3 
VGG-19 19 16 3 
ResNet-18 22 20 2 
SqueezeNet 28 26 2 
ShuffleNet 51 49 2 
ResNet-50 55 53 2 
GoogleNet 59 57 2 
Xception 75 74 2 
Inception-V3 96 94 2 
DesNet-201 203 201 2  
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based to extract the COVID-19 specific features from the chest dataset. 

2.3.4. Training scheme of the detection models 
The proposed COVID-RENets and well-established CNNs are pri

marily trained on chest X-ray data, randomly initializing parameters 
with uniform distribution. However, deep CNNs required an efficient 
amount of data. The insufficient amount of X-ray instances may cause 
lower convergence and affect COVID-19 detection performance [40]. 
Therefore, the concept of TL has been employed to achieve significant 
improvement in COVID-19 detection performance [41]. TL transfers the 
parameters of convolutional layers trained on the benchmark ImageNet 
dataset and adapted on the COVID-19 X-ray dataset. In this way, the 
parameters of the implemented models (COVID-RENets and 
well-established CNN) are initialized using TL. These models have been 
fine-tuned using domain-adaptation-based TL on the COVID-19 X-ray 
dataset [42,43]. We incorporated the hybrid framework where the 
convolutional layers of TL-based COVID-RENet-1 & 2 and 
well-established CNN extract COVID-19 image bottleneck features, 
which are then provided to the SVM classifier for training. 

3. Experimental setup 

3.1. Implementation details 

The dataset is partitioned into separate datasets of training and 
testing at the ratio of 8:2 using hold-out cross-validation strategy. 
Furthermore, the training dataset has been split into training and vali
dation sets at the same ratio (8:2). The validation set has been used for 
optimal hyper-parameters selection. After selecting the optimal hyper- 
parameters, CNN models have been trained with these parameters on 
the training set, and their values are mentioned in Table 3. In this work, 
we evaluated the performance of the proposed techniques on 4126, 
1032, and 1290 number of training, validation and testing images, 
respectively. 

All the CNN models have been designed and simulated on MATLAB- 
2021a. Dell model Core-i7-7500, 7th generation CPU, has been used for 
CNN model designing. Additionally, GPU-enabled Nvidia-GTX-1060-T 
has been utilized during training the CNN models. Each model training 
took almost 5–7 hrs, ~15–20 min/epoch. 

3.2. Performance evaluation 

The COVID-19 detection models have been evaluated using the 
standard performance metrics. The performance metric includes accu
racy, sensitivity, specificity, and MCC. Accuracy calculates the correct 
detection of COVID-19 and Healthy instances, as demonstrated in Eq. 
(11). Sensitivity in eq. (12) measures the ratio of actual detected COVID- 
19 instances, while the specificity in Eq. (13) measures the actual pre
dicted healthy instances. The precision and F-score is demonstrated in 
Eqs. (14) and (15), respectively. Finally, Mathews Correlation Coeffi
cient (MCC) measures the quality of the confusion matrix and the F1- 
score measure the harmonic mean of precision and recall (sensitivity). 
The receiver operating characteristic (ROC) curve shows the perfor
mance of a detection model at different threshold values. ROC curve plot 

sensitivity and 1- specificity rate. In Eq. (16) the standard error for ROC- 
AUC is computed at a 95% confidence interval (CI), where z = 1.96 [20, 
44]. 

Accuracy=
Detected ​ COVID − 19 + ​ Detected ​ Healthy

Total ​ instances ​
× 100 (11)  

Sensitivity
/

Recall(S) =
Detected COVID − 19

Total COVID − 19 instances ​
× 100 (12)  

Specificity=
Detected ​ Healthy

Total Healthy ​ instances ​
× 100 (13)  

Precision(P)=
Detected COVID − 19

Detected COVID − 19 + Wrongly Detected COVID − 19
× 100

(14)  

F1 − Score = 2 ×
P × S
P + S

(15)  

CI= z
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
error(1 − error)
Total instances

√

(16)  

4. Results and discussion 

In this work, two deep learning-based COVID-19 detection frame
works, namely DHL and DBHL, are proposed, and their performance is 
evaluated on the chest X-ray dataset. 

4.1. Performance evaluation of the proposed framework 

The results of our proposed DBHL and DHL frameworks are exhibited 
in Table 4 and Fig. 7. The proposed DHL-1 (TL-based COVID-RENet-1- 
SVM) framework correctly classified COVID-19 and healthy (COVID- 
19: 631, healthy: 635) instances. In comparison, the proposed DHL-2 
(TL-based COVID-RENet-2-SVM) improved the sensitivity or true posi
tives (COVID-19: 639, healthy: 628). The results suggest that TL im
proves the performance compared to training from scratch learning 
scheme for COVID-RENets, illustrated in Tables 4–5. Both the deep 
hybrid learning-based frameworks improve precision while maintaining 
sensitivity. Finally, the proposed DBHL framework efficiently discrimi
nate both classes by enhancing the sensitivity while retaining precision 
(COVID-19: 641, healthy: 630). 

4.2. Proposed frameworks comparison with well-established CNNs 

The proposed frameworks performances, DBHL and DHL, are 
compared with well-established CNN models. Both the frameworks 
utilize the benefits of empirical and structural risk minimization tech
niques. The well-established CNN models are trained on the chest X-ray 
images using TL as well as from scratch. The comparison of standard 
performance metrics like accuracy, sensitivity, F-score, and MCC, is 
shown in detail in Figs. 6–7, Tables 4–7. 

4.2.1. Proposed deep hybrid learning (DHL) 
The performance comparison suggests that the proposed DHL 

framework better learn the COVID-19 infection pattern in X-ray images 
than well-established CNN models. The performance enhancement is 
due to the systematic usage of region and edge operation and SVM as the 
final detection model in the proposed framework. The developed 
COVID-RENet is based on the idea of region homogeneity and textural 
variation to effectively explore the COVID-19 patterns such as ground- 
glass opacity, consolidation, and reticulation. The systematic explora
tion of this information in X-Ray images helps differentiate the regular 
healthy region from the deformed region. Additionally, Region-based 
operations suppress noise for the deformations acquired during X-ray 

Table 3 
Selected hyper-parameters and its corresponding values.  

Hyper-parameters Values 

Optimizer SGDM 
Momentum 0.95 
Learning rate 0.0001 
Weight decay 0.0005 
Loss Cross-entropy 
Activation function ReLU 
Epoch 20 
Batch size 16  
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Table 4 
Performance of the proposed DBHL and DHL frameworks on the unseen dataset.  

The proposed COVID-19 detection frameworks 

Model AUC F-score MCC Pre Sen Spec Acc % TP FP FN TN 

Deep Boosted hybrid Learning (DBHL) 0.99 0.98 0.97 0.98 0.99 0.98 98.53 641 15 4 630 
Deep Hybrid Learning-2 (DHL-2) 0.99 0.98 0.97 0.97 0.99 0.97 98.29 639 17 6 628 
Deep Hybrid Learning-1 (DHL-1) 0.99 0.98 0.96 0.98 0.98 0.98 98.14 631 10 14 635  

Table 5 
Performance of the developed COVID-19 detection models on the unseen dataset.  

Softmax-classifier based the developed deep CNN models 

Model AUC F-score MCC Pre Sen Spec Acc % TP FP FN TN 

COVID-RENet-2 0.99 0.97 0.94 0.97 0.97 0.97 97.21 628 19 17 626 
TL-COVID-RENet-2 0.99 0.98 0.96 0.98 0.98 0.98 98.14 633 12 12 633 
COVID-RENet-1 0.99 0.97 0.94 0.97 0.97 0.97 97.21 627 18 18 627 
TL COVID-RENet-1 0.99 0.98 0.96 0.99 0.97 0.99 98.06 628 8 17 637  

Fig. 6. Performance comparison of hybrid based DHL and Softmax classifier-based implementation of well-established CNN models.  

Fig. 7. Performance and miss-detection rate analysis of the proposed frameworks DBHL and DHL.  
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imaging [10]. Moreover, SVM reduces structural risk minimization, 
which improves generalization by increasing the margin between 
inter-classes. 

4.2.2. Proposed deep boosted hybrid learning (DBHL) 
The performance of the proposed DBHL framework is compared with 

the proposed DHL. The proposed DBHL framework achieved the highest 
detection performance (98.53%, MCC: 0.97, sensitivity: 0.99, and pre
cision 0.98) as shown in Table 4 and Fig. 7. In the DBHL framework, we 
extract deep features from the two developed base models (COVID- 
RENet-1 & 2) and boost the deep features by feature fusing. Further, the 
prominent feature set is achieved by employing PCA on the deep boosted 
features and then provided to SVM. The DBHL framework produces 
better precision, recall, F-Score, and accuracy than any deep CNN 
model. The proposed DBHL framework attained improvement almost, 
MCC (3–11%), sensitivity (1–7%), accuracy (1–5.27%), and F1-Score 
(1–5%) in overall the implemented well-established CNN models 
(detail result shown in Tables 4–7 and Figs. 6–7). This newly proposed 
DBHL framework is expected to make the COVID-19 detection more 
robust and highly efficient for the COVID-19 chest-related infections. 

4.3. Performance evaluation of the well-established CNNs 

To effectively evaluate the potential of existing CNNs, these models 
have been trained both from scratch and fine-tuned using TL on the chest 
X-ray images. TL allows reusing weight space of the already trained 
models to prevent the deep CNNs from under-fitting and stucking in 
local minima by providing good initial weights. Furthermore, TL pre
vents highly parameterized models from over-fitting by delivering 
knowledge from the different source domains and achieve good gener
alization in the target domain [45]. Therefore, TL is employed to 
effectively train the well-established CNNs to learn the COVID-19 spe
cific features. It is noticed that the TL-based fine-tuned perform better 
than the trained from scratch CNN models with additional customized 
layers (results shown in Table 4). 

Lastly, the integration of CNN’s powerful deep feature learning ca
pacity with the good generalization ability of the SVM is employed. In 
this way, we detected the COVID-19 X-ray images by generating the 
deep feature space from the well-established CNN models like VGG-16/ 
19, InceptionV3, ResNet-18/50, DenseNet-201 and SqueezeNet. These 
deep features are then provided to SVM, which have a strong pattern 

Table 6 
Performance of well-established both trained from scratch and fine-tuned using TL CNNs on X-ray unseen dataset.  

Deep Hybrid Learning (DHL) based COVID-19 Detection 

Models AUC F-score MCC Pre Sen Spec Acc % TP FP FN TN 

Squeeze Net 0.97 0.93 0.87 0.93 0.94 0.93 93.57 604 42 41 603 
TL_Squeeze Net 0.98 0.96 0.93 0.96 0.97 0.96 96.59 626 25 19 620 
VGG19 0.97 0.94 0.88 0.94 0.94 0.94 93.95 608 41 37 604 
TL_VGG19 0.98 0.97 0.94 0.96 0.98 0.96 97.05 631 24 14 621 
Inceptionv3 0.97 0.95 0.89 0.95 0.95 0.95 94.57 610 35 35 610 
TL_Inceptionv3 0.98 0.96 0.93 0.97 0.96 0.97 96.43 619 20 26 625 
Google Net 0.98 0.95 0.91 0.95 0.96 0.95 95.51 619 32 26 613 
TL_Google Net 0.98 0.96 0.93 0.96 0.97 0.96 96.59 625 24 20 621 
VGG16 0.98 0.96 0.92 0.96 0.96 0.96 95.81 619 28 26 617 
TL_ VGG16 0.98 0.97 0.94 0.97 0.98 0.97 97.13 629 21 16 624 
DenseNet201 0.98 0.96 0.92 0.96 0.96 0.96 95.97 618 25 27 620 
TL_DenseNet201 0.98 0.96 0.93 0.96 0.97 0.96 96.43 625 26 20 619 
Xception 0.98 0.96 0.92 0.96 0.96 0.96 95.97 622 29 23 616 
TL_Xception 0.99 0.96 0.93 0.96 0.97 0.96 96.67 627 25 18 620 
Resnet50 0.98 0.96 0.93 0.96 0.97 0.96 96.36 627 29 18 616 
TL_Resnet50 0.99 0.97 0.94 0.97 0.97 0.97 97.05 628 21 17 624 
Resnet18 0.99 0.96 0.94 0.96 0.97 0.96 96.74 626 23 19 622 
TL_Resnet18 0.99 0.97 0.95 0.97 0.98 0.97 97.57 631 18 14 627  

Table 7 
Performance of well-established both trained from scratch and fine-tuned using TL CNNs on X-ray unseen dataset.  

Softmax classifier-based deep CNN detection models 

Models AUC F-score MCC Pre Sen Spec Accuracy % TP FP FN TN 

Squeeze Net 0.97 0.93 0.86 0.92 0.95 0.92 93.26 612 54 33 591 
TL_Squeeze Net 0.98 0.96 0.93 0.96 0.97 0.96 96.51 625 25 20 620 
VGG19 0.97 0.93 0.87 0.92 0.95 0.92 93.64 614 51 31 594 
TL_VGG19 0.98 0.97 0.94 0.96 0.98 0.96 96.90 629 24 16 621 
Inceptionv3 0.97 0.93 0.86 0.95 0.92 0.95 93.80 595 30 50 615 
TL_Inceptionv3 0.98 0.96 0.93 0.97 0.96 0.97 96.51 620 20 25 625 
Google Net 0.98 0.95 0.91 0.95 0.96 0.95 95.50 618 31 27 614 
TL_Google Net 0.98 0.96 0.93 0.96 0.97 0.96 96.51 626 26 19 619 
VGG16 0.98 0.95 0.91 0.96 0.95 0.96 95.74 615 25 30 620 
TL_ VGG16 0.98 0.96 0.93 0.97 0.96 0.97 96.51 621 21 24 624 
DenseNet201 0.98 0.95 0.91 0.94 0.97 0.94 95.74 627 37 18 608 
TL_DenseNet201 0.98 0.96 0.93 0.96 0.97 0.96 96.43 625 26 20 619 
Xception 0.98 0.95 0.91 0.96 0.95 0.96 95.74 615 25 30 620 
TL_Xception 0.98 0.97 0.94 0.97 0.97 0.97 97.05 628 21 17 624 
Resnet50 0.98 0.96 0.92 0.95 0.98 0.95 96.28 631 34 14 611 
TL_Resnet50 0.99 0.97 0.94 0.97 0.98 0.97 97.05 629 22 16 623 
Resnet18 0.98 0.96 0.93 0.98 0.95 0.98 96.59 611 10 34 635 
TL_Resnet18 0.99 0.97 0.94 0.97 0.98 0.97 97.13 629 21 16 624  
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discrimination ability. To identify the significance of exploitation of 
deep feature engineering, for comparison purposes, we have used a 
Softmax classifier-based implementation of existing CNN models as well. 
The DHL technique performs better than the Softmax classifier-based 
implementation, as shown in Tables 6–7 Whereas, among the existing 
CNN models, TL based fine-tuned models perform better than models 
trained from scratch in both the strategies, including DHL and Softmax 
classifier-based detection (Fig. 6, Tables 6–7). Fig. 6 illustrates the 
minimum, average, and maximum performance of each metric. 

4.4. Detection rate analysis 

The effectiveness of COVID-19 detection models is usually evaluated 
through sensitivity and precision metrics. These metrics are important in 
controlling the spread of COVID-19 infection. Therefore, in the proposed 
frameworks, sensitivity and precision are computed for unseen chest X- 
ray images, as depicted in Tables 4–5 

The empirical evaluation illustrates that the proposed hybrid based 
DHL framework outperforms the well-established techniques. In this 
connection, we further improve the detection rate by boosting the deep 
feature space of the developed COVID-RENet-1 & 2 models. The pro
posed DBHL framework correctly identified COVID-19 patients within a 
negligible time and reduced the miss-predictions, as shown in Fig. 7 and 
Table 4. Comparing the proposed DBHL framework with the proposed 
DHL and existing CNN techniques, the proposed framework achieved 

the highest detection rate (0.99, False-negative = 4) with fewer False- 
positive. Additionally, it also significantly improves the detection sys
tem’s precision (0.98) and, as a result, less burden on the radiologist. 

The X-ray samples which are miss-detected by the proposed frame
works are may be due to complex patterns, contrast variation, and 
intricate instances, as shown in Fig. 7. However, several preprocessing 
methods like data augmentation are employed during training to 
maximize the detection performance. For this reason, we augmented the 
chest X-ray images by using different image transformation schemes in 
order to improve the model generalization. 

4.5. Feature set visualization 

Deep features learnt by the proposed frameworks DHL and DBHL are 
investigated to interpret classification process. Generally, the model 
discrimination ability is related to the traits of the feature set. Class 
discriminant features increase the model’s learning capacity and 
robustness on a diverse set of instances. The proposed DBHL signifi
cantly enhanced the feature diversity and, consequently, improved the 
COVID-19 detection. The 2D scatter plots of the PCs and their percent
age variance of the proposed frameworks DHL and DBHL on unseen data 
are shown in Fig. 8. PCA-based feature visualization of the unseen set 
suggests that the proposed frameworks have shown a good distinction 
between COVID-19 and healthy instances. 

Fig. 8. Feature Visualization of the proposed COVID-19 detection frameworks DHL, DBHL, and the best performing well-established ResNet.  
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4.6. ROC based analysis 

ROC curve plays a significant role in analysing classifiers strength for 
separating COVID-19 infected and healthy instances. The discrimination 
ability of the proposed approaches at different threshold values was 
analysed using ROC; thus, a radiologist may select the optimal value of 
interest [46]. Fig. 9 shows that the proposed frameworks DHL and DBHL 
achieved high AUC (0.99) on the X-ray dataset. This quantitative anal
ysis manifests that the DBHL framework achieved the highest sensitivity 
and specificity. The graphical and quantitative analysis suggests that the 
proposed frameworks have a significant potential to deploy for 
COVID-19 detection. 

4.7. COVID-19 web predictor 

A web predictor tool based on the developed COVID-RENet model is 
designed to analyze COVID-19 in chest X-ray images. The web-predictor 
allows the radiologist to upload a chest X-ray image to the predictor. The 
proposed model will execute on chest X-ray at the backhand and gives 
the model prediction. As a result, the prediction can be COVID-19 pos
itive (1) or negative (0) along with their confidence score, as illustrated 
in Fig. 10. The web predictor may be utilized in any COVID healthcare 
center for quick and accurate COVID-19 detection. The web predictor for 
COVID-19 detection, along with its implementation details, is publicly 
available at https://covid-xray-clf.herokuapp.com/. 

5. Conclusions 

Fast and early detection of COVID-19 patients is necessary to avoid 
spreading the disease. In this study, a novel DHL and DBHL framework is 
proposed to detect COVID-19 in chest X-ray images effectively. The 
proposed DBHL benefits from data augmentation, TL-based fine-tuning, 
deep features boosting, and hybrid learning from the developed COVID- 
RENets. In this regard, two deep CNN models (COVID-RENets-1 & 2) 
have been adopted for feature boosting and hybrid learning to detect 
COVID-19 accurately. Deep feature boosting help in merging the po
tentials of developed COVID-RENets models while overcoming the def
icits of the individual COVID-RENet model. Experimental results 
demonstrated that the proposed DBHL framework performs better than 
competitive well-established CNN models in terms of accuracy, F-score, 
MCC, and recall. DBHL achieved an accuracy of 98.53% for the segre
gation of COVID-19 infected and healthy instances with 0.99 sensitivity 
and 0.98 specificity, respectively. The proposed DBHL framework and 
the web-predictor interface can efficiently assist the radiologists as it 
takes only 5–10s to predict COVID-19 infection in chest X-ray image. 
Quick and computer-aided diagnosis using the proposed framework may 
help in saving valuable lives and thereby have a positive socio-economic 
impact on society. In the future, an effort will be made to evaluate the 
DBHL framework on the multi-class dataset and deploy the computer- 
based tool in healthcare centers. 

Fig. 9. ROC curve for the proposed frameworks (DHL, DBHL), the developed and well-established CNN Models. The square bracket values represent the tolerance or 
error, calculated at a 95% confidence interval [44]. 
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