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Malaria affects one third of the world’s population and kills hundreds of thousands across the

globe annually. Among the species that cause malaria in humans, Plasmodium falciparum (Pf)
and P. vivax (Pv) are the most virulent and responsible for the majority of the mortality and

morbidity attributed to malaria.

Malaria infection begins when an infected female Anopheles mosquito bites an individual

and releases Plasmodium sporozoites, the motile and infective form of the parasite, into the

skin. The deposited sporozoites migrate through the skin, enter the circulatory system, and

traffic to the liver. This migration requires traversal of the sporozoite through diverse cell types

of distinct host tissues. Inside the liver, Plasmodium sporozoites first undergo mandatory,

asymptomatic, acyclic intrahepatic development before mature merozoites egress and infect

red blood cells. The cyclic blood stage involves repeated rounds of invasion and replication

within red blood cells and is responsible for all the disease symptoms and complications. Dur-

ing the blood stage, some parasites develop into gametocytes, which are the first step in the sex-

ual cycle. The Plasmodium life cycle continues as a mosquito feeds on an infected host and

takes up gametocytes in a blood meal. The parasites undergo sexual reproduction in the mos-

quito, which results in mature sporozoites that then propagate the next cycle of infection.

Plasmodium is predominantly intracellular during blood stage growth, and this protects

parasites from the host immune response. However, the parasite is vulnerable when it is extra-

cellular during traversal and prior to host cell invasion. Components of the Plasmodium inva-

sion machinery are pathogen-specific and surface-exposed, making them potential vaccine

and/or drug targets that can be exploited to design therapeutics against the deadly parasite.

Structural studies provide the precise definition of the linear and nonlinear conformational

neutralizing epitopes that can be exploited to improve the immunogen design of malaria vac-

cines. In addition, the structural details of Plasmodium specific ligands and ligand/receptor

complexes provide unprecedented insight into the mechanisms of interaction, invasion, and

inhibition at the host–parasite interface.

In this review, we describe the structural and functional details of Plasmodium-specific

invasion proteins involved in 1) traversal, 2) hepatocyte invasion, and 3) erythrocyte invasion

(see Fig 1 for summary). The current review focusses on the most virulent human malaria par-

asites, P. falciparum and P. vivax. Additional components of the invasion machinery are also

excluded from the current study as they have been extensively reviewed elsewhere.

Traversal precedes invasion

Sporozoites are deposited into the dermis of the host upon the bite of an infected mosquito.

These motile sporozoites traverse through the skin to find blood vessels and subsequently

reach the liver through the circulatory system. Before a sporozoite can invade and replicate in
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a hepatocyte, it must traverse several physical barriers, including fibroblasts, Kupffer cells, and

sinusoidal endothelial cells, to reach the target hepatocyte. Host cell traversal is the process of

parasite entry into, passage through, and egress from host cells without lysis. Host cell traversal

protects the vulnerable sporozoite from phagocytosis, primes the sporozoite through the acti-

vation of apical exocytosis, and prepares the motile sporozoite for invasion [1]. In addition, the

release of hepatocyte growth factor during sporozoite traversal enhances the infection rate of

neighboring cells. Plasmodium uses stage-specific pore-forming proteins to disrupt host cell

membranes to either enter or exit host cells during traversal, and to egress from the parasite-

built parasitophorus membrane after invasion and replication. The characterized pore-form-

ing proteins include sporozoite protein essential for cell traversal 1 (SPECT1), perforin-like

proteins (PLPs), and cell traversal protein for ookinetes and sporozoites (CelTOS) (Fig 1A).

SPECT1 and PLP1 are essential Plasmodium proteins that may have possible roles in cell

traversal. The targeted disruption of P. falciparum SPECT1 or PLP1 cause reduced infectivity

of sporozoites in liver-stage development in humanized mice [2]. However, mechanisms of

cell traversal of these two proteins are yet to be defined.

Cell traversal protein for ookinetes and sporozoites (CelTOS) is a unique Plasmodium
pore-forming protein that is required for cell traversal in both the mammalian host and the

mosquito vector. Recently, the crystal structure of P. vivax CelTOS revealed an all α-helical,

tuning fork–shaped dimer structure that resembled membrane-disrupting proteins from

viruses and bacteria (Fig 1A) [3]. P. vivax and P. falciparum CelTOS can bind phosphatidic

acid (PA), an inner leaflet abundant lipid, suggesting a plausible inside-out function of this

protein during parasite traversal (Fig 1A). CelTOS forms pores in liposomes containing PA as

observed by negative stain transmission electron microscopy. The protected hydrophobic core

of this soluble dimer CelTOS structure suggests that a significant conformational rearrange-

ment is mandatory to form a pore in cell membranes. Further work is needed to explore the

conformation of the lipid-bound CelTOS. Antibodies raised against P. falciparum CelTOS

protect from infection, and thus, CelTOS is a vaccine candidate being evaluated currently in

clinical trials [4].

Productive hepatocyte invasion

Following initial cell traversal, migratory sporozoites establish hepatocyte infection and

undergo exponential growth to develop tens of thousands of primary merozoites. During

active invasion, sporozoite surface proteins interact with host receptors to facilitate entry into

the host cell. The three most actively studied sporozoite surface coat proteins are circumsporo-

zoite protein (CSP), thrombospondin-related adhesive protein (TRAP), and P36 (Fig 1B).

CSP is the most abundant surface protein on sporozoites and has multiple roles in sporozo-

ite development, gliding motility, and active invasion. CSP is composed of a central repeat

Fig 1. Structural and functional aspects of Plasmodium invasion proteins. Each section contains schematic representations of known

domains, known mechanisms of actions, solved structures (in grey italic font), and known interacting host receptors. (A) CelTOS, PLP1, and

SPECT1 are involved in the cell traversal, a process during which malaria parasites enter in, pass through, and finally exit from host cells. The

mechanism of action of CelTOS is known, while SPECT1 and PLP1 are understudied. CelTOS forms pore at the inner leaflet of host cell

membranes. (B) CSP, TRAP, and P36 are involved in hepatocyte invasion and initiate the mandatory intrahepatic development of the malaria

parasite. While structural information for CSP and TRAP have been reported, the structural and functional details of P36 are unknown. The

neutralizing (-) and non-neutralizing () epitope regions are highlighted in CSP cartoon. (C) Major Plasmodium proteins that are involved in

the erythrocyte invasion are shown. PfRh5, PvRBP2a, and PvRBP2b are members of reticulocyte binding family. PfEBA-175, PfEBA-140, and

PvDBP contain a conserved host receptor–binding domain, region II (RII), and are members of the erythrocyte binding-like family. Please

note that the roman numbers within brackets represent different chain IDs in the crystal structures. CeITOS, cell traversal protein for

ookinetes and sporozoites; CSP, circumsporozoite protein; PfEBA, Plasmodium falciparum erythrocyte binding antigen; PfRH, Plasmodium
falciparum reticulocyte-binding homologue; PLP, perforin-like protein; PSPECT1, sporozoite protein essential for cell traversal 1; PvRBP,

Plasmodium vivax reticulocyte-binding proteins; TRAP, thrombospondin-related adhesive protein.

https://doi.org/10.1371/journal.ppat.1007943.g001
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region (approximately NANP25-49) which is diverse among different Plasmodium species. This

repeat region is flanked by conserved N- and C-terminal domains. The N-terminus of CSP

contains a charged protease-cleavage site known as region I (RI). The C-terminus contains a

short, conserved sequence in region III (RIII) and a known thrombospondin-like type 1 repeat

(TSR1) cell adhesive motif (Fig 1B). Antibodies against PfCSP C-terminal, induced by live

sporozoite vaccination in humans, are ineffective against the malaria infection [5]. On the con-

trary, the antibodies against the central repeat region and the junction (between the N-termi-

nus and the central repeat region) protect mice and mosquitoes from infection [6–8]. In these

particular studies, the protective antibodies preserve the germline encoded residues within the

paratope, suggesting that the naïve human B cell repertoire possesses the prerequisite for anti-

CSP immunity that are further improved through somatic hypermutations [7, 8]. The CSP

repeats also facilitate direct homotopic interactions between two monoclonal antibodies iso-

lated from humans with repeated malarial infection [9]. These homotypic antibody interac-

tions appear to be strongly selected through affinity maturation [9].

The individual CSP domains function in a stage- and time-specific manner. RI recognizes

heparan sulfate proteoglycans (HSPG) on the salivary gland in the mosquito vector [10], and

this domain is proteolytically cleaved, exposing the TSR-domain to interact with the highly

sulfated HSPGs on hepatocytes (Fig 1B) [11]. The crystal structure of RIII region and TSR

domain of P. falciparum CSP revealed a unique αTSR domain [12], where the amphipathic α-

helix of RIII region runs orthogonal to the classic TSR homology region creating a hydropho-

bic pocket, which is conserved in different Plasmodium species (Fig 1B). This pocket is pro-

posed to have a possible role in host interaction. The central repeat region (NANP18) and

αTSR domain are components of the leading malaria vaccine RTS,S/AS01 [12]. RTS,S/AS01

lacks the junctional residues, which were recently shown to be targets of the protecting anti-

bodies [6–8]. In addition to the central repeat (NANP18), highly neutralizing anti-CSP anti-

bodies engage the junctional residues between the N-terminal domain and repeat region [8],

suggesting that these residues need to be considered in the structure-based design of the next

generation CSP malaria vaccine.

TRAP also contains a TSR domain and is involved in host invasion and gliding motility.

TRAP localizes to the plasma membrane and translocates from the anterior to the posterior

end of the sporozoite during invasion. In TRAP, the N-terminus encompasses a rigid domain

that shows structural homology to the von Willebrand factor (vWF) type A-domain (Fig 1B)

[13]. This vWF domain is followed by the flexible TSR domain. At the C-terminus, TRAP con-

tains a conserved cytoplasmic tail that interacts with the gliding motor of the parasite. TRAP is

thought to function via a stick-and-slip model [13]. When a substrate binds to the metal-ion-

dependent-adhesive-site (MIDAS) of the vWF domain, the vWF domain becomes activated

and assists in the formation of extensible β-ribbons between vWF and TSR domains that link

the invading sporozoite surface to its gliding motor, an apicomplexa specific, actomyosin-

based locomotory system (Fig 1B) [14]. In Plasmodium, stage-specific TRAP members exist

that are essential for the invasion of the merozoite (MTRAP), ookinete (CTRAP), or salivary

gland sporozoites (TRAP) [14]. Recently, integrin αvβ3, a heterodimer of integrin alpha v and

integrin beta 3, was identified as the host receptor for P. falciparum TRAP using a systematic

extracellular protein screening approach [15]. An inactivated adenovirus-based multiple epi-

tope TRAP (ME-TRAP) vaccine is shown to protect animals and humans against infection

[16].

P36 is a 6-cysteine domain containing protein. Recent genetic analyses proposed a role for

P36 in liver-stage invasion [17, 18]. Interestingly, P36 from P. falciparum binds the host recep-

tor CD81, while P. vivax P36 binds to scavenger receptor BI (SR-B1) as the hepatocyte receptor

during effective infection [18]. Plasmodium parasites contain fourteen 6-cysteine domains
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containing proteins, which are conserved among different Plasmodium species and play cru-

cial role in fertilization, parasitophorous vacuole membrane fitness, and immune evasion [19].

Therefore, several members of this family are potential vaccine candidates [20].

Invading red blood cells

Primary merozoites released from ruptured hepatocytes enter into the blood stream, invade

erythrocytes, and develop into ring, trophozoite, and schizont stages, culminating in the for-

mation of 16 to 32 mature merozoites. Each of these merozoites can invade a fresh erythrocyte

and continue the cyclic, asexual blood stage development. Malaria parasites also exhibit dis-

tinct red cell tropism with P. falciparum invading reticulocytes as well as mature erythrocytes,

while P. vivax is specific for reticulocytes.

Unlike all other stages, the fluidic nature of blood stage infection subsides the requirement

of early traversal but complicates the invasion process. Red cell invasion by the parasite

involves 1) initial interactions causing erythrocyte deformation, 2) apical interactions and

invasion, and 3) a final recovery phase. This review covers the apical invasion and the parasite

ligands involved therein (Fig 1C). Reticulocyte-binding ligand (RBL) and erythrocyte-binding

like (EBL) are two critical protein families involved in red blood cell invasion (Fig 1C).

P. falciparum reticulocyte-binding homologue (PfRh) is the reticulocyte binding family that

consists of PfRh1, PfRh2a, PfRh2b, PfRh4, and PfRh5. Receptors have been identified for

PfRh4 (complement receptor 1) [21] and PfRh5 (basigin) [22]. While antibodies raised against

each of these proteins inhibit parasite growth, gene knockout studies suggest that except for

PfRh5, all Rh proteins have redundant functions and are nonessential for parasite survival

[23].

PfRh5 is a leading blood stage vaccine candidate and an exceptional member of the Rh fam-

ily as antibodies that prevent the interaction of PfRH5 with the host receptor basigin neutralize

diverse lab and field isolates of P. falciparum [22]. The PfRh5 structure consists of a novel fold

in which two bundles of 3-helices come together and form the binding site for the receptor

basigin (Fig 1C) [24]. Rh5 forms a complex with CyRPA and RIPR during invasion and a

recently solved cryo-electron microscopy structure suggests that the ternary complex,

Rh5-CyRPA-Ripr, positions parallel to the erythrocyte membrane before Rh5 and Ripr rear-

range and incorporate into the erythrocyte cell membrane [25, 26]. Alternately, the N-termi-

nus of Rh5 has also been proposed to interact with P113, resulting in a distinct complex that is

capable of binding basigin [27]. Rh5 lacks a transmembrane domain and tethers to the mero-

zoite surface through interaction with a glycosylphosphatidylinositol (GPI)-linked protein

such as P113 and/or CyRPA [27, 28]. Divergent roles for the multiple PfRh5 complexes have

been proposed, with functions in parasite attachment and anchoring [27] and membrane

insertion and pore-formation [25], however, further experiments need to be performed to con-

firm the roles of Rh5-complexes.

P. vivax reticulocyte-binding proteins (PvRBPs) are the homologs of PfRhs, and this family

is composed of 11 proteins [29].

PvRBP2b was recently shown to bind transferrin receptor 1 (TfR1), a highly expressed sur-

face receptor on a variety of mammalian tissues, including reticulocytes, that delivers iron-

loaded transferrin (Tf) glycoprotein into cells to maintain iron homeostasis [30]. TfR1 is lost

during the reticulocyte maturation process and therefore absent on the surface on RBCs. This

possibly explains the reticulocyte-specific invasion of P. vivax, although maturation of DARC

has also been proposed [31]. A recently solved cryo-electron microscopy structure of the P.

vivax RBP2b:TfR1:Tf ternary complex reveals how P. vivax uses PvRBP2b to hijack host TfR1

to invade the host reticulocyte without affecting binding of TfR1 to Tf [32]. PvRBP2b interacts
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with TfR1 and Tf through three principal sites. These include the apical domain and the prote-

ase-like domain of TfR1 and the N-terminal region of Tf (Fig 1C). Monoclonal antibodies

raised against PvRBP2b prevent reticulocyte binding and reduce P. vivax invasion [30].

PvRBP2a is another structural homolog of PfRh5 in P. vivax and consists of a conserved

kite-shaped domain but possesses distinct surface properties, suggesting a recognition site for

the alternate receptor (Fig 1C) [33]. In contrast to PfRh5, PvRBP2b and PvRBP2a are highly

polymorphic, and this variation will have to be accounted for in future vaccine designs based

on PvRBP2a.

EBL-family proteins are a second set of redundant invasion ligands that contain a con-

served domain architecture including a conserved, Plasmodium-specific, host receptor–bind-

ing domain, region II (RII). In EBL-proteins, RII contains either a single or double Duffy

Binding–like (DBL) domain. EBL-family proteins interact with the host receptor through the

RII region. In P. falciparum, four EBL-proteins have been identified: PfEBA-175, PfEBA-140,

PfEBA-181, and PfEBL-1. P. vivax has a single member known as Duffy binding protein

(PvDBP).

PfEBA-175 interacts with glycophorin A (GpA) on the erythrocyte surface in a sialic acid-

dependent manner. The crystal structure of RII in complex with α-2,3-sialyllactose revealed

that RII is a dimer and that the sialic acid binding sites are located at the dimer interface (Fig

1C) [34]. Site-directed mutagenesis of PfEBA-175 residues at the sialic acid binding sites

impairs the ability of PfEBA-175 to bind erythrocytes [34], suggesting that the sialic acid bind-

ing site in the PfEBA-175 crystal structure is likely the glycan binding site used in GpA binding

on the erythrocyte surface. Between the two DBL-domains of RII (F1 and F2), the F2 domain

makes most of the contacts with the glycans in the complex structure, suggesting a greater role

for the F2 in red cell invasion through PfEBA-175. Interaction studies using the full-length

ectodomain of PfEBA-175 and glycosylated GpA suggested dimerization of PfEBA-175 is

important for tight-binding to GpA and regions outside the RII domain of PfEBA-175 also

contribute to GpA binding [35]. The protein backbone of GpA also contributes to binding,

presumably by correctly presenting the multiple glycosylation sites for interaction [36, 37]. A

PfEBA-175 specific antibody that inhibits parasite growth binds at the PfEBA-175 interface

and engages the GpA binding residues and the dimer interface [38]. EBA-175 is shed post-

invasion, and this protein clusters RBCs to facilitate rapid transfer of replicated parasites to

new RBC hosts. Clustering also enables immune evasion from neutralizing antibodies that tar-

get the invasion machinery [39].

PfEBA-140 is another P. falciparum DBL-domain–containing protein that binds to glyco-

phorin C (GpC) in a sialic-acid–dependent manner. The structure of PfEBA-140 RII domain,

consisting of two DBL domains, revealed two sialic acid binding sites within a monomer of

RII, each of which were contained within its respective DBL domain (Fig 1C) [40]. Strikingly,

mutation of residues in the F1-sialic acid binding site abrogates binding to erythrocytes, in

contrast to mutations in the F2-sialic acid binding site that had no effect [40]. This suggests the

primary receptor binding site is in the F1 domain of PfEBA-140. The available structures of

PfEBA-140 are all monomeric, and further work is needed to determine if receptor-bound

oligomeric states exist. Antibodies raised against PfEBA-140 inhibit the invasion of multiple P.

falciparum lab strains, suggesting the role of this ligand in parasite invasion, with antibodies

that targeting F1 having a greater neutralizing potential [41, 42].

PfEBA-181 and PfEBL-1 are two other DBL domains containing proteins that have con-

served EBL-family architecture but are not yet structurally characterized.

PvDBP is the functional ortholog of PfEBA175 in P. vivax. PvDBP binds the Duffy antigen

receptor for chemokines (DARC) on the reticulocyte surface. Unlike PfEBA-175, the RII

domain of PvDBP consists of a single DBL domain (Fig 1C). In vitro structural and
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biophysical studies of PvDBP RII identified a conserved stoichiometry of 2:2 between PvDBP

and the host receptor DARC [43]. The sulphation of DARC Tyr41 increases binding of DBP to

DARC, suggesting that post-translational sulphation of DARC plays a role in parasite invasion

[44]. The structure of PkDBP identified a potential sulfo-tyrosine binding pocket that [45] is

distinct from the DARC binding site and the dimer interface [43]. The receptor-binding

pocket of PvDBP has limited polymorphisms in contrast to the other segments that are highly

polymorphic [46]. Therefore, it is possible to develop therapeutics targeting the P. vivax
DBP-DARC interface to reduce malaria. Although PvDBP is polymorphic, broadly neutraliz-

ing epitopes have been identified in the DBL domain [47]. Interestingly, DARC is also present

on the erythrocyte surface, but the enhanced exposure of PvDBP binding pocket on young

reticulocytes explains the P. vivax tropism [31].

In conclusion, through advanced tools in genetics, structure biology, and immunoparasitol-

ogy, we have gained immense knowledge about the Plasmodium invasion machinery and its

individual components in the last few decades. Future research will leverage the available

structural information and explore the conformational space of the invasion machinery to

design, develop, and optimize novel therapeutics. The preliminary success of RTS,S/AS01, the

first marketed malaria vaccine, supports the idea that an infection-blocking malaria vaccine is

indeed feasible. Understanding the mechanisms of Plasmodium invasion will guide develop-

ment of novel vaccines to interrupt the invasion process and prevent disease and transmission

of malaria.
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