

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/micpath

Multifaceted roles of plant derived small molecule inhibitors on replication cycle of SARS-CoV-2

B. Uma Reddy^{a,*,1}, Nanda Kishore Routhu^b, Anuj Kumar^{c,1,**}

^a Department of Studies in Botany, Vijayanagara Sri Krishnadevaraya University, Ballari, 583105, India

^b Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA

^c Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRS UMR 5286, Lyon, 69008, France

ARTICLE INFO	A B S T R A C T
Keywords: SARS-CoV-2 COVID-19 Viral replication cycle Plants Small molecule inhibitors Antiviral therapeutics	Introduction: Coronavirus disease 2019 (COVID-19) is an illness caused by the new coronavirus severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). It has affected public health and the economy globally. Currently approved vaccines and other drug candidates could be associated with several drawbacks which urges developing alternative therapeutic approaches. <i>Aim:</i> To provide a comprehensive review of anti-SARS-CoV-2 activities of plants and their bioactive compounds. <i>Methods:</i> Information was gathered from diverse bibliographic platforms such as PubMed, Google Scholar, and ClinicalTrials.gov registry. <i>Results:</i> The present review highlights the potential roles of crude extracts of plants as well as plant-derived small molecules in inhibiting SARS-CoV-2 infection by targeting viral or host factors essential for viral entry, polyprotein processing, replication, assembly and release. Their anti-inflammatory and antioxidant properties as well as plant-based therapeuties that are under development in the clinical trial phases-1 to 3 are also covered. <i>Conclusion:</i> This knowledge could further help understanding SARS-CoV-2 infection and anti-viral mechanisms of plant-based therapeutics.

1. Introduction

A newly emerged pandemic of COVID-19, caused by an infectious coronavirus SARS-CoV-2, has severely affected the entire world and remains a health threat. The emergence of new strains that evade immune responses generated by the vaccines suggests an urgent need for developing alternative therapeutic approaches to cut down the COVID-19 infection rate and related morbidity and mortalities.

COVID-19 is currently being treated with several plausible drugs including antimalarial drugs [28], antiviral drugs [83], certain immunosuppressors [70], and convalescent plasma therapy. However, these kinds of treatments are associated with several concerns, especially in patients with severe disease conditions [90]. For example, severe adverse effects such as renal impairment and hypotension were observed in critically ill patients receiving remdesivir therapy [30]. Additionally, several case studies have reported that these standard drugs exhibit drug-drug or nutrition-drug interactions into the severely infected COVID-19 patients resulting in the unrecognized source of medication errors and negative effects [2]. Therefore, it is essential to use an alternative and safer approach, such as plant-derived compounds.

Numerous scientific reports have documented the ability of plants and their secondary metabolites against SARS-CoV [91]. Despite being new virus, there are multiple *in-silico* studies suggesting anti-SARS-CoV-2 capability of plant-based small compounds. Additionally, *in-vitr*o, cell culture and *in-vivo* clinical trials further validate and strengthen their COVID-19 suppressing potential.

2. Scope of the review

This review article aims to collect data on anti-SARS-CoV-2 activity and therapeutic potential of natural plant extracts and phytocompounds primarily based on *in-silico* (molecular docking and molecular dynamics) studies. An attempt has also been made to highlight *in-vitro*, cell culture, *in-vivo* and clinical trial (phase 1 to 3) studies. Several bibliographic platforms such as PubMed, Science-Direct, Google Scholar, and

¹ Equal corresponding authors

Received 18 January 2022; Received in revised form 27 March 2022; Accepted 30 March 2022 Available online 2 April 2022 0882-4010/© 2022 Elsevier Ltd. All rights reserved.

^{*} Corresponding author.

^{**} Corresponding author.

E-mail addresses: umareddy@vskub.ac.in (B. Uma Reddy), nanda.kishore.routhu@emory.edu (N.K. Routhu), anuj.kumar@inserm.fr (A. Kumar).

https://doi.org/10.1016/j.micpath.2022.105512

Abbrevia	ations	gRNA	genomic RNA
		ERGIC	endoplasmic reticulum-Golgi intermediate complex
RBD	receptor-binding domain	LDLRA	low density lipoprotein receptor class A
RBM	receptor-binding motif	SRDR	scavenger receptor cysteine-rich domain
aa	amino acids	RdRp	RNA dependent RNA polymerase
nsp	non-structural protein	kb	kilobases
Е	envelope protein	PLpro	papain-like protease
Μ	membrane protein	3-CLpro	3 chymotrypsin-like protease
Ν	nucleocapsid	EGCG	Epigallocatechin 3-gallate
NTD	N-terminal domain	TF	theaflavin
CTD	C-terminal domain	SF-1	superfamily-1
ACE2	angiotensin-converting enzyme 2	ADMET	absorption, digestion, metabolism, excretion, and toxicity
TMPRSS:	2 transmembrane protease serine 2	QGRG	Quercetin 3-glucosyl rhamnosyl galactoside
RNA	ribonucleic acid	2'-O-MTa	ase 2'-O- methyltransferase
sgRNAs	sub-genomic RNAs	kDa	kilodalton

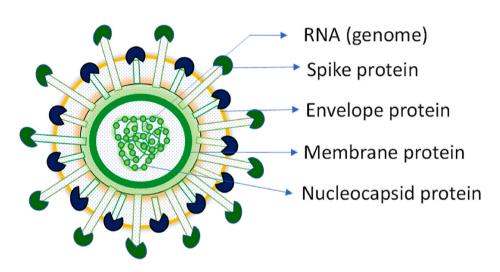


Fig. 1. Structure of the SARS-CoV-2 virus: Spike (S) is the surface glycoprotein that mediates the interaction of SARS-CoV-2 with the cell surface receptor angiotensin-converting enzyme 2 (ACE2). The membrane glycoprotein (M) and envelope (E) are embedded in the host cell-derived lipid membrane which encapsulates the viral nucleocapsid.

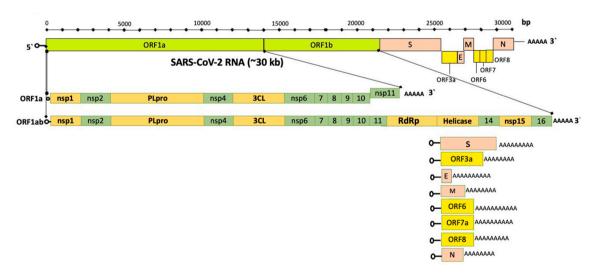


Fig. 2. Genome organization of SARS-CoV-2. Approximately 30 kb long viral genome comprises 10 open reading frames (ORFs) encoding 27 viral proteins. The ORF1ab encompasses about 67% of the total viral genome and encodes 16 non-structural proteins (nsps). Whereas the accessory and structural proteins are encoded by the remaining ORFs(adapted from Kim et al., 2020[116] with some modifications)

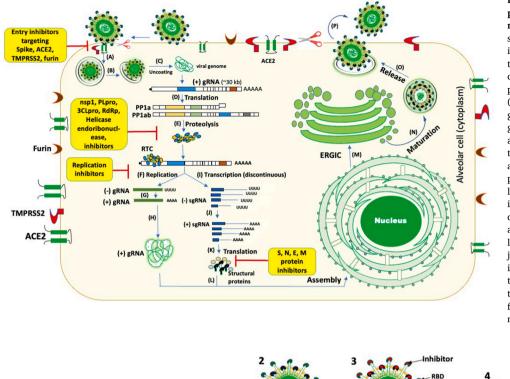


Fig. 3. The life cycle of SARS-CoV-2 and potential targets of plant-derived small molecule inhibitors (A-B) SARS-CoV- 2 spike protein binding to ACE2 followed by internalization of the virus (C) uncoating of the viral genome and its release into the cytoplasm (D-E) translation of replicase proteins (ORF1a/ab) followed by proteolysis (F-K) Replication/transcription of the viral genome. Incoming positive-strand genome generates full-length negative-strand RNA and sub-genomic RNA (sgRNAs). sgRNA translation results in both structural proteins and accessory proteins. (L-P) Structural proteins S (spike), M (membrane), E (envelope), and viral nucleocapsid complex get inserted into the ER-Golgi intermediate compartment (ERGIC) for virion assembly and release. Plant-based inhibitors (highlighted in yellow boxes) can target the majority of these steps as marked in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) (adapted from de Vries 2020 [117] with some modifications)

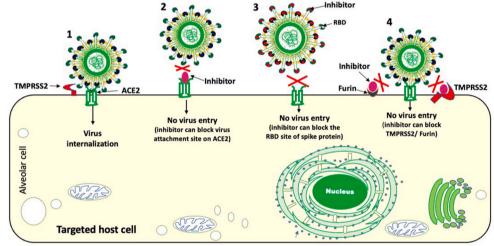


Fig. 4. Spike, ACE2, TMPRSS2 and Furin are the targets of viral entry inhibition. Plant-based inhibitors utilize several mechanisms to block SARS-CoV-2 entry.

ClinicalTrials.gov registry were used to gather research findings and to summarize them methodically as a review.

3. Fundamentals of SARS-CoV-2 genome organization and life cycle

SARS-CoV-2 infects human lung epithelial cells by binding to the cell surface located angiotensin-converting enzyme 2 (ACE2) receptor with the help of the receptor-binding domain (RBD) of spike protein (S protein). The transmembrane serine protease 2 (TMPRSS2) is required for the priming/activation of the S-protein [35]. A high expression of ACE2 and TMPRSS2 in the gastrointestinal tract has been reported to be associated with gastrointestinal symptoms seen in COVID-19 patients. There are also a few studies describing changes in the gut microbiome of these patients compared to healthy persons [32].

More recently, it has been found that the cleavage of a multibasic site present between two subunits (S1 and S2) of S protein by furin protease is also involved in S-protein mediated efficient membrane fusion, viral entry and the transmission of SARS-CoV-2 [36,65]. The virus is internalized via directly through RBD- ACE2 interaction or membrane fusion which requires TMPRSS2 proteolytic activity [9]. It is followed by uncoating of its genome and release into the host cell cytoplasm, which undergoes translation to produce viral proteins. Non-structural proteins (NSPs) 2–16 contain RNA synthesis, proof reading, cofactor and host immune evasion activities [76,88]. A negative-sense RNA intermediate is generated for the synthesis of positive-sense strand genomic RNA (gRNA) as well as a set of shorter sub-genomic RNAs (sgRNAs). Finally, the gRNA is packaged and assembled into progeny virions at the endoplasmic reticulum-Golgi intermediate compartment (ERGIC). The sgRNAs encode structural proteins such as envelope (E), membrane (M), and nucleocapsid (N) and several accessory proteins (ORF3a, ORF6, ORF7a, ORF7b, ORF8, and other ORFs) [9,59,68,74]. (Figs. 1–3).

4. Virus-host interactions: Potential antiviral targets

The virus-host interactions during the virus entry, replication, and pathogenesis play a crucial role in the virus life cycle. Several viral and cellular factors facilitate this process in a coordinated manner. In SARS-CoV-2 infection, the viral spike protein interaction with host ACE2, TMPRSS2, and furin facilitate virus entry, which are thepotential drug

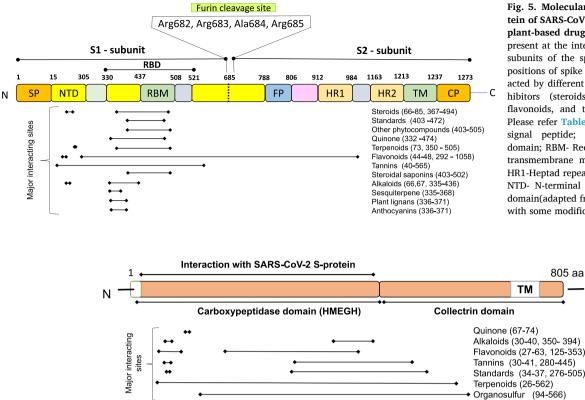


Fig. 5. Molecular structure of spike protein of SARS-CoV-2 and interactions with plant-based drugs. A furin cleavage site is present at the interface between S1 and S2 subunits of the spike protein. Amino acid positions of spike protein that can be interacted by different groups of plant-based inhibitors (steroids, quinones, terpenoids, flavonoids, and tannins) are also shown. Please refer Table-1 for precise details. SPsignal peptide; RBD- Receptor binding domain; RBM- Receptor binding motif; TMtransmembrane motif; FP- fusion peptide; HR1-Heptad repeat-1, HR2-heptad repeat-2; NTD- N-terminal domain, CP- cytoplasmic domain(adapted from Joshi et al., 2020[40] with some modifications).

805 aa

С

Fig. 6. Molecular organization of host ACE-2 monomer showing the interaction sites of different classes of phytocompounds (quinones, alkaloids, flavonoids, tannins, terpenoids, and organosulphur compounds) on the HEMGH/SARS CoV-2 spike protein binding domain and the collectrin domain (adapted from Bian and Li, 2021[118]).

targets for developing SARS-CoV-2 antivirals (Figure-4) and are discussed below in detail.

4.1. Spike (S) protein

Spike is a trimeric glycoprotein that mediates the binding of the virus to host cell surface-specific receptors and virus-cell membrane fusion [122]. It plays a vital role in determining host tropism and the diversity of coronaviruses (CoVs). SARS-CoV-2 is more contagious than SARS-CoV as SARS-CoV-2 spike protein interacts with ACE2 with 10-20 folds higher affinity than SARS-CoV. The receptor-binding motif (RBM) (437-508 amino acids) present in the RBD (319-541 amino acids) of the S1 subunit (13-685 amino acids) of the spike protein is majorly responsible for the binding of the virus to ACE2 [7,8,89] (Figure-5). In-silico docking results showed that the phytocompounds enlisted under the spike section in Table-1 interact well with the hot-spot residues of the RBD of spike glycoprotein of SARS-CoV-2.

4.2. Angiotensin-Converting Enzyme 2 (ACE2)

ACE2 is a single-pass type-1 transmembrane protein of 805 amino acids with an extracellular N-terminal peptidase domain and an intracellular C-terminus collectrin-like domain (CLD) [23]. The N- terminus has a zinc metallopeptidase binding motif (374-378 amino acids, HEMGH) essential for the interaction with SARS-CoV-2 S-protein (Figure - 6). Histochemical and single-cell RNA sequencing techniques revealed that ACE2 is primarily expressed in type-II lung alveolar epithelial cells [33,95].

A recent study, using bioinformatics, cheminformatics, and molecular docking, has demonstrated that tea flavonoids (epigallocatechin gallate, EGCG, and theaflavin gallate) have higher atomic contact energy value, dissociation constant (Ki)-value, surface area, ligand

efficiency, and higher number of amino acid interactions with spike protein than synthetic hydroxychloroquine [53]). Another study showed that daturaolone, gallotannins, taraxerol, tinosporide, withanolide-A, deoxytubulosine, withametelin form strong hydrogen and non-bonding interactions with the amino acids of spike protein (between Arg 403 to Tyr 505) and have drug-likeliness properties based on Lipinski's rule of five. Moreover, these bioactive compounds have lower toxic effects and better gastrointestinal absorption than standards [56]. A simulation study using the crystal structure of SARS-CoV-2 S protein demonstrated that saikosaponin-U and saikosaponin-V, oleanane derivatives found in Chinese medicinal plants, can also interact with the spike glycoprotein *via* their octadecahydropicene and oxane rings [75]. Using molecular docking and conceptual density functional theory approaches, Kulkarni et al. showed that components of essential oils (monoterpenes, terpenoid phenols and phenyl propanoids) have the potential to interact with the RBD [47]. The phytocompounds punicalagin and punicalin (from Pomegranate), tenufolin, cinnamtannin-B1, pavetannin-C1, 6-glucopyranosyl procyanidin B1, procyanidin-B7, proanthocyanidin-A2 and Kaempferol-3-alpha-L-arabinoside-7-rhamnoside (from Cinnamon), frieldlin, and stigmasterol (from Clerodendrum spp) were also found to be effective candidates exhibiting important interactions with the targeted S protein [41,66,79], suggesting that they could serve as possible candidates for further in-vitro and in-vivo evaluations. Additionally, a molecular dynamics simulation study of the complex of RBD of S-protein with taraxerol for a time scale of 40 ns revealed its potent anti-SARS-CoV-2 activity [41]. Tellimagrandin-II and O-demethyl-deoxy curcumin isolated from plants used in Indian traditional medicine demonstrated stable intramolecular interactions with Asn343, which could be an important hit to affect host-immune evasion by inhibiting S-protein glycosylation [85].

The complex between viral S protein and human ACE2 has also been explored to identify antiviral phytochemicals. Using molecular

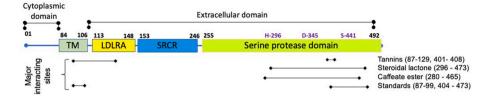


Fig. 7. Molecular structure of transmembrane protease serine-2 (TMPRSS2) and the interaction sites of tannins, steroidal lactone, and caffeate ester in its domains. H-296, D-345 and S-441 are the catalytic residues present in the serine protease domain (adapted from Paoloni-Giacobino et al, 1997 [63] and Mahmoud and Jarrar, 2021 [119])

dynamics, hesperidin, a major flavonoid present in citrus fruits, has been demonstrated to interact with this complex noncompetitively at a site different from that of S-protein. Further, the antiviral activity of hesperidin was validated by a quantitative structure-activity relationship study [12]. Another study, using virtual screening followed by protein-ligand interaction approach, showed that phytochemicals like glycyrrhizinic acid, maslinic acid, ursolic acid, corosolic acid, 2-hydroxyseneganolide, gedunin, and oleanane can bind firmly with the active site and other important amino residues of S protein and ACE2 through multiple noncovalent interactions [87]. Of particular interest, His-34 is an important amino acid of ACE2 receptor as it lies on the surface and exhibits crucial interactions with the S protein. One of the molecular dynamic studies revealed that the andrographolide and pterostilbene could negatively affect SARS-CoV-2 by interacting with the His-34 [10]. Rilapladib, a quinoline, can interrupt the spike-ACE2 complex [11]. Natural compounds such as isothymol, thymol, p-cymene, limonene, and gamma-terpinene (from Ammoides verticillata), and 17- organosulfur compounds (from garlic) were also found to be potential inhibitors of ACE2 receptor [1,82]. Further, xanthones, proanthocyanidins, secoiridoids, naringenin, hesperetin, baicalin and neohesperidin, scutellarin, nicotinamin, and glycyrinodin could exhibit ACE2 inhibition activity [58]. Hesperidin can modulate the binding energy of ACE2-spike protein complex and affects the stability of viral-host interaction [12]. At the binding contact of the spike-ACE2 complex, the di-hydroflavone moiety of hesperidin has been predicted to be parallel to the β -6 sheet of RBD [92]. Apart from this, punicalin and punicalagin from pomegranate peel are predicted to interact with ACE2 and block entry of SARS-CoV-2 into host cells [79]. Several bioactive compounds shown in research article by Mondal et al can interact with hot-spot binding residues (Lys31 and Lys353) of the ACE2 receptor through hydrogen bond or non-bonded interactions [56]. Besides these, geranium and lemon essential oils downregulate the expression of ACE2 in human colon adenocarcinoma cells as observed by western blot experiments [48]. More details of in-silico studies, including types of interactions, binding energy values, as well as identity and position of interacting amino acids with different phytocompounds are presented in Table-1.

4.3. Transmembrane Serine Protease-2

Human TMPRSS2 is a 492 amino acid type-II transmembrane protein that belongs to the serine protease family. The N-terminal half consists of a predicted transmembrane domain (84–106 amino acids), a lowdensity lipoprotein receptor class A domain (LDLRA, 113–148 amino acids), and a scavenger receptor cysteine-rich domain (SRCR, 149–242 amino acids), whereas the C-terminus half contains a serine protease domain (255–492 amino acids) [63] (Figure-7). For priming of the viral spike protein, TMPRSS2 cleaves off the spike protein at two sites, Arg-685/Ser-686 and Arg-815/Ser-816. The catalytic site of TMPRSS2 consists of amino acid residues Ser-441, His-296, and Asp-345, whereas the substrate-binding sites include Asp-435, Ser-460, and Gly-462 [34]. Molecular docking studies showed that the bioactive constituents of different plants enlisted under the TMPRSS2 section in Table-1 and presented in Figure-7 display significant interactions with the amino acid residues of the serine protease domain (255–492), particularly with the amino acids of catalytic and substrate binding sites.

The phytocompounds withaferin-A, withanolide-N, punicalin, punicalagin, ellagic acid and gallic acid could interact well with the important amino acid residues of TMPRSS2 [49,79]. Withanolide-N not only showed stronger interactions compared to withaferin-A, but it could also downregulate the expression of TMPRSS2 mRNA in human breast cancer cell line. This observation led authors to predict its dual role in inhibiting SARS-CoV-2 entry. The disruption of substrate binding was most likely due to interactions of withanolide-N with the Ser-441 [49].

4.4. Furin

Furin is a subtilisin-like proprotein convertase located in the *trans*-Golgi network. It cleaves a precursor protein with a specific amino acid pattern (Arg-X-X-Arg). The furin-like cleavage site, a 12-nt insertion at S1/S2 junction in the spike coding sequence, is absent in other members of the same clade [13,19]. Furin cleavage site enhances receptor affinity and facilitates membrane fusion. The cleavage of this site occurs via priming of S protein which could provide a gain-of-function benefit to the SARS-CoV-2 for an efficient human to human transmission compared to other members of beta coronaviruses [13,19,54]. *In-silico* analyses suggested that punicalagin, punicalin, ellagic acid and gallic acid from pomegranate could interact with the active site residues and other crucial amino acid residues of furin (Table-1) and form more stable complexes than sulconazole (control) [80]).

5. SARS CoV-2 replication inhibitors

The replication and transcription of the SARS-CoV-2 RNA genome (~ 30 kb) is catalyzed by an RNA-dependent RNA polymerase (RdRp) domain located at the C-terminus of non-structural protein 12 (nsp12) in association with other non-structural proteins such as nsp3 (papain-like protease), nsp5 (3-chymotrypsin-like protease), nsp15 (endoribonuclease) and nsp16 (2-O' MTase).



Fig. 8. Location of amino acid interaction site (89–264) of tannins and flavonoids on SARS-CoV-2 nsp3 papain-like protease monomer(adapted from Joshi et al., 2020 [40]).

Table 1

Interactions of plant-based small molecules with targeted SARS-CoV-2 or host proteins.

Spike Glycoprotein (-		
Class	Small molecule inhibitors	Interacting amino acids with different classes of phytocompounds	References
Tannins	Punicalin (3-IR and -7.406 BE), punicalagin (6-IR and -7.312 BE), Pedunculagin (4-HB, 6 NBI and -7.7 BE), punigluconin (7-HB, 5- NBI and -7.9 BE), chebulagic acid (5-HB, 5-NBI and -7.5 BE), chebulinic acid (5-HB, 7-NBI and -6.5 BE), cinnamtannin-B1 (3- HB, 3-HP and -10.2 BE), 6-Glucopyranosyl procyanidin-B1 (8-HB, 1-EI and -9.9 BE), Procyanidin-B7 (2-HB, 3-HP, 2-EI and -9.6 BE), proanthocyanidin-A2 (5-HxB, 1-HP, 2-EI and -9.4 BE), ellagic acid (3 IR and -6.114 BE), gallic acid (2 IR and -4.808 BE), gallotannins (6 HB, 7-NBI, -7.4 BE).	Phe40, Leu95, Gln102, Asn103, Lys187, Asp206, Val209, Asn210, Leu335, Phe342, Asn343, Pro346, Thr347, Trp349, Val367, Leu368, Tyr369, Asn370, Ser371, Ala372, Phe374, Phe377, Asp382, Phe390, Arg393, Asn394, Glu398, Gln493, Ala396, His401, Glu402, Arg403, Glu406, Gln409, Lys417, Tyr449, Tyr453, Leu455, Phe456, Tyr489, Phe490, Leu492, Gln493, Ser494, Tyr495, Gln496, Asn501, Tyr505, Asp509, Arg514, Tyr515, Lys562, Lys562, Pro565	[56,66,79].
Terpenoids	Geraniol (2-HB and-5.0 BE), L-4-terpineol (2-HB and -5.1 BE), carvacrol (1-HB and -5.2 BE), limonene (12-HPI and -5.1 BE), thymol (-5.4 BE), tinosporide (2HB, 6-NBI and -6.4 BE), taraxerol (7-NBI and -7.9 BE), daturaolone (8 NBI and -7.5 BE), glycyrrhizin (7-HB, 3-NBI, -7.1 BE), friedelin (1-HB, 2-IR and -7.3 BE), tenuifolin (4-HB, 2-HP and -8.7 BE), Y-terpinene (-4.8 BE), α-terpinene (-5.0 BE), camphene (2-HPI and -5.2 BE), camphor (2- HPI and -4.8 BE).	Leu73, Asp350, Tyr385, Phe390, Asn394, Arg403, Asp405, Glu406, Arg408, Gln409, Gly416, Lys417, Tyr449, Tyr451, Leu452, Tyr453, Leu455, Phe-456, Lys458, Ser-459, Leu461, Ile468, Thr470, Ile472, Glu484, Tyr489, Phe490, Pro491, Leu492, Gln493, Ser494, Tyr495, Gly496, Asn501, Tyr505	[47,56,66]
Flavonoids	Pavetannin-C1 (9-HB, 4-HP, 1-EI and -11.1 BE), hesperidin (5 IR and -8.99), chrysin (9 IR and -6.87), querceitin 3-O- robinobioside (5-HB, 6-NBI, -7.9 BE), kaempferol 3 - alpha-1- arabinofuranoside 7-rhamnoside (7-HB, 2-HP and -8.7 BE), catechin gallate (5 HB, 3 HP and -6.1 BE), cinnamaldehyde (2-HB and -5.0 BE), Anthranol (1 HB, 2 HP and -9.08 BE), Apigenin (5 HB, 2 HP and -10.09 BE)Derrisin (2 HB, 2 HP and -11.04 BE)Jaceidin (2 HB, 2 HP and -10.54 BE),Lupiwighteone (1 HB, 3 HP and -9.92 BE), Luteolin (2 HB, 2 HP and -10.92 BE), Mundulinol (2 HB, 1 HP and -11.08 BE), Naringenin (2 HB, 2 HP and -10.12 BE), Rhamnetin (2 HB, 2 HP and -10.15 BE), Tamarixetin (2 HB, 1 HP and -10.33 BE), Cannflavin (1 HB, 2 HP and -9.11 BE), Methylglovanon (1 HB, 1 HP and -9.43 BE)	Ser44, Leu48, Ala292,Cys301, Leu303, Ile312, Tyr313, Thr315, Asn317, Phe318, Arg319, His345, Thr347, Ala348, Trp349, Asp350, His374, Glu375, His378, Asp382, Tyr385, Gly395, Asn397, Glu398, His401, Arg403, Glu406, Tyr410, Lys417, Arg443, Ser448, Asn449, Tyr453, Arg454, Leu455, Phe456, Ser459, Glu471, Val472, Glu473, Gly474, Phe475, Phe486, Tyr484, Thr487, Asn488, Ser494, Tyr495, Gly496, Phe497, Tyr505, Tyr510, Arg514, Tyr515, Gln516, Leu517, His519, Ala520, Ala522, Asn544, Gly545, Leu546, Val595, Pro665, Ser730, Met731, Lys733, Gln762, Arg765, Ala766, Asn856, Val860, Pro863, Asp867, Asp867, Lys964, Leu966, Ser967, Phe970, Asn969, His1058.	[12,47,56,57 25,66]
Steroids	Withametelin (8 NBI and -8.0 BE), withanolide-A (1-HB, 7-NBI and -7.7 BE), echinacin (2-HB, 6-NBI and -7.9 BE), stigmasterol (2-IR and -7.2 BE), withanolide G (4 HB, 2 HP and -8.4 BE)	Asp66, Arg67, Gln85, Val367, Asn370, Phe374, Tyr449, Leu452, Leu455, Phe456, Glu484, Tyr489, Phe490, Leu492, Gln493, Ser494.	[41,56,57]
Quinone	Emodin (4 IR and -6.19), rhein (5 IR and -8.73)	Asn332, Thr333, Asn353, Ser388, Val401, Asn448, Ala464, Val472, Gly474,	[12]
Steroidal saponins	Asparoside-C (5 HB and -7.54 BE), asparoside-D (6 HB and -7.06 BE), shatavarin-I (Asparoside-B) (5 HB and -6.52 BE), shatavarin-X (6 HB and -6.43 BE), racemoside-A (3 HB and -6.23)	Arg403, Glu406, Gln409, Gln414, Thr415, Lys417, Asp420, Lys444, Gly447, Tyr449, Tyr453, Glu484, Ser494, Gly496, Gly496, Gln498, Gly502	[16]
Alkaloid	Chelidimerine (2 HB, 3 HP and -8.2 BE), Withanone (1 HB, 5 HP and -7.8 BE), Norsanguinarine (3 HB, 3 HP and -7.0 BE), Sanguinarine (1 HB, 4 HP and -6.8 BE), Adlumidine (3 HB, 4 HP and -6.8 BE), Somniferine (2 HB, 4 HP and -6.7 BE), Fumariline (1 HB, 3 HP and -6.4 BE)	Asp66, Arg67, Leu335, Phe338, Gly339, Phe342, Asn343, Asp364, Val367, Leu368, Leu368, Asn370, Ser371, Phe374, Trp436	[57]
Sesquiterpene	Badrakemin acetate (3 HB, 5 HP, and –8.0 BE), Samarcandin (2 HB, 3 HP, and –7.4 BE)	Leu335, Phe338, Gly339, Glu340, Asn343, Asp364, Val367, Leu368	[57]
Plant lignans	Pinoresinol-4-O-b-D- glucopyranoside (4 HB, 3 HP, and –4.9 BE)	Cys336, Phe338, Asn343, Asp364, Val367, Leu368, Ser371	[57]
Anthocyanin Other compounds	Pelargonidin 3-glucoside (4 HB, 3 HP and -6.2 BE) Cinnamyl acetate (3-HB and -5.2 BE), barlerinoside (7-HB, 9-NBI and -7.4 BE), deoxytubulosine (1-HB, 8-NBI and -7.2 BE)	Cys336, Phe338, Asn343, Asn364, Val367, Leu368, Ser371 Arg403, Asp405, Glu406, Gln409, Lys417, Tyr449, Tyr453, Arg454, Leu455, Phe456, Ser469, Glu471, Glu484, Gly485, Tyr489, Phe490, Leu492, Gln493, Ser494, Gly496, Asn501, Tyr505	[57] [47,56]
Standards	Remidesvir (3 IR and -5.94 BE), chloroquine (3 IR and -8.98), hydroxychloroquine (4 IR and -7.82 BE)	Arg403, Glu406, Tyr453, Thr467, Pro468, Cys469, Gly471, Val472	[12,16,41] [16]
ACE2 (host protein a	acting as CoV-2 receptor)		
Class	Small molecule inhibitors	Interacting residues with different classes of phytocompounds	References
Organo-sulfur	Allyl disulfide (3 IR and -12.84 BE), allyl trisulfide (2 IR and -12.76 BE), allyl (E)-1-propenyl disulfide (2 IR and -9.07 BE), allyl methyl trisulfide (2 IR and -12.50 BE), diallyl tetrasulfide (4 IR and -14.06 BE), 1,2-dithiole (2 IR and -13.21 BE), 1,2-dithiole (1 IR and -7.89), allyl (Z)-1-propenyl disulfide (T7) (2 IR and -9.04 BE), 2-vinyl-4H-1,3-dithiine (3 IR and -11.83 BE), 3-vinyl-1,2-dithiacyclohex-4-ene (3 IR and -10.57 BE), carvone (2 IR and -8.58 BE), trisulfide, 2-propenyl propyl (4 IR and -14.01 BE), methyl allyl disulfide (3 IR and -10.32 BE), diacetonalcohol (2 IR and -9.57 BE), allyl sulfide (3 IR and -9.38 BE), 1-propenyl methyl disulfide (2 IR and -8.66 BE), trisulfide, (1Z)-1-propenyl 2-propenyl 2-propenyl 2-propenyl (2 IR and -9.57 BE), allyl sulfide (3 IR and -9.38 BE), 1-propenyl 2-propenyl 2-propenyl 2-propenyl 2-propenyl 2-propenyl 2-propenyl 2-propenyl 2-propenyl (3 IR and -8.66 BE), trisulfide, (1Z)-1-propenyl 2-propenyl 2-propenyl 2-propenyl 2-propenyl (3 IR and -8.66 BE), trisulfide, (3 IC)-1-propenyl 2-propenyl 2-prope	Lys94, Gln98, Gln101, Gln102, Asn103, Gly205, Asp206, Glu208, Val209, Asn210, Ala396, Lys562, Ser563, Pro565, Trp566	[82]
Tannins	propenyl (2 IR and -8.06 BE). Punicalin (5 IR and -7.353 BE), punicalagin (4 IR and -7.144 BE), ellagic acid (4 IR and -6.85 BE), gallic acid (4 IR and -5.24 BE),	Asp30, Asn33, His34, Glu35, Glu37, Asp38, Tyr41, Ser280, Pro289, Asn290, Ile291, Asp292, Arg393, Lys353, Asp367,	[79]

pedunculagin (4 HB, 4 HPI and -7.2 BE), punigluconin (5 HB, 5 HPI	Ala386, Ala387, Gln388, Pro389, Arg393, Phe428, Lys441,	
and -6.6 BE), chebulagic acid (1 HB, 6 HPI and -6.6 BE), chebulinic acid (4 HB, 3 HPI and -6.8 BE), gallotannins (4 HB, 7 HPI	Gln442, Thr445.	
Hesperidin (4 IR and -9.167 BE), chrysin (3 IR and -7.146 BE), rutin (6 IR and -3.41 BE), vitexin (7 IR and -5.71 BE), apigenin (5 IR and -3.75 BE), quercetin (5 IR and -4.11 BE)	Thr27, Lys31, His34, Glu35, Glu37, Asp38, Gln42, Asn63, Thr125, Ile126, Thr129, Asn137, Pro138, Gly139, Lys353	[12,100]
Emodin (3 IR and -9.83 BE), Rhein (- 7.423 BE)	Asp67, Ala71, Lys74	[12]
and -2.53 BE), p-thymol (3 IR and -2.75 BE), carvacrol (7 IR and -3.31 BE), costunolide (4 IR and -4.0 BE), cynaropicrin (5 IR and -3.06 BE), bharangin (4 IR and -4.36 BE), andrographolide (6 IR and -4.53 BE), beta-pinene (5 IR and -5.22 BE), spathulenol (6 IR and -4.98 BE), vetiverol (6 IR and -5.22 BE), spathulenol (6 IR and -5.36 BE), alpha-bisabolol (7 IR and -5.69 BE), 6-shogaol (6 IR and -3.33 BE), 6-gingerol (6 IR and -3.49 BE), beta-sitosterol (7 IR and -4.88 BE), linoleic acid (6 IR and -2.07 BE), glycyrrhizinic acid (4 HB, 2 Pi-Alkyl, 1CHB, 9 VDW and -9.5 BE), maslinic acid (4 HB, 3 Pi-Alkyl, 5 VDW and -8.5 BE), obacunone (1 HB, 1 Pi-sigma, 1 Pi-Pi T shaped, 2 Pi-Alkyl, 8 VSW and -8.1 BE), epoxyazadiradione (2 Alkyl/Pi-Alkyl, 1 Pi-Sigma, 7 VDW and -8.0 BE), azadiradionolide (3 HB, 3 Alkyl/Pi-Alkyl, 6 VDW and -8.0 BE), Ursolic acid (3 HB, 3 Pi-Alkyl, 7 VDW and -7.4 BE), gedunin (1 HB,	Lys2b, 1hr27, Asp30, Lys31, Asn33, His34, Glu35, Asp38, Glu37, Leu39, Phe40, Gln42, Asn90, Thr92, Val93, Gln96, Tyr127, Ser128, Glu145, Asn 149, Trp271, Arg273, Phe274, His345, Pro346, Thr347, Ala348, Trp349, Asp350, Lys353, Asp367, Lue370, Thr371, His373, His374, Glu375, Asp382, Tyr385, Ala387, Gln388, Pro389, Phe390, Arg393, Asn394, His401, Glu402, Glu406, Ser409, Gln442, Thr445, Leu503, Phe504, His505, Asn508, Arg514, Tyr515, Lys562	[1,87,100]
Pellitorine (5 IR and -3.4 BE), vasicine (5 IR and -6.21 BE),	Asp30, Lys31, Asn33, His34, Glu35, Glu37, Asp38, Phe40,	[100]
piperidine (9 IR and -4.31 BE), piperine (5 IR and -4.1 BE)	Asp350, Lys353, Pro389, Phe390, Arg393, Asn394,	[10 70]
Lopinavir (9 IR and –7.5 BE), umitenovir (7 IR and –6.5 BE), Hydroxychloroquine (10 IR and –7.1 BE)	His34, Glu37, 1hr276, Asn290, Ile291, Met366, Asp367, Leu370, Gln388, Pro389, Arg393, Lys403, Glu406, Ser409, Leu410, Ala413, Lys441, Thr445, Ser494, Tyr495, Gly496, Tyr505	[10,79]
ase)		
Small molecule inhibitors	Interacting residues with different classes of phytocompounds	References
Punicalin (5 IR and -8.168 BE), punicalagin (6 IR and -7.358 BE), ellagic acid (2 IR and -6.829 BE), gallic acid (5 IR and -5.709 BE)	Arg87, Ala88, Arg91, Asp92, Asn97, Asp129, Tyr401, Met404, Arg405, Gly408	[79]
Withaferin-A (2 HB, 19 IR and -5.60 BE), Withanone (1 HB; 18 HP and -4.30 BE)	His296, Glu299, Tyr337, Lys342, Glu389, Asp435, Ser436, Cys437, Gln438, Asp440, Ser441, Thr459, Ser460, Trp461, Gly462, Ser463. Gly464, Cys465, Ala466, Gly472, Val473	[49]
Caffeic acid phenethyl ester (2 HB; 17 HP and -6.20 BE) Camostat (5 IR and -7.069 BE), Camostat mesylate (1 HB and 20 HPI and -5.9 BE)	Cys281, Val280, His296, Cys297, Glu299, Leu302, Asp435, Ser436, Cys437, Gln438, Gly439, Asp440, Ser441, Thr459, Ser460, Trp461, Gly462, Gly464, Cys465 Arg87, Asn97, Phe99, Met404, Arg405, Val275, Gln276, Val278, Val 280, His296, Cys297, Leu302, Asp435, Ser436, Cur427, Cla428, Clu420, Ser441, Thr460, Tra461, Clu462	[49] [79] [49]
	Cys465, Ala466, Gly472, Val473	
		-
Small molecule inhibitors		References
Small molecule inhibitors Punicalin (7 IR and –9.725 BE), punicalagin (4 IR and –9.385 BE), ellagic acid (5 IR and –7.801 BE	His194, Gly255, Pro256, Pro256, Glu257, Asp258, Asp259, Thr262, Arg298, Cys303, Asp306, Gly307, Ser311, Gly366, Ser368, Thr365, Arg 400, Trr531, Ala532	References [79]
Punicalin (7 IR and -9.725 BE), punicalagin (4 IR and -9.385 BE),		-
Punicalin (7 IR and –9.725 BE), punicalagin (4 IR and –9.385 BE), ellagic acid (5 IR and –7.801 BE	Thr262, Arg298, Cys303, Asp306, Gly307, Ser311, Gly366, Ser368, Thr365, Arg 490, Trp531, Ala532,	[79]
Punicalin (7 IR and -9.725 BE), punicalagin (4 IR and -9.385 BE), ellagic acid (5 IR and -7.801 BE Sulcanozole (4 IR and -6.923 BE)	Thr262, Arg298, Cys303, Asp306, Gly307, Ser311, Gly366, Ser368, Thr365, Arg 490, Trp531, Ala532,	[79]
Punicalin (7 IR and -9.725 BE), punicalagin (4 IR and -9.385 BE), ellagic acid (5 IR and -7.801 BE Sulcanozole (4 IR and -6.923 BE) nsp3 (viral protease)	Thr262, Arg298, Cys303, Asp306, Gly307, Ser311, Gly366, Ser368, Thr365, Arg 490, Trp531, Ala532, Val263, Phe528, Trp531, Ala532	[79] [79]
Punicalin (7 IR and -9.725 BE), punicalagin (4 IR and -9.385 BE), ellagic acid (5 IR and -7.801 BE Sulcanozole (4 IR and -6.923 BE) nsp3 (viral protease) Small molecule inhibitors Oleonolic acid (4 IR and -10 BE), ursolic acid (5 IR and -9.7 BE), 3β-acetoxyolean-12-en-27-ioc acid (3 IR and -9.5 BE), Isovitexin (5 IR	Thr262, Arg298, Cys303, Asp306, Gly307, Ser311, Gly366, Ser368, Thr365, Arg 490, Trp531, Ala532, Val263, Phe528, Trp531, Ala532 Interacting residues with different classes of phytocompounds His89, Trp106, Ala107, Asp108, Asn109, Val159, Gly160,	[79] [79] References
Punicalin (7 IR and -9.725 BE), punicalagin (4 IR and -9.385 BE), ellagic acid (5 IR and -7.801 BE Sulcanozole (4 IR and -6.923 BE) nsp3 (viral protease) Small molecule inhibitors Oleonolic acid (4 IR and -10 BE), ursolic acid (5 IR and -9.7 BE), 3β-acetoxyolean-12-en-27-ioc acid (3 IR and -9.5 BE), Isovitexin (5 IR and -9.3 BE)	Thr262, Arg298, Cys303, Asp306, Gly307, Ser311, Gly366, Ser368, Thr365, Arg 490, Trp531, Ala532, Val263, Phe528, Trp531, Ala532 Interacting residues with different classes of phytocompounds His89, Trp106, Ala107, Asp108, Asn109, Val159, Gly160,	[79] [79] References
3	chebulinic acid (4 HB, 3 HPI and -6.8 BE), gallotannins (4 HB, 7 HPI and -7.1 BE). Hesperidin (4 IR and -9.167 BE), chrysin (3 IR and -7.146 BE), rutin (6 IR and -3.41 BE), vitexin (7 IR and -5.71 BE), apigenin (5 IR and -3.75 BE), quercetin (5 IR and -4.11 BE) Emodin (3 IR and -9.83 BE), Rhein (-7.423 BE) Thymol and iso-thymol (1 H-donor and -4.74 BE), m-eugenol (4 IR and -2.53 BE), p-thymol (3 IR and -2.75 BE), carvacrol (7 IR and -3.31 BE), costunolide (4 IR and -4.0 BE), curavorol (7 IR and -3.06 BE), bharangin (4 IR and -4.36 BE), andrographolide (6 IR and -4.53 BE), pethymol (5 IR and -5.22 BE), spathulenol (6 IR and -4.53 BE), beta-pinene (5 IR and -5.29 BE), spathulenol (6 IR and -5.36 BE), alpha-bisabolol (7 IR and -5.69 BE), 6-shogaol (6 IR and -4.98 BE), vetiverol (6 IR and -3.49 BE), beta-sitosterol (7 IR and -4.88 BE), inoleic acid (6 IR and -2.07 BE), glycyrrhizinic acid (4 HB, 2 Pi-Alkyl, 1CHB, 9 VDW and -2.05 BE), maslinic acid (4 HB, 3 Pi-Alkyl, 5 VDW and -8.5 BE), obacunone (1 HB, 1 Pi-sigma, 1 Pi-Pi T shaped, 2 Pi-Alkyl, 8 VSW and -8.1 BE), epoxyazadiradione (2 Alkyl/Pi-Alkyl, 1 Pi-Sigma, 7 VDW and -8.0 BE), azadiradionolide (3 HB, 3 Alkyl/Pi-Alkyl, 6 VDW and -8.0 BE), Ursolic acid (3 HB, 3 Pi-Alkyl, 7 VDW and -7.4 BE), gedunin (1 HB, 3 Alkyl/Pi-Alkyl, 1 Pi-Sigma, 7 VDW and -7.4 BE), gedunin (1 HB, 3 Alkyl/Pi-Alkyl, 1 Pi-Sigma, 1 CHB, 7 VDW and -7.3 BE). Pellitorine (5 IR and -3.4 BE), vasicine (5 IR and -6.21 BE), piperidine (9 IR and -4.31 BE), piperine (5 IR and -6.15 BE), Hydroxychloroquine (10 IR and -7.1 BE) small molecule inhibitors Punicalin (5 IR and -8.168 BE), punicalagin (6 IR and -7.358 BE), ellagic acid (2 IR and -6.829 BE), gallic acid (5 IR and -5.709 BE) Withaferin-A (2 HB, 19 IR and -5.60 BE), Withanone (1 HB; 18 HP and -4.30 BE) Caffeic acid phenethyl ester (2 HB; 17 HP and -6.20 BE)	chebulinic acid (4 HB, 3 HPl and -6.8 BE), gallotannins (4 HB, 7 HPl and -7.1 BE).The specific (4 R and -9.167 BE), chrysin (3 R and -7.146 BE), rutin (6 R and -9.167 BE), vitexin (7 (R and -5.71 BE), and -5.85 BE), petrymol (3 R and -9.17 BE), apigenin (5 R and -3.75 BE), querter (5 R and -4.11 BE).Thr 27, Lys31, His34, Glu35, Glu37, Asp38, Gln42, Asn63, Thr 27, Asp137, Pro138, Gly139, Lys353 Asp67, Ala71, Lys74 Lys26, Thr 27, Asp137, Pro138, Gly139, Lys353 Asp67, Ala71, Lys74 Lys26, Thr 27, Asp30, Lys31, Asn33, His34, Glu35, Asp38, Glu37, Lue370, Thr 37, His373, His34, Glu35, Asp38, Glu37, Lue370, Thr 37, His374, Glu35, Asp38, Glu37, Lue370, Thr 37, His374, Glu35, Asp38, Glu37, Lue370, Thr 37, His374, Glu35, Asp38, Slu37, Lue370, Thr 37, His374, Glu35, Asp38, Asp38, Asp48, Asp367, Lue370, Thr 37, His374, Glu35, Asp38, Asp38, Asp34, Thr 27, His34, Glu35, Glu37, Asp38, Asp38, Asp34, Thr 27, His34, Glu35, Glu37, Asp38, Asp38, Asp34, Thr 27, His34, Glu35, Glu37, Asp38, Asp34, Asp367, Lue370, Thr 37, His374, Glu35, Asp38, Asp348, Asp367, Lue370, Glu38, Pro389, Phe390, Arg393, Asp34, His30, Glu402, Glu406, Ser409, Gln442, Thr 445, Leu503, Phe300, Glu442, Thr 445, Leu503, Phe300, Glu37, Asp38, Phe40, Asp350, Lys313, Asn33, His34, Glu35, Glu37, Asp38, Phe40, Asp350, Lys313, Asn33, His34, Glu35, Glu37, Asp38, Phe40, Asp350, Lys313, Asn33, His34, Glu35, Glu37, Asp38, Phe40, Asp350, Lys333, Phe300, Arg393, Asp344, His34, Glu35, Glu37, Asp38, Phe40, Asp350, Lys33, Phe300, Arg393, Asp344, His34, Glu35, Glu37, Asp38, Phe40, Asp350, Lys33, Phe300, Arg393, Asp344, His34, Glu35, Glu37, Asp38, Phe40, Asp350, Lys33, Phe300, Arg393, Asp344, His34, Glu35, Glu37, Asp38, Phe40, Asp350, Lys33, Phe300, Arg393, Asp344, His34, Glu35, Glu37, Asp38, Phe40, Asp350, Lys33, Phe300, Arg393, Asp344, His34, Glu35, Glu37, Asp38, Phe40, Asp350, Lys33, Phe304,

Table 1 (continued)

3-O-rutinose (nicotiflorin) (4 HB, 1 PS, 1 Psi, 1 PP and -8.9 BE), kaempferol-4'-O-glucuronide (4 HB, 3 Pal and -8.0 BE), kaempferol-3-O-glucuronide (6 HB, 1 PS, 1 PP, 1 Psi and -8.3 BE), kaempferol-7-O- glucuronide (4 HB, 2 PS, 1 Psi, 2 Pal and -8.3 BE), kaempferol-7-O-sulfate (3 HB, 1 PS, 1 PP, 2 Pal and -8.3 BE), kaempferol-4'-O-sulfate (4 HB, 1 Pal and -8.2 BE), kaempferol-3-O-sulfate (3 HB, 1 PS, 1 Pal and -7.3 BE), kaempferol (1 HB, 2 PS, 2 Pal and -7.2 BE), 5,7,3'4' - tetrahydroxy2'-(3,3- dimethylallyl) isoflavone (14 IR and -16.35 BE), myricitrin (16 IR and -15.64 BE), methyl rosmarinate (16 IR and -15.44 BE), 3,5,7,3',4',5'hexahydroxy flavanone - 3 - O - beta - D glucopyranoside (13 IR and -14.42 BE), (2S)-eriodictyol 7-O-(6"-Ogalloyl)-beta-Dglucopyranoside, (15 IR and -14.41 BE), calceolarioside B (16 IR and -19.87 BE), myricetin 3-Obeta-D-glucopyranoside (17 IR and -13.70 BE); licoleafol (13 IR and -13.63 BE), amaranthin (16 IR and -12.67 BE), peonidin 3-O-glucoside (5 HB, 7 HP and -9.4 BE), **kaempferol 3-O-6** –rutinoside (4 HB, 6 HP and –9.3 BE), rutin (2 HB, 6 HP and -9.2 BE), 4 - (3, 4 - Dihydroxyphenyl) -7 - methoxy -5 - [(6 - O - b - D - xylopyranosyl - b - D - glucopyranosyl) oxy] -2H-1-benzopyran - 2 - one (5 HB and 7 HP), quercetin-3-Dxyloside (7 HB, 5 HP and -9.1 BE), quercetin 3-O-a-Larabinopyranoside (4 HB, 6 IR and -9.0 BE), kaempferol 3-rutinoside 40-glucoside (9 HB, 6 HP and -8.9 BE), quercetin 3-O-(6"-O-malonyl)-b-D-glucoside (3 HB, 8 HP and -8.8 BE), idaein (2 HB and 8 HP), callistephin (3 HB and 8 HP); malvin (4 HB, 8 HP and -8.7 BE), luteolin 7-rutinoside (2 HB; 9 HP; -8.6 BE), cyanin (4 HB; 4 HP; -8.5 BE), kaempferol 7-O-neohesperidoside (5HB, 7 HP and -8.4 BE), rhamnetin 3 sophoroside (5 HB, 4 HP and -8.3 BE), myricetin 3-O-b-p-galactopyranoside (5 HB, 2 HP and -8.2 BE), 2"-O-alpha-L-rhamnopyranosyl-isovitexin (3 HB, 10 HP and -8.2 BE),

and -8.1 BE), quercetin (4 HB; 1 PS, 2 Pal and -7.5 BE), kaempferol-

hesperidin methylchalcone (5 HB, 4 HP and -8.0 BE), procyanidin-B7 (4 HB, 1 HP, 1 EI and -8.2 BE), kaempferol 3alpha-L-arabinofuranoside-7-rhamnoside (3 HB, 1 HP, 1 EI and -8.1 BE), proanthocyanidin-A2 (1 HB, 1 HP, 1 EI and -8.0 BE), 6glucopyranosyl procyanidin B1 (5 HB, 1 HP, and -7.6 BE), pavetannin-C1 (4 HB, 1 HP, 1 EI and -7.3 BE), querceitin 3-Orobinobioside (6 HB, 8 NBI and -8.8 BE).

Organosulfur	Allyl disulfide (6 IR and -15.32 BE), allyl trisulfide (4 IR and -15.02 BE), allyl (E)-1-propenyl disulfide (2 IR and -13.25 BE), allyl methyl trisulfide (4 IR and -14.36 BE), diallyl tetrasulfide (4 IR and -14.47 BE), 1,2-dithiole (T6-ACE2) (2 IR and -13.21 BE), allyl (Z)-1-propenyl disulfide (2 IR and -12.60 BE), 2-vinyl-4H-1,3-dithine (4 IR and -14.04 BE), 3-vinyl-1,2-dithiacyclohex-4-ene (3 IR and -13.83 BE), carvone (1 IR and -12.36 BE), trisulfide, 2-propenyl propyl (5 IR and -14.36 BE), methyl allyl disulfide (3 IR and -13.56 BE), diacetonalcohol (2 IR and -13.26 BE); trisulfide, (1E)-1-propenyl 2- propenyl (2 IR and -12.00 BE); (12)-1-propenyl 2- propenyl (1 IR and -11.68 BE)	Leu141, Asn142, Gly143, Ser144, Cys145, Glu166
Terpenoids	 (12)-1-propenyi 2- propenyi (1 in and -11.05 BE) Glycyrrhizic acid (4 HB, 3 CHB, 12 VDW and -8.7 BE), 6-oxoisoiguesterin (5 IR and -9.1 BE), daturaolone (10 NBI and -7.3 BE), glycyrrhizin (7 HB; 7 NBI and -8.2 BE), calendulaglycoside B (16 IR and -8.2 BE), calenduloside (15 IR and -7.9), tenuifolin (6 HB, HP-2 and 8.8 BE), 7-Deacetyl-7-benzoylgedunin L (1 CHB, 2 HB, 10 VDW, 1Pi-Pi T shaped, 1 alkyl, 1 Pi-alkyl, -9.1), glycyrrhizic acid (4 HB, 3 CHB, 12 VDW, -8.7), limonin: 3 HB, 1 pi-donor, 1 CHB, 4 VDW, -8.7), Obacunone (3 HB, 1 pi-donor, 1 pi-alkyl, 5 VDW, -7.5), Dihydroartemisinin (2 HB, 2A, 1 PA and -7.0 BE) 	Thr24, Thr25, Thr26, Leu27, His41, Cys44, Met49 Leu50, Tyr118, Arg131, Lys137, Ph Asn142, Gly143, Ser144, Cys145, His163, I Glu166, Leu167, Pro168, His172, Asp187, Thr190, Ala191, Tyr239, Leu275, Leu286,
Sesquiterpene	Badrakemin acetate (2 HB, 5 HP and -8.6 BE), Samarcandin (3 HB, 2 HP and -8.5 BE)	His41, Gly143, Cys145, His163, Glu166, Le Gln192
Iridoid glycoside	Harpagoside (3 HB, 3 HP and -6.1 BE)	His41, Met49, Leu141, Asn142, Met165, Gl
Beta-diketone	demethoxycurcumin (1 IR and -7.02 BE), curcumin (2 IR and -6.04 BE); bisdemethoxycurcumin (5 IR and -7.3 BE)	His41, Asn119, Phe140, Cys145, His163
Beta-hydroxy ketone	Zingerol (5 IR and -5.40 BE) and gingerol (5 IR and -5.38 BE)	Met49, His163, Met165, Glu166, Pro168, A Gln189, Thr190
Furanocoumarin Anthocyanins	 Bergapten (5-methoxypsoralens) (2 IR and -5.98 BE) Delphinidin 3-Sambubioside-5-Glucoside (27 IR and -12.37 BE); Delphinidin 3,3'-Di-Glucoside-5-(6-P-Coumarylglucoside) (28 IR and -11.59 BE), 2-(3,4,5-Trihydroxyphenyl)-3-[6-[(E)-3-(4-hydroxyphenyl) acryloyl]-beta-D-galactopyranosyloxy]-5,7-dihydroxy-1- 	Phe140, His163 Thr24, Thr25, Thr26, Leu27, His41, Cys44, Pro52, Tyr54, Gly138, Ser139, Phe140, Leu Gly143, Ser144, Cys145, His163, His164, M Leu167, Pro168, Thr169, Gly170, His 172, Arg188, Gln189, Thr190, Ala191, Gln192

sn142, Gly143, Ser144, Cys145, His163, Met165, [<mark>82</mark>]

r25, Thr26, Leu27, His41, Cys44, Thr45, Ser46, 150, Tyr118, Arg131, Lys137, Phe140, Leu141, ly143, Ser144, Cys145, His163, His164, Met165, eu167, Pro168, His172, Asp187, Arg188, Gln189,

[21,31,51,56
871

la191, Tyr239, Leu275, Leu286, Leu287 143, Cys145, His163, Glu166, Leu167, Pro168, [57]

011172	
His41, Met49, Leu141, Asn142, Met165, Glu166	[57]
His41, Asn119, Phe140, Cys145, His163	[73]
Met49, His163, Met165, Glu166, Pro168, Asp187, Arg188,	[43]
Gln189, Thr190	
Phe140, His163	[73]
Thr24, Thr25, Thr26, Leu27, His41, Cys44, Met49, Leu50,	[27,57]
Pro52, Tyr54, Gly138, Ser139, Phe140, Leu141, Asn142,	
Gly143, Ser144, Cys145, His163, His164, Met165, Glu166,	
Leu167, Pro168, Thr169, Gly170, His 172, Val186, Asp187,	

Table 1 (continued)

	benzopyrylium 2-(3,4,5- Trihydroxyphenyl)-3-[6-[(Z)-3-(4- hydroxyphenyl) acryloyl]-beta-D-galactopyranosyloxy]-5,7- dihydroxy-1-benzopyrylium (27 IR and -10.94 BE),		
	3-O-[b-p-Glucopyranosyl-(1->2)- [4-hydroxycinnamoyl-(->6)] -		
	b-D-glucopyranoside] (E-), 5-O-(6-O-malonyl-b-D-		
	glucopyranoside) Pelargonidin 3-O-[b-D-Glucopyranosyl-(1->2)-		
	[4-hydroxycinnamoyl-(->6)] -b-D-glucopyranoside] (E-) 5-O-(6-		
	O-malonyl-b-D-glucopyranoside (25 IR and -10.30 BE),		
	3-< [4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-<		
	[hydroxy(4-oxocyclohexa-2,5-dien-1-ylidene)methoxy] methyl		
	> oxan-2- yl)oxy] oxan-2-yl] oxy>-2-(3,4-dihydroxyphenyl)-7-		
	hydroxy-5-< [3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]		
	oxy>-1lambda-chromen-1-ylium (25 IR and -13.59 BE), Cyanidin		
	3-(60 '-p-coumarylsambubioside) (22 and -9.58 BE),		
	Pelargonidin 3-glucoside (4 HB, 5 HP and -8.1 BE), Cyanidin 3,5- di O glucosida (4 HB, 6 HB and -6.0 BE). Cyanidin 2 O mutinosida		
	di-O-glucoside (4 HB, 6 HP and -6.9 BE), Cyanidin 3-O-rutinoside (7 HB, 4 HP and -6.9 BE)		
Steroidal lactone	Withanoside-II (20 IR and -11.30 BE), withanoside IV (20 IR and	Thr24, Thr25, Thr26, Leu27, His41, Cys44, Thr45, Ser46,	[57,84]
	11.02 BE), withanoside-V (27 IR and –8.96 BE), sitoindoside IX (24	Met49, Leu50, Phe140, Leu141, Asn142, Gly143, Ser144,	[07,01]
	IR and -8.37 BE), Withanolide G (4 HB, 4 HP and -8.6 BE)	Cys145, His163, His164, Met165, Glu166, Leu167, Pro168,	
		Arg188, Gln189, Thr190, Ala191, Gln192	
Alkaloid	10-Hydroxyusambarensine (10 IR and -10.1 BE),	His41, Met49, Tyr54, Lys137, Phe140, Leu141, Asn142,	[31,57]
	cryptoquindoline (3 IR and -9.7 BE); 6-Oxoisoiguesterin (1 HB, 4	Gly143, Ser144, Cys145, Cys148, Met49, His163, Met165,	
	IR and -9.1 BE), N-[(5-methylisoxazole - 3-yl) carbonyl] alanyl-l-	Glu166, Leu167, Pro168, Asp187, Gln189, Gln192, Thr199,	
	valyl-n1- ((1r,2z)-4-(benzyloxy) – 4 – oxo -1- [(3r)-2-oxopyrrolidin-3-	Tyr239, Tyr273, Leu275 Leu286, Leu287	
	yl] methyl] but-2-enyl)-l-leucinamide (3 HB, 3 HPI, -7.4 BE), 22-		
	hydroxyhopan-3-one (1 HB, 4 IR and –8.6 BE), Chelidimerine (2 HB,		
	6 HP and -10.2 BE), Somniferine (3 HB, 3 HP and -8.3 BE),		
	Adlumidine (5 HB, 2 HP and -8.2 BE), Withanone (4 HB, 3 HP and -8.2 BE),		
	-8.2 BE), Fumariline (3 HB, 5HP and -7.8 BE), Sanguinarine (5 HB, 3		
Tannins	HP and -7.7 BE), Norsanguinarine (3 HB, 5 HP and -7.5 BE) Pedunculagin (5 HB, 9 NBI and -8.9 BE), punigluconin (6 HB, 12	Thr24, Thr25, Thr26, His41, Cys44, Thr45, Ser46, Tyr54,	[41,56,66]
Phenylpropanoids	NBI and -8.5 BE), taraxerol (11 NBI and -7.2 BE), withametelin (8	Cys145, His163, Thr25, Met49, Phe140, Leu141, Asn142,	[51]
Aromatic alcohol	NBI and -7.9 BE), tinosporide (2 HB, 12 NBI and -8.5 BE),	Gly143, Ser144, Cys145, His164, Met165, Glu166, His172,	[51]
in officiate unconfor	chebulagic acid (6 HB, 3 NBI and -6.5 BE), chebulinic acid (9 HB, 9	Ala285, Asp187, Arg188, Gln189, Asp197, Thr199, Tyr239,	[01]
	NBI and -8.6 BE), gallotannins (5 HB, 10 NBI and -8.3 BE),	Met276, Leu287, Leu286	
	cinnamtannin-B1 (3 HB, 4 HP and -8.4 BE), barlerinoside (7 HB,	His41, His164, Gln192, Thr190, Pro168, Met165,	
	10 NBI and -7.5 BE)	Arg188, Arg187, Val186, Thr190, Gln192, Met49, Met165,	
	Hydroxycinnamic acid (3 HB, 2A, 1 PA, and -7.5 BE)	Pro168	
	Phenethyl alcohol (6 HB, 2 PA, -7.3 BE)		
Standards	N3 inhibitor (native cocrystal ligand) (8 HB, 6 HPI and -7.9 BE/28	Thr24, Thr25, Thr26, Leu27, His41, Cys44, Thr45, Ser46,	[20,27,31,67,
	IR and -9.47 BE/23 IR and -8.12 BE), nelfinavir (9 IR and -12.20	Glua47, Met49, Leu50, Pro52, Tyr54, Val104, Gln110, Ile106,	73,84,109]
	BE); prulifloxacin (10 IR and -11.32 BE) and colistin (18 IR and	Asp153, Phe140, Leu141, Asn142, Gly143, Ser144, Cys145,	
	-13.73 BE), x77 (4 HB, 2 PS, 1 Pal, 1 Pam, 1 PP and -8.4 BE),	Ser158, His163, His164, Met165, Glu166, Leu167, Pro168,	
	ribavirin (5 IR and -5.43 BE), lopinavir (3 HB, 3 HP and -9.41 BE),	Gly170, Hie172, Asp187, Arg188, Gln189, Thr190, Ala191,	
	ritonavir (2 HB, 3 IR and -6.8 BE), 1	Gln192, Val202, Ile249, Pro293, Phe294 Val297.	
	X77 (4 HB, 2 PS, 1 PA1, 1 Pam, 1 PP and -8.4 BE)		

Class	Small molecule inhibitors	Interacting residues with different classes of phytocompounds	References
Flavonoid	Theaflavin (8 HB, 2 PA and -9.1 BE), quercetin-3-O- (rutin) (9 HB, 1 Psi and -8.5 BE), quercetin-7-O-glucuronide (6 HB, 1 PA and -8.2 BE), quercetin-3'-O-glucuronide (5 HB; 1 PAm; -8.2 BE), quercetin-3-O-glucuronide (6 HB; 2 PA; 1 Pal; -8.0 BE), quercetin- 7-O-sulfate (6 HB, 1 PC, 1 Pal, and -8.0 BE), quercetin-3-O-sulfate (2 HB, 2 PA and -7.1 BE), quercetin-3'-O-sulfate (6 HB, 1 PC, 1 Pal and -8.1 BE), quercetin (3 HB, 2 Psi and -7.4 BE), kaempferol-3-O- rutinose (4 HB, 2 PA and -9.2 BE), kaempferol-4'-O-glucuronide (6 HB, 1 PC and -8.3 BE), kaempferol-3-O-glucuronide (6 HB, 1 PC and -7.9 BE), kaempferol-7-O-glucuronide (8 HB, 1 PC and -7.9 BE), kaempferol-7-O-sulfate (1 HB, 2 PA and -6.7 BE), kaempferol-4'-O-sulfate (1 HB, 2 PA and -6.7 BE), kaempferol (2 HB, 2 PSi and -7.2 BE)	Asp452, Lys545, Arg553, Ala554, Arg555, Thr556, Met615, Trp617, Asp618, Tyr619, Pro620, Lys621, Cys622, Asp623, Arg624, Thr687, Asn691, Ser759, Asp760, Asp761, Ser778, Ile779, Glu796, Lys798, Cys799, Trp800, Thr801, Glu811, Cys813, Ser814	[20]
Terpenoids	Glycyrrhizic acid (7 HB, 1 CHB, 1 pi-alkyl, 16 VDW and -9.9 BE), limonin (2 HB, 2 pi-alkyl, 1 pi-pi T shaped, 10 VDW and -8.2 BE), 7- Deacetyl-7-benzoylgedunin (1 HB, 1 Alkyl/pi-alkyl, 2 CHB, 1 pi- anion, 3 pi-cation, 6 VDW and -8.2 BE), limonin glucoside (3 HB, 1 CHB, 4 Alkyl/Pi-Alkyl, 9 VDW and -8.2 BE), 7- deacetylgedunin (1 HB, 2 CHB, 1 Pi-Alkyl, 1 Pi-sigma, 1 Pi-anion, 5 VDW and -8.1 BE), obacunone (2 HB, 1 Alkyl, 1 Pi-Anion, 8 VDW and -7.8 BE)	His439, Asp452, Tyr456, Met542, Lys545, Ala547, Ile548, Ser 549, Ala550, Lys551, Arg553, Ala554, Arg555, Thr556, Val557, Ala558, Gly616, Trp617, Asp618, Tyr619, Pro620, Cys622, Asp623, Arg624, Ser682, Asp760, Asp761, Ala762, Val763, Ala797, Lys798, Trp800, His810, Glu 811, Phe812, Ser814, Arg836	[87]
Standards	Remdesivir (3 IR and -6.3 BE), favipiravir (3 IR and -3.6 BE)	Lys551, Arg553, Arg555, Asp623, Ser682	[41]
Helicase/nsp13 (viral protein)		
Class	Small molecule inhibitors	Interacting residues with different classes of phytocompounds	References
Flavonoids			[46]

Standards	Tomentodiplacone B (9 IR and -8.4 BE), osajin (4 IR and -8.2 BE), sesquiterpene glycoside (9 IR and -8.2 BE), rhamnetin (9 IR and -8.1 BE), silydianin (6 IR and -8.1 BE) Nelfinavir (6 IR and -6.2 BE), remdesivir (8 IR and -6.8 BE), prulifloxacin (7 IR and -8.1 BE)	Val6, Asn9, Arg21, Arg22, Pro23, Phe24, Glu128, Arg129, Leu132, Phe133, Glu136, Arg178, Asn179, Pro234, Pro238, Ser310, Pro406, Ala407, Pro408, Asp534, Arg560 Val6, Arg21, Arg129, Leu132, Glu136, Lys139, Glu142, Asn177, Asn179, Tyr180, Pro234, Pro238, Cys309, Met378, Asp383, Pro406, Ala407, Pro408, Arg409, Thr410, Leu412, Leu417, Arg560	[46]
Endoribonuclease/nsp	15 (viral protein)		
Class	Small molecule inhibitors	Interacting residues with different classes of phytocompounds	References
Flavonoid	Naringin (5 IR and -7.8 BE), taxifolin (6 IR and -7.2 BE), luteolin (5 IR and -7.2 BE), apigenin (4 IR and -7.2 BE), myricetin (4 IR and -7.0 BE), wogonin (3 IR and -6.9 BE), epigallocatechin (3 IR and -6.8 BE), chlorogenic acid (6 IR and -6.8 BE), afromosin (4 IR and	His235, ASP240, Gln245, Gly248, His250, Lys290, Val292, Ser294, Val339, Glu 340, Thr341, Tyr343, Pro344, Leu346	[106]
Beta-diketone	-6.7 BE), rutin (5 IR and -7.8 BE), silymarin (IR and -8.0 BE). Demethoxycurcumin (5 IR and -7.51 BE), quercetin (4 IR and -6.49 BE), bisdemethoxycurcumin (1 IR and -6.56 BE), curcumin (1 IR and -6.48 BE), myricetin (4 IR and -6.52 BE), bergapten (4 IR and -5.92 BE), scutellarin (4 IR and -6.97 BE), isoflavone (2 IR and -5.47 BE)	His235, Glu340, Thr341, His250, Lys290; Ser294, Gly248	[73]
Terpenoid	Saikosaponin-V (8 HB, 9 HP and -8.35 BE), saikosaponin-U (8 HB, 8 HP and -7.27 BE), saikosaponin-C (6 HB, 9 HP and -6.98 BE), saikosaponin-K (5 HB, 10 HP and -6.79 BE), saikosaponin-1b (4 HB, 8 HP and -6.36 BE), alpha-amyrin (1 IR and -8.1 BE), pomolic acid (2 IR and -7.9 BE), carnosol (2 IR and -7.8 BE), arjunolic acid (1 IR and -7.6), asiatic acid (5 IR and -7.4 BE), betulinic acid (1 IR and -7.3 BE), platanic acid (5 IR and -7.3 BE), alphitolic acid (1 IR and -7.2), Asiatic acid (5 IR and -7.4), ursonic acid (5 IR and -8.4 BE).	Gly230, Ala232, Glu234, Hip235, Asp240, Gly245, Leu246, Gly247, Gly248, His250, Asn278, Lys290, Cys291, Val292, Cys293, Met331, Ala232, Trp333, Val339, Glu340, Thr341, Tyr343, Pro344, Leu346	[75,106]
Coumarin	Beta sitosterol (1 IR and -8.1 BE), gliotoxin (3 IR and -6.7 BE), psoralen (5 IR and -6.7 BE), carinatine (4 IR and -6.6 BE), rhinacanthin (6 IR and -6.5 BE), caffeic acid (4 IR and -6.3 BE), coriandrin (3 IR and -6.2 BE), scopoletin (5 IR and -6.1 BE), cordycepin (4 IR and -5.6 BE), ricinoleic acid (3 IR and -5.0 BE), alpha asarone (1 IR and -4.9 BE), valproic acid (4 IR and -4.6 BE)	His235, Gly248, His250, Lys290, Val292, Cys293, Ser294, Thr341, Tyr343.	[106]
Organosulfur	allicin (3 IR and -3.8 BE)	His235, Thr341, His250	[106]
Alkaloid	Taspine (4 IR and -7.3 BE), ajmalicine (5 IR and -8.1 BE), reserpine (4 IR and -7.4)	His235, Thr341, Gly248, His250, Lys290, Glu340	[106]
Steroids	Asparoside-C (5 HB and -7.16 BE), asparoside-F (7 HB and -6.6 BE), asparoside-D (6 HB and -6.4 BE), rutin (5 HB), racemoside-A (4 HB and -5.99)	Gly230, Ala232, Glu234, Hip235, Val339, Asp240, His243, Gln245, His250, Asn278, Val292, Glu340, Thr341, Leu346	[16]
Standards	Hydroxychloroquine (4 IR and -5.8 BE), Nelfinavir (4 IR and -7.3 BE), ribavirin (9 IR and -5.84)	Thr26, His235, His250, Gly248, Lys290, Val-292, Ser294, Thr341, Tyr 343, Pro344,	[73,106]
2'-O- methyl transfera	se/nsp16 (viral protein)		
Class	Small molecule inhibitors	Interacting residues with different classes of phytocompounds	References
Flavonoids, Alkaloids, others Standards	Eryvarin-M (9 IR and -8.6 BE), silydianin (9 IR and -8.5), osajin (6 IR and -8.2 BE), raddeanine (8 IR and -8.2 BE) Nelfinavir (9 IR and -8.2 BE) remdecivir (9 IR and -7.0 BE)	Asp6873, Asn6899, Asp6897, Amet6929, Leu6898, Asn6841, Lys6844, Cys6913, Lys6968, Phe6947, Lys6944, Asn6899, Asp6928, Cys6913, Gly6911, Leu6898, Met6929, Asp6897, Asp6928, Met6929, Cys6913, Leu6898, Gly6869, Cys6898, Asp6928, Asp6897, Asp6912, Cys6913, Leu6898, Asp6897, Gly6871, Asn6811, Met6929, Phe6947. Leu6898, Tyr6930, Gly6871, Pro6932, Lys6968, Lys6844,	[46]
อเลเนสเนร	Nelfinavir (9 IR and -8.2 BE), remdesivir (9 IR and -7.0 BE), prulifloxacin (12 IR and -7.6 BE)	Leu6898, 1yr6930, Gly68/1, Pro6932, Lys6968, Lys6844, Gly6911, Met6929, GLy6969, Pro6932, Lys6968, Lys6844, Leu6898, Lys6996, Glu7001, Lys6844, Lys6844, Lys6968, Asp6928, Met6929, Cys6913, Asp6897, Asn6841, Gly6871, Leu6898, Phe6947, Tyr6930, Asp6897, Asn6899, Pro6932, Asp6931	[46]

Note: BE - binding energy, HB - hydrogen bond, HP/HPI - hydrophobic interactions, NBI = non-bonding interactions, IR-interacting residues, EI- electrostatic interactions, CHB – carbon-hydrogen bond, VDW – van der Waals interactions. PS: π -sulfur; Pal: π -alkyl; PP: π - π ; PA: π -anion; PC: π -cation; Psi: π -sigma; Pam: π -amide; Pi-H = π -hydrogen bond, PA- π -alkyl; A-alkyl.

5.1. Papain-like protease (PLpro)/nsp3

Papain-like protease (PLpro)/nsp3 is a multidomain transmembrane protein with an active site containing catalytic triad residues (Cys-111, His-272 and Asp-286) in between thumb and palm protein domains (Figure-8). This protein is autocleaved from nsp3 protein via its intrinsic proteolytic activity. PLpro can also perform deISGylation of host proteins which could lead to inhibition of host innate immune response [18, 40]. Due to its key role in viral replication and disease pathogenesis, it represents a promising drug target [52]. The docking score and the prediction of the molecular interactions showed that phytochemicals oleanolic acid, 3β -acetoxyolean-12-en-27-oic, and isovitexin could efficiently interact with the PLpro mainly by hydrogen bond [55]. Another study showed that catechins from green tea can interact to the S1 ubiquitin-binding site of PLpro which might lead to inhibition of its protease enzymatic function as well as abrogation of SARS-CoV-2 inhibitory role on interferon-stimulated gene system [18](Table 1).

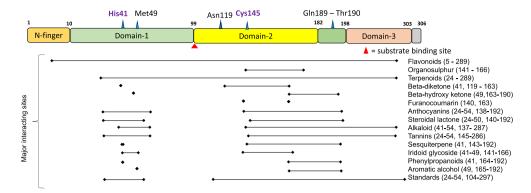


Fig. 9. The interaction sites of several classes of phytocompounds on different domains of SARS-CoV-2 3-chymotrypsin like protease (3CLpro) including the catalytic dyad residues (His-41 and Cys-145; shown in purple). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) (3CLpro domain organization is adapted from Joshi et al., 2020 [40])



Fig. 10. Molecular structure of SARS-CoV-2 RNA dependent RNA polymerase (RdRp) and the interaction sites of flavonoids and and terpenoids on its different domains(protein domain organization is adapted from Zhang et al., 2020[120])

5.2. 3-chymotrypsin-like protease (3-CL pro)/nsp5

The 3CLpro, also called as viral main protease (or nsp5), consists of N-terminal finger domain (1–9 amino acids), domain-1 (10–99 amino acids), domain-2 (100–182 amino acids) and the C-terminal domain-3 (amino acid residues 198–303) [40,94]. The catalytic dyad consists of His-41 and Cys-145 (Fig. 9). The dimerization of 3-CLpro is required for its proteolytic activity.

In-silico screening followed by molecular docking analyses suggested that the phytochemicals bisdemethoxycurcumin, scutellarin, desmethoxycurcumin, quercetin, myricetin, luteolin and mundulinol could potentially inhibit 3-CL pro as these compounds exhibit low binding energy [25,73]. Another study recommended certain compounds such as catechin, naringenin, kaempferol, glucosides, quercetin, and epicatechin-gallate as potential inhibitors of 3CLpro [43]. The phytocompounds like melitric acid-A, salvianolic acid-A, withanoside-V, and a few bioactive compounds from Calendula officinalis showed higher binding affinities with 3-CLpro than the N3 and lopinavir (standards). Also, they could have important interactions with the amino acid residues of the catalytic dyad [20,21,24,56,84]. In another study, a database of medicinal plants consisting of more than 30,000 potential anti-viral phytochemicals was screened, and the top hits that could inhibit SARS-CoV-2 3CLpro function and viral RNA replication were selected. These hits include myricitrin, 5,7,3',4'-tetrahydroxy2'-(3,3- dimethylallyl) isoflavone, methyl rosmarinate, (2S)-eriodictyol 7-O-(6"-O-galloyl)-beta-D-glucopyranoside, calceolarioside B, 3,5,7,3', 4',5'-hexahydroxy flavanone-3-O-beta-D-glucopyranoside, myricetin 3-O-beta-D-glucopyranoside, licoleafol, amaranthine, colistin, nelfinavir, and prulifloxacin [67]. Terpenoids (6-Oxoisoiguesterin and 22-hydroxyhopan-3-one) and some anthocyanin derivatives could stably interact with catalytic dyad and other crucial residues via hydrogen and hydrophobic interactions [27,31].Epigallocatechin, gallocatechin, and epicatechin from green tea also showed the potential to restrict the activity of 3-CL pro (Ghosh et al., 2020[101]). Similarly, several

phytocompounds bind firmly at the catalytic dyad (Cys-145 and His-41) and other crucial amino acid residues (Phe-140, Leu-141, Asn-142, Gly-143, Ser-144, Glu-166, His-163, His-164, Met-165, Leu-167, Pro-168, His-172, Asp-187, Arg-188) of 3-CL pro via making hydrogen bonds, hydrophobic bonds and other interactions (like Pi-alkyl and Pi-Pi T-shaped, van der Waals etc). Phytocompounds extracted from *Avincennia officinalis* and Iranian medicinal plants have also been proposed as inhibitors of 3-CLpro [51,57]. Tanshinones, a class of natural phytocompounds have been found to inhibit 3-CLpro activity of SARS-CoV *in-vitro* enzymatic assay studies (Park et al., 2012[115]). Likewise, as listed in Table-1 and shown in Figure-9, several phytocompounds have ability to block 3-CLpro preferentially by interacting with its domain-1 and domain-2.

5.3. RNA dependent RNA polymerase/nsp12

With the help of accessory subunits nsp7 and nsp8, the catalytic subunit nsp12 of RdRp plays a crucial role in the transcription cycle of SARS-CoV-2 [88]. Its structure is highly similar to SARS-CoV. The nucleotide triphosphate (NTP) entry channel comprises positively charged amino acid residues Lys-545, Arg-553, and Arg-555. The right hand-like structure of the RdRp domain is further divided into a finger-domain (398–581 and 628–687 amino acids), a palm-domain (582–627 amino acids). Two Zn ions are also required to stabilize three-dimensional structure of the RdRp [3,45] (Figure-10). Tyr-618, Asn-691, Met-755, Ile-756, Leu-757, Ser-759, Asp-760, Asp-761, Val-763, Phe-812, Cys-813 and Ser-814 are some of the amino acids residues that are crucial in interacting with the nsp7/8 complex. In addition, Asp-761 and Asp-762 are active site residues [3].

Several compounds have been analyzed *in-silico* against these important sites to investigate their possible antiviral viral targets for the SARS-CoV-2. Green tea polyphenols EGCG and theaflavin gallates including theaflavin-3-O-gallate (TF2a), theaflavin-3'-digallate (TF2b)

Table 2

Effect of phytocompounds on targeted SARS-CoV-2 proteins/replication/infection in cell-free and cell-based studies.

	Crude extract/compound	Virus/RNA/enzyme inhibition/cytotoxicity	Inhibitory assay	Dosage (IC ₅₀ ,	, EU50/UU50)	Referen
avon	oid					
1	Baicalein	3CLpro -	Invitro	IC ₅₀	$0.39\pm0.11~\mu\text{M}$	[50]
		SARS-CoV-2 replication	Vero cells	EC50	$2.92\pm0.06~\mu M$	[50]
		Cytotoxicity	Vero cells	CC ₅₀	>500 µM	[50]
2	Baicalin	3CLpro	In-vitro	IC ₅₀	$83.4\pm0.9~\mu\mathrm{M}$	[50]
3	Scutellarein	3CLpro	In-vitro	IC ₅₀	$5.80 \pm 0.22 \ \mu\text{M}$	[50]
ļ	Dihydromyricetin	3CLpro	In-vitro	IC ₅₀	$1.20 \pm 0.09 \ \mu M$	[50]
5		-			·	
	Quercetagetin	3CLpro	In-vitro	IC ₅₀	$1.24 \pm 0.14 \mu\text{M}$	[50]
	Myricetin	3CLpro	In-vitro	IC ₅₀	$2.86 \pm 0.23 \mu\text{M}$	[50]
	Baicalin	3CLpro (FRET)	In-vitro	IC ₅₀	$6.41\pm0.95~\mu\text{M}$	[78]
		Replication inhibition	Vero E6	EC_{50}	$27.87 \pm 12.95 \ \mu\text{M}$	[78]
		Cytotoxicity	Vero E6	CC ₅₀	>200 µM	[78]
	Baicalein	3CLpro (FRET)	In-vitro	IC ₅₀	$0.94\pm0.20~\mu\mathrm{M}$	[78]
		Replication	Vero E6	EC50	$2.94\pm1.19~\mu\mathrm{M}$	[78]
		Cytotoxicity	Vero E6	CC ₅₀	>200 µM	[78]
	Theaflavin	3CLpro (FRET)	In-vitro	IC ₅₀	8.44 μg/mL	[39]
	1 notifier the	Cytotoxicity	HEK293T	CC ₅₀	$>40 \ \mu g/mL$	[39]
	Municotin					
	Myricetin	3CLpro (FRET)	In-vitro	IC ₅₀	0.2 μM	[107]
	Baicalin	3CLpro (FRET)	In-vitro	IC ₅₀	34.71 μM	[103]
	Herbacetin	3CLpro (FRET)	In-vitro	IC ₅₀	53.90 μM	[103]
	Pectolinarin	3CLpro (FRET)	In-vitro	IC ₅₀	51.64 µM	[103]
rpei	noids					
	Glycycrrhizin (triterpenoid	3CLpro	In-vitro	IC ₅₀	30 µM (0.024 mg/mL)	[86]
	saponin)	Virus titer tit	Vero cells	TCID ₅₀	0.44 mg/mL	[86]
	r - /	Cytotoxicity	Vero cells	50	4 mg/mL (no cytotoxicity)	[86]
	Δ9-Tetrahydro cannabinol	Antiviral activity	Vero cells	EC50	13.17 μM	[97]
	27-1Cuanyuro CamilaDilloi	•			•	
	9	Cytotoxicity	Vero cells	CC ₅₀	29.34 µM	[97]
	Δ^9 -THC	Antiviral activity	Vero cells	EC ₅₀	10.25 μM	[97]
		Cytotoxicity	Vero cells	CC ₅₀	25.79 μM	[97]
	CBN	Antiviral activity	Vero cells	EC50	11.07 μM	[97]
		Cytotoxicity	Vero cells	CC ₅₀	19.9 μM	[97]
	CBD	Antiviral activity	Vero cells	EC ₅₀	7.91 µM	[97]
		Cytotoxicity	Vero cells	CC ₅₀	16.72 μM	[97]
	CBDA	Antiviral activity	Vero cells	EC ₅₀	37.61 µM	[97]
	CBDA	•			•	
		Cytotoxicity	Vero cells	CC ₅₀	59.53 μM	[97]
	Andrographolide	SARS-CoV2 infection in-	Vero E6	EC50	6.58 μM	[42]
		vitro				
		Plaque reduction	Vero E6	EC ₅₀	0.28 µM	
		Cytotoxicity		CC ₅₀	27.77 μΜ	
	Andrographolide	Plaque reduction	Calu-3 cells	EC50	0.034 (µM)	[72]
		Cytotoxicity	a) HepG2	CC ₅₀	a) 81.52 μM	
			b) imHC	CC ₅	b) 44.55 μM	
			c) HK-2	CC ₅	c) 34.11 μM	
			d) Caco-2	CC ₅	d) 52.30 μM	
			e) Calu-3	CC ₅	e) 58.03 μM	
			f) SH-SY5Y	CC ₅	f) 13.19 μM	
	A	CARC C-W Distriction			-	
	Arteether (sesquiterpene	SARS-CoV-2 infection	Vero E6	EC ₅₀	$31.86 \pm 4.72 \ \mu M$	F1 41
						[14]
	lactone)	Cytotoxicity	Vero E6	CC ₅₀	>200 µM	[14]
	lactone) Artemether (sesquiterpene	SARS-CoV-2 infection	Vero E6	EC ₅₀	$>200~\mu{ m M}$ 73.80 \pm 26.91 $\mu{ m M}$	[14] [14]
	Artemether (sesquiterpene lactone)	SARS-CoV-2 infection Cytotoxicity			$73.80 \pm 26.91 \ \mu M \\ {>}200 \ \mu M$	[14]
	Artemether (sesquiterpene	SARS-CoV-2 infection	Vero E6	EC ₅₀	$73.80 \pm 26.91 \ \mu M$	[14] [14]
	Artemether (sesquiterpene lactone)	SARS-CoV-2 infection Cytotoxicity	Vero E6 Vero E6	EC ₅₀ CC ₅₀	$73.80 \pm 26.91 \ \mu M \\ {>}200 \ \mu M$	[14] [14] [14]
	Artemether (sesquiterpene lactone) Artemisic acid (sesquiterpene lactone)	SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity	Vero E6 Vero E6 Vero E6 Vero E6	EC ₅₀ CC ₅₀ EC ₅₀ CC ₅₀	73.80 ± 26.91 μM >200 μM >100 μM >200 μM	[14] [14] [14] [14] [14]
	Artemether (sesquiterpene lactone) Artemisic acid (sesquiterpene lactone) Artemisinin (sesquiterpene	SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection	Vero E6 Vero E6 Vero E6 Vero E6 Vero E6	EC_{50} CC_{50} EC_{50} CC_{50} EC_{50}	$\begin{array}{l} 73.80 \pm 26.91 \ \mu M \\ > 200 \ \mu M \\ > 100 \ \mu M \\ > 200 \ \mu M \\ 64.45 \pm 2.58 \ \mu M \end{array}$	[14] [14] [14] [14] [14] [14]
	Artemether (sesquiterpene lactone) Artemisic acid (sesquiterpene lactone) Artemisinin (sesquiterpene lactone)	SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity	Vero E6 Vero E6 Vero E6 Vero E6 Vero E6 Vero E6	EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} CC_{50}	73.80 \pm 26.91 μ M >200 μ M >100 μ M >200 μ M 64.45 \pm 2.58 μ M >200 μ M	[14] [14] [14] [14] [14] [14] [14]
	Artemether (sesquiterpene lactone) Artemisic acid (sesquiterpene lactone) Artemisinin (sesquiterpene lactone) Artemisone (sesquiterpene	SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection	Vero E6 Vero E6 Vero E6 Vero E6 Vero E6 Vero E6 Vero E6	EC_{50} CC_{50} EC_{50} EC_{50} EC_{50} EC_{50} EC_{50}	$\begin{array}{l} 73.80 \pm 26.91 \ \mu M \\ > 200 \ \mu M \\ > 100 \ \mu M \\ > 200 \ \mu M \\ 64.45 \pm 2.58 \ \mu M \\ > 200 \ \mu M \\ 49.64 \pm 1.85 \ \mu M \end{array}$	[14] [14] [14] [14] [14] [14] [14] [14]
	Artemether (sesquiterpene lactone) Artemisic acid (sesquiterpene lactone) Artemisinin (sesquiterpene lactone) Artemisone (sesquiterpene lactone)	SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity	Vero E6 Vero E6 Vero E6 Vero E6 Vero E6 Vero E6 Vero E6 Vero E6	EC_{50} EC_{50} EC_{50} EC_{50} CC_{50} EC_{50} EC_{50} CC_{50}	$\begin{array}{l} 73.80 \pm 26.91 \ \mu M \\ > 200 \ \mu M \\ > 100 \ \mu M \\ > 200 \ \mu M \\ 64.45 \pm 2.58 \ \mu M \\ > 200 \ \mu M \\ 49.64 \pm 1.85 \ \mu M \\ > 200 \ \mu M \end{array}$	[14] [14] [14] [14] [14] [14] [14] [14]
	Artemether (sesquiterpene lactone) Artemisic acid (sesquiterpene lactone) Artemisinin (sesquiterpene lactone) Artemisone (sesquiterpene lactone) Dihydroartemisinin	SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection	Vero E6 Vero E6 Vero E6 Vero E6 Vero E6 Vero E6 Vero E6 Vero E6 Vero E6	$\begin{array}{c} EC_{50} \\ CC_{50} \\ EC_{50} \\ CC_{50} \\ EC_{50} \\ EC_{50} \\ EC_{50} \\ CC_{50} \\ EC_{50} \\ EC_{50} \end{array}$	$\begin{array}{l} 73.80 \pm 26.91 \ \mu M \\ > 200 \ \mu M \\ > 100 \ \mu M \\ > 200 \ \mu M \\ 64.45 \pm 2.58 \ \mu M \\ > 200 \ \mu M \\ 49.64 \pm 1.85 \ \mu M \\ > 200 \ \mu M \\ 13.31 \pm 1.24 \ \mu M \end{array}$	 [14]
	Artemether (sesquiterpene lactone) Artemisic acid (sesquiterpene lactone) Artemisinin (sesquiterpene lactone) Artemisone (sesquiterpene lactone) Dihydroartemisinin (sesquiterpene lactone)	SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity	Vero E6 Vero E6	$\begin{array}{c} EC_{50} \\ CC_{50} \\ EC_{50} \\ CC_{50} \\ EC_{50} \\ CC_{50} \\ EC_{50} \\ CC_{50} \\ CC_{50} \\ EC_{50} \\ EC_{50} \\ CC_{50} \end{array}$	$\begin{array}{l} 73.80 \pm 26.91 \ \mu M \\ > 200 \ \mu M \\ > 100 \ \mu M \\ 64.45 \pm 2.58 \ \mu M \\ > 200 \ \mu M \\ 49.64 \pm 1.85 \ \mu M \\ > 200 \ \mu M \\ 13.31 \pm 1.24 \ \mu M \\ 31.44 \pm 0.73 \ \mu M \end{array}$	[14] [14] [14] [14] [14] [14] [14] [14]
	Artemether (sesquiterpene lactone) Artemisic acid (sesquiterpene lactone) Artemisinin (sesquiterpene lactone) Artemisone (sesquiterpene lactone) Dihydroartemisinin	SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection	Vero E6 Vero E6 Vero E6 Vero E6 Vero E6 Vero E6 Vero E6 Vero E6 Vero E6	$\begin{array}{c} EC_{50} \\ CC_{50} \\ EC_{50} \\ CC_{50} \\ EC_{50} \\ EC_{50} \\ EC_{50} \\ CC_{50} \\ EC_{50} \\ EC_{50} \end{array}$	$\begin{array}{l} 73.80 \pm 26.91 \ \mu M \\ > 200 \ \mu M \\ > 100 \ \mu M \\ > 200 \ \mu M \\ 64.45 \pm 2.58 \ \mu M \\ > 200 \ \mu M \\ 49.64 \pm 1.85 \ \mu M \\ > 200 \ \mu M \\ 13.31 \pm 1.24 \ \mu M \end{array}$	 [14]
	Artemether (sesquiterpene lactone) Artemisic acid (sesquiterpene lactone) Artemisinin (sesquiterpene lactone) Artemisone (sesquiterpene lactone) Dihydroartemisinin (sesquiterpene lactone)	SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity	Vero E6 Vero E6	$\begin{array}{c} EC_{50} \\ CC_{50} \\ EC_{50} \\ CC_{50} \\ EC_{50} \\ CC_{50} \\ EC_{50} \\ CC_{50} \\ EC_{50} \\ EC_{50} \\ EC_{50} \\ CC_{50} \end{array}$	$\begin{array}{l} 73.80 \pm 26.91 \ \mu M \\ > 200 \ \mu M \\ > 100 \ \mu M \\ 64.45 \pm 2.58 \ \mu M \\ > 200 \ \mu M \\ 49.64 \pm 1.85 \ \mu M \\ > 200 \ \mu M \\ 13.31 \pm 1.24 \ \mu M \\ 31.44 \pm 0.73 \ \mu M \end{array}$	[14] [14] [14] [14] [14] [14] [14] [14]
	Artemether (sesquiterpene lactone) Artemisic acid (sesquiterpene lactone) Artemisinin (sesquiterpene lactone) Artemisone (sesquiterpene lactone) Dihydroartemisinin (sesquiterpene lactone) Artesunate (sesquiterpene lactone)	SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity	Vero E6 Vero E6	$\begin{array}{c} EC_{50} \\ CC_{50} \\ EC_{50} \\ EC_{50} \\ CC_{50} \end{array}$	$\begin{array}{l} 73.80 \pm 26.91 \ \mu M \\ > 200 \ \mu M \\ > 100 \ \mu M \\ > 200 \ \mu M \\ 64.45 \ \pm 2.58 \ \mu M \\ > 200 \ \mu M \\ 49.64 \ \pm 1.85 \ \mu M \\ > 200 \ \mu M \\ 13.31 \ \pm 1.24 \ \mu M \\ 31.44 \ \pm 0.73 \ \mu M \\ 12.98 \ \pm 5.30 \ \mu M \\ 55.08 \ \pm 2.32 \ \mu M \end{array}$	[14] [14] [14] [14] [14] [14] [14] [14]
	Artemether (sesquiterpene lactone) Artemisic acid (sesquiterpene lactone) Artemisinin (sesquiterpene lactone) Artemisone (sesquiterpene lactone) Dihydroartemisinin (sesquiterpene lactone) Artesunate (sesquiterpene lactone) Arteannuin (sesquiterpene	SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection	Vero E6 Vero E6	$\begin{array}{c} EC_{50} \\ CC_{50} \\ EC_{50} \\ EC_{50} \end{array}$	$\begin{array}{l} 73.80 \pm 26.91 \ \mu M \\ > 200 \ \mu M \\ > 100 \ \mu M \\ > 200 \ \mu M \\ 64.45 \pm 2.58 \ \mu M \\ > 200 \ \mu M \\ 49.64 \pm 1.85 \ \mu M \\ > 200 \ \mu M \\ 13.31 \pm 1.24 \ \mu M \\ 31.44 \pm 0.73 \ \mu M \\ 12.98 \pm 5.30 \ \mu M \\ 55.08 \pm 2.32 \ \mu M \\ 10.28 \pm 1.12 \ \mu M \end{array}$	[14] [14] [14] [14] [14] [14] [14] [14]
	Artemether (sesquiterpene lactone) Artemisic acid (sesquiterpene lactone) Artemisinin (sesquiterpene lactone) Artemisone (sesquiterpene lactone) Dihydroartemisinin (sesquiterpene lactone) Artesunate (sesquiterpene lactone) Arteannuin (sesquiterpene lactone)	SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity	Vero E6 Vero E6	$\begin{array}{c} EC_{50} \\ CC_{50} \\ EC_{50} \\ CC_{50} \\ CC_{50} \\ CC_{50} \\ EC_{50} \\ CC_{50} \end{array}$	$\begin{array}{l} 73.80 \pm 26.91 \ \mu M \\ > 200 \ \mu M \\ > 100 \ \mu M \\ > 200 \ \mu M \\ 64.45 \pm 2.58 \ \mu M \\ > 200 \ \mu M \\ 49.64 \pm 1.85 \ \mu M \\ > 200 \ \mu M \\ 13.31 \pm 1.24 \ \mu M \\ 31.44 \pm 0.73 \ \mu M \\ 12.98 \pm 5.30 \ \mu M \\ 55.08 \pm 2.32 \ \mu M \\ 10.28 \pm 1.12 \ \mu M \\ 71.13 \pm 2.50 \ \mu M \end{array}$	[14] [14] [14] [14] [14] [14] [14] [14]
	Artemether (sesquiterpene lactone) Artemisic acid (sesquiterpene lactone) Artemisinin (sesquiterpene lactone) Artemisone (sesquiterpene lactone) Dihydroartemisinin (sesquiterpene lactone) Artesunate (sesquiterpene lactone) Arteannuin (sesquiterpene	SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection	Vero E6 Vero E6	$\begin{array}{c} EC_{50} \\ CC_{50} \\ EC_{50} \\ EC_{50} \\ CC_{50} \\ EC_{50} \\ CC_{50} \\$	$\begin{array}{l} 73.80 \pm 26.91 \ \mu M \\ > 200 \ \mu M \\ > 100 \ \mu M \\ > 200 \ \mu M \\ 64.45 \pm 2.58 \ \mu M \\ > 200 \ \mu M \\ 49.64 \pm 1.85 \ \mu M \\ > 200 \ \mu M \\ 13.31 \pm 1.24 \ \mu M \\ 31.44 \pm 0.73 \ \mu M \\ 12.98 \pm 5.30 \ \mu M \\ 55.08 \pm 2.32 \ \mu M \\ 10.28 \pm 1.12 \ \mu M \\ 71.13 \pm 2.50 \ \mu M \end{array}$	[14] [14] [14] [14] [14] [14] [14] [14]
	Artemether (sesquiterpene lactone) Artemisic acid (sesquiterpene lactone) Artemisinin (sesquiterpene lactone) Artemisone (sesquiterpene lactone) Dihydroartemisinin (sesquiterpene lactone) Artesunate (sesquiterpene lactone) Arteannuin (sesquiterpene lactone)	SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity	Vero E6 Vero E6	$\begin{array}{c} EC_{50} \\ CC_{50} \\ EC_{50} \\ CC_{50} \\ CC_{50} \\ CC_{50} \\ EC_{50} \\ CC_{50} \end{array}$	$\begin{array}{l} 73.80 \pm 26.91 \ \mu M \\ > 200 \ \mu M \\ > 100 \ \mu M \\ > 200 \ \mu M \\ 64.45 \pm 2.58 \ \mu M \\ > 200 \ \mu M \\ 49.64 \pm 1.85 \ \mu M \\ > 200 \ \mu M \\ 13.31 \pm 1.24 \ \mu M \\ 31.44 \pm 0.73 \ \mu M \\ 12.98 \pm 5.30 \ \mu M \\ 55.08 \pm 2.32 \ \mu M \\ 10.28 \pm 1.12 \ \mu M \\ 71.13 \pm 2.50 \ \mu M \\ 71.13 \pm 2.50 \ \mu M \\ 1.25 \ \mu M \ (SARS \ CoV2\gamma) \end{array}$	[14] [14] [14] [14] [14] [14] [14] [14]
	Artemether (sesquiterpene lactone) Artemisic acid (sesquiterpene lactone) Artemisinin (sesquiterpene lactone) Artemisone (sesquiterpene lactone) Dihydroartemisinin (sesquiterpene lactone) Artesunate (sesquiterpene lactone) Arteannuin (sesquiterpene lactone)	SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection	Vero E6 Vero E6	$\begin{array}{c} EC_{50} \\ CC_{50} \\ EC_{50} \\ EC_{50} \\ CC_{50} \\ EC_{50} \\ CC_{50} \\$	$\begin{array}{l} 73.80 \pm 26.91 \ \mu M \\ > 200 \ \mu M \\ > 100 \ \mu M \\ > 200 \ \mu M \\ 64.45 \ \pm 2.58 \ \mu M \\ > 200 \ \mu M \\ 49.64 \ \pm 1.85 \ \mu M \\ > 200 \ \mu M \\ 13.31 \ \pm 1.24 \ \mu M \\ 31.44 \ \pm 0.73 \ \mu M \\ 12.98 \ \pm 5.30 \ \mu M \\ 55.08 \ \pm 2.32 \ \mu M \\ 10.28 \ \pm 1.12 \ \mu M \\ 71.13 \ \pm 2.50 \ \mu M \\ 1.13 \ \pm 2.50 \ \mu M \\ 1.25 \ \mu M \ (SARS \ CoV2\gamma) \\ 0.85 \ \mu M \ (SARS \ CoV2\alpha) \end{array}$	[14] [14] [14] [14] [14] [14] [14] [14]
	Artemether (sesquiterpene lactone) Artemisic acid (sesquiterpene lactone) Artemisinin (sesquiterpene lactone) Artemisone (sesquiterpene lactone) Dihydroartemisinin (sesquiterpene lactone) Artesunate (sesquiterpene lactone) Arteannuin (sesquiterpene lactone)	SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection	Vero E6 Vero E6	$\begin{array}{c} EC_{50} \\ CC_{50} \\ EC_{50} \\ EC_{50} \\ CC_{50} \\ EC_{50} \\ CC_{50} \\$	$\begin{array}{l} 73.80 \pm 26.91 \ \mu M \\ > 200 \ \mu M \\ > 100 \ \mu M \\ > 200 \ \mu M \\ 64.45 \pm 2.58 \ \mu M \\ > 200 \ \mu M \\ 49.64 \pm 1.85 \ \mu M \\ > 200 \ \mu M \\ 13.31 \pm 1.24 \ \mu M \\ 31.44 \pm 0.73 \ \mu M \\ 12.98 \pm 5.30 \ \mu M \\ 55.08 \pm 2.32 \ \mu M \\ 10.28 \pm 1.12 \ \mu M \\ 71.13 \pm 2.50 \ \mu M \\ 71.13 \pm 2.50 \ \mu M \\ 1.25 \ \mu M \ (SARS \ CoV2\gamma) \\ 0.85 \ \mu M \ (SARS \ CoV2\beta) \end{array}$	[14] [14] [14] [14] [14] [14] [14] [14]
	Artemether (sesquiterpene lactone) Artemisic acid (sesquiterpene lactone) Artemisinin (sesquiterpene lactone) Artemisone (sesquiterpene lactone) Dihydroartemisinin (sesquiterpene lactone) Artesunate (sesquiterpene lactone) Arteannuin (sesquiterpene lactone) Cannabidinol	SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection	Vero E6 Vero E6	$\begin{array}{c} EC_{50} \\ CC_{50} \\ EC_{50} \\ EC_{50} \\ CC_{50} \\ EC_{50} \\ CC_{50} \\$	$\begin{array}{l} 73.80 \pm 26.91 \ \mu M \\ > 200 \ \mu M \\ > 100 \ \mu M \\ > 200 \ \mu M \\ 64.45 \ \pm 2.58 \ \mu M \\ > 200 \ \mu M \\ 49.64 \ \pm 1.85 \ \mu M \\ > 200 \ \mu M \\ 13.31 \ \pm 1.24 \ \mu M \\ 31.44 \ \pm 0.73 \ \mu M \\ 12.98 \ \pm 5.30 \ \mu M \\ 55.08 \ \pm 2.32 \ \mu M \\ 10.28 \ \pm 1.12 \ \mu M \\ 71.13 \ \pm 2.50 \ \mu M \\ 1.13 \ \pm 2.50 \ \mu M \\ 1.25 \ \mu M \ (SARS \ CoV2\gamma) \\ 0.85 \ \mu M \ (SARS \ CoV2\alpha) \end{array}$	[14] [14] [14] [14] [14] [14] [14] [14]
nnii	Artemether (sesquiterpene lactone) Artemisic acid (sesquiterpene lactone) Artemisinin (sesquiterpene lactone) Artemisone (sesquiterpene lactone) Dihydroartemisinin (sesquiterpene lactone) Artesunate (sesquiterpene lactone) Arteannuin (sesquiterpene lactone) Cannabidinol	SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity	Vero E6 Vero E6	EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} EC_{50} CC_{50} EC_{50} EC_{50} CC_{50} EC_{50} EC_{50} CC_{50} EC_{50}	73.80 \pm 26.91 μ M >200 μ M >100 μ M >200 μ M 64.45 \pm 2.58 μ M >200 μ M 49.64 \pm 1.85 μ M >200 μ M 13.31 \pm 1.24 μ M 31.44 \pm 0.73 μ M 12.98 \pm 5.30 μ M 55.08 \pm 2.32 μ M 10.28 \pm 1.12 μ M 71.13 \pm 2.50 μ M 71.13 \pm 2.50 μ M 1.25 μ M (SARS CoV2) 0.85 μ M (SARS CoV2) 0.86 μ M (SARS CoV2)	<pre>[14] [14] [14] [14] [14] [14] [14] [14]</pre>
nnii	Artemether (sesquiterpene lactone) Artemisic acid (sesquiterpene lactone) Artemisinin (sesquiterpene lactone) Artemisone (sesquiterpene lactone) Dihydroartemisinin (sesquiterpene lactone) Artesunate (sesquiterpene lactone) Arteannuin (sesquiterpene lactone) Cannabidinol	SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection	Vero E6 Vero E6	$\begin{array}{c} EC_{50} \\ CC_{50} \\ EC_{50} \\ EC_{50} \\ CC_{50} \\ EC_{50} \\ CC_{50} \\$	$\begin{array}{l} 73.80 \pm 26.91 \ \mu M \\ > 200 \ \mu M \\ > 100 \ \mu M \\ > 200 \ \mu M \\ 64.45 \pm 2.58 \ \mu M \\ > 200 \ \mu M \\ 49.64 \pm 1.85 \ \mu M \\ > 200 \ \mu M \\ 13.31 \pm 1.24 \ \mu M \\ 31.44 \pm 0.73 \ \mu M \\ 12.98 \pm 5.30 \ \mu M \\ 55.08 \pm 2.32 \ \mu M \\ 10.28 \pm 1.12 \ \mu M \\ 71.13 \pm 2.50 \ \mu M \\ 71.13 \pm 2.50 \ \mu M \\ 1.25 \ \mu M \ (SARS \ CoV2\gamma) \\ 0.85 \ \mu M \ (SARS \ CoV2\beta) \end{array}$	[14] [14] [14] [14] [14] [14] [14] [14]
nniı	Artemether (sesquiterpene lactone) Artemisic acid (sesquiterpene lactone) Artemisinin (sesquiterpene lactone) Artemisone (sesquiterpene lactone) Dihydroartemisinin (sesquiterpene lactone) Artesunate (sesquiterpene lactone) Arteannuin (sesquiterpene lactone) Cannabidinol	SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity	Vero E6 Vero E6	EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} EC_{50} CC_{50} EC_{50} EC_{50} CC_{50} EC_{50} EC_{50} CC_{50} EC_{50}	73.80 \pm 26.91 μ M >200 μ M >100 μ M >200 μ M 64.45 \pm 2.58 μ M >200 μ M 49.64 \pm 1.85 μ M >200 μ M 13.31 \pm 1.24 μ M 31.44 \pm 0.73 μ M 12.98 \pm 5.30 μ M 55.08 \pm 2.32 μ M 10.28 \pm 1.12 μ M 71.13 \pm 2.50 μ M 71.13 \pm 2.50 μ M 1.25 μ M (SARS CoV2) 0.85 μ M (SARS CoV2) 0.86 μ M (SARS CoV2)	 [14] [14]
nnii	Artemether (sesquiterpene lactone) Artemisic acid (sesquiterpene lactone) Artemisinin (sesquiterpene lactone) Artemisone (sesquiterpene lactone) Dihydroartemisinin (sesquiterpene lactone) Artesunate (sesquiterpene lactone) Arteannuin (sesquiterpene lactone) Cannabidinol	SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity	Vero E6 Vero E6	EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} CC_{50} EC_{50} EC_{50} CC_{50} EC_{50} EC_{50} CC_{50} EC_{50} EC_{50} CC_{50} EC_{50}	73.80 \pm 26.91 μ M >200 μ M >100 μ M >200 μ M 64.45 \pm 2.58 μ M >200 μ M 49.64 \pm 1.85 μ M >200 μ M 13.31 \pm 1.24 μ M 31.44 \pm 0.73 μ M 12.98 \pm 5.30 μ M 55.08 \pm 2.32 μ M 10.28 \pm 1.12 μ M 71.13 \pm 2.50 μ M 71.13 \pm 2.50 μ M 1.25 μ M (SARS CoV2) 0.85 μ M (SARS CoV2) 0.86 μ M (SARS CoV2)	<pre>[14] [14] [14] [14] [14] [14] [14] [14]</pre>
	Artemether (sesquiterpene lactone) Artemisic acid (sesquiterpene lactone) Artemisinin (sesquiterpene lactone) Artemisone (sesquiterpene lactone) Dihydroartemisinin (sesquiterpene lactone) Arteannuin (sesquiterpene lactone) Arteannuin (sesquiterpene lactone) Cannabidinol	SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity	Vero E6 Vero E7 Vero E6 Vero E	$EC_{50} \\ CC_{50} \\ EC_{50} \\ EC_{$	73.80 \pm 26.91 μ M >200 μ M >100 μ M >200 μ M 64.45 \pm 2.58 μ M >200 μ M 49.64 \pm 1.85 μ M >200 μ M 13.31 \pm 1.24 μ M 31.44 \pm 0.73 μ M 12.98 \pm 5.30 μ M 55.08 \pm 2.32 μ M 10.28 \pm 1.12 μ M 71.13 \pm 2.50 μ M 71.13 \pm 2.50 μ M 1.25 μ M (SARS CoV2 γ) 0.85 μ M (SARS CoV2 β) 0.63 μ M (SARS CoV2 β) 0.63 μ M (SARS CoV2 β) 0.63 μ M (SARS CoV2 β) 0.14 mg/mL 0.13 μ mol/L	[14] [14] [14] [14] [14] [14] [14] [14]
nnii	Artemether (sesquiterpene lactone) Artemisic acid (sesquiterpene lactone) Artemisinin (sesquiterpene lactone) Artemisone (sesquiterpene lactone) Dihydroartemisinin (sesquiterpene lactone) Artesunate (sesquiterpene lactone) Arteannuin (sesquiterpene lactone) Cannabidinol	SARS-CoV-2 infection Cytotoxicity SARS-CoV-2 infection Cytotoxicity	Vero E6 Vero E6	$\begin{array}{c} EC_{50} \\ CC_{50} \\ CC_{50} \\ EC_{50} \\ CC_{50} \\ EC_{50} \\$	73.80 \pm 26.91 µM >200 µM >100 µM >200 µM 64.45 \pm 2.58 µM >200 µM 49.64 \pm 1.85 µM >200 µM 13.31 \pm 1.24 µM 31.44 \pm 0.73 µM 12.98 \pm 5.30 µM 55.08 \pm 2.32 µM 10.28 \pm 1.12 µM 71.13 \pm 2.50 µM 1.25 µM (SARS CoV2 γ) 0.85 µM (SARS CoV2 β) 0.63 µM (SARS CoV2) 0.14 mg/mL	 [14] [14]

Table 2 (continued)

Sl no	Crude extract/compound	Virus/RNA/enzyme inhibition/cytotoxicity	Inhibitory assay	Dosage (IC ₅₀ /E	C ₅₀ /CC ₅₀)	Referenc
Flavon	oid					
36	Remidesivir	Cytotoxicity	Beas-2B cell	CC ₅₀	>100	[108]
37	Corilagin (RAI-S-37)	Cytotoxicity	HEK293 cell transfected	EC ₅₀	$3.33 \pm 0.52 \ \mu mol/L$	[108]
38	Corilagin (RAI-S-37)	SARS-CoV-2 RdRp inhibition	with $nsp7 + nsp8 + nsp12$	EC ₅₀	$1.25\pm0.52\ \mu mol/L$	[108]
	Corilagin (RAI-S-37)	SARS-CoV-2 RdRp inhibition	HEK293 transfected with	EC ₅₀	$3.65\pm0.56\ \mu mol/L$	[108]
		SARS-CoV-2 RdRp inhibition	nsp7 + nsp8 + nsp12	EC ₅₀	$1.84\pm0.27~\mu mol/L$	
		SARS-CoV-2 RdRp inhibition	HEK293 transfected with	EC ₅₀	0.13 µmol/L	
		SARS-CoV-2 infection	nsp7 + nsp8+nsp12/			
			nsp10+nsp14			
			HEK293 transfected with			
			nsp7 + nsp8+nsp12/			
			nsp10+nsp14			
			Vero cells			
39	EGCG	3CLpro (FRET)	In-vitro	IC ₅₀	7.58 μg/mL	[39]
		Cytotoxicity	HEK293T	CC ₅₀	>40 µg/mL	
Others						
10	Cepharanthine (alkaloid)	SARS-CoV2 infection	Vero cells	EC ₅₀	2.8 μM	[38]
			** 11	CC ₅₀	12.9 μM	F0.67
1	Emetine (alkaloid)	SARS-CoV2 infection	Vero cells	EC ₅₀	0.000397 μM	[38]
				CC ₅₀	$1.53 \text{ e} + 6 \mu \text{M}$	F (0 3
2	6-Gingerol (beta-hydroxy	SARS-CoV2 infection	Vero E6	EC ₅₀	>100 µM	[42]
	ketone)	Cytotxicity	Vero E6	CC ₅₀	$>100 \ \mu M$	
13	Panduratin A	SARS-CoV2 post infection	Vero E6	EC ₅₀	0.81 µM	[42]
	(Diarylheptanoid)		Vero E6	CC ₅₀	14.71 μM	
		SARS-CoV2 pre-entry	Vero E6	EC50	5.30 µM	
			Vero E6	CC ₅₀	43.47 μM	
		Plaque reduction	Vero E6	EC ₅₀	0.078 µM	
		SARS-CoV2 infection	Calu3	EC50	2.04 μM	
		Cytotoxicity	Calu3	CC ₅₀	43.92 μM	
		Plaque reduction	Calu3	EC ₅₀	0.53 μΜ	
14	Emetine hydrochloride	SARS-CoV-2 virus reduction	Vero E6	EC ₅₀	0.46 µM	[111]
	(alkaloid)	CPE inhibition	Vero E6	EC ₅₀	1.5625 μM	[111]
		Cytotoxicity	Vero E6	CC ₅₀	56.46 µM	[111]
45	Phillyrin (KD-1)	Anti-HCoV-229E	Vero E6	EC ₅₀	64.53 μg/ml	[113]
	Lignan)	Cytopathic effect	Vero E6	EC50	63.90 μg/ml	[113]
		Cytotoxicity	Vero E6	CC ₅₀	1959 µg/ml	[113]
			Huh7	CC ₅₀	1034 µg/ml	[113]
		Reduce the production of	Vero E6	-CPE	(250, 125, and 62.5 μg/ml of KD1)	[113]
		proinflammatory cytokines		(cytopathic effect)	TNF- α , IL-6, IL-1 β , MCP-1, and IP-10) at the mRNA levels.	
16	Cepharanthine	SARS-CoV-2 RNA	VeroE6/TMPRSS2	EC ₅₀	0.35 μM,	[114]
	(bisbenzylisoquinoline	Cytotoxicity	VeroE6/TMPRSS2	CC ₅₀	25.1 μM	[114]
47	alkaloid) Lycorine (alkaloid)	SARS-CoV-2 infection	Vero cells	EC ₅₀	0.878 μΜ	[112]
8	Digoxin (cardiotonic	SARS-CoV-2 infection	Vero cells	EC ₅₀	0.043 μM	[110]
	glycoside)	Cytotoxicity	Vero cells	CC ₅₀	>10 µM	[110]
19	Ouabain (Cardiac glycoside	SARS-CoV-2 infection	Vero cells	EC ₅₀	0.024 μM	[110]
	similar to digitoxin)	Cytotoxicity	Vero cells	CC ₅₀	>10 µM	[110]
50	Herbacetin	3CLpro (FRET)		IC ₅₀	33.17 μM	[71]
51	Pectolinarin	3Clpro (FRET)	in-vitro	IC ₅₀	27.45 μM	
52	Rhoifolin	3CLLpro (FRET)	in-vitro in-vitro	IC ₅₀	37.78 μM	
	extracts			**		
53	Andrographis paniculata extract	SARS-CoV2 infection	Vero E6	EC ₅₀	68.06 μg/ml	[42]
		Cytotoxicity		CC ₅₀	>100 µg/ml	
54	Andrographis paniculata extract	Plaque assay	Calu-3 cells	EC ₅₀	0.036 (µg/mL)	[72]
5	Zingiber officinale rhizome	Inhibition of SARS-CoV2	Vero E6	EC ₅₀	29.19 µg/ml	[42]
	extract	infection				
		Cytotoxicity	Vero cells	CC ₅₀	52.75 µg/ml	
		Plaque reduction	Vero cells	EC ₅₀	1.45 μg/ml	
56	Boesenbergia rotunda (extract)	SARS-CoV2 infection	Vero cells	EC ₅₀	3.62 µg/mL	[42]
			Vero cells	CC ₅₀	28.06 μg/mL	
57	Scutellaria baicalensis extract	3CLpro assay	In-vitro	IC ₅₀	$8.52 \pm 0.54 \ \mu g/mL$	[50]
58	Pomegranate peel extract	SARS CoV2 RNA replication	Vero cells	EC50	$0.74\pm0.36~\mu\mathrm{g/mL}$	[50]
		Cytotoxicity	Vero cells	CC ₅₀	>500 µg/mL	-
		RBD-ACE2 binding assay	In-vitro	IC ₅₀	0.06 mg/mL	[80]
		(ELISA)				

and theaflavin 3,3'-digallate (TF3) have the ability to form stable bound conformations with the RdRp protein and could interact with the catalytic site indicating their potential to serve as inhibitors [81].

Several alkaloids from *Argemone mexicana* and *Clerodendrum* spp. could be a potential inhibitory candidates against the SARS-CoV-2 RdRp protein [41,62] (Table-1).

5.4. RNA helicase (nsp13)

It is a multi-functional magnesium ion-dependent protein that belongs to the helicase superfamily-1 (SF-1) and has 5' to 3' based RNA and DNA unwinding activities [121]. Compounds such as tomentodiplacone-B, sesquiterpene glycoside, rhamnetin, osajin, and silydianin have been shown to exhibit better docking results than those of remdesivir, nelfinavir, and prulifloxacin (standards) [46] (Table-1).

5.5. Endoribonuclease/nsp15

Endoribonuclease/nsp15 cleaves RNA genome into multiple subgenomic RNAs (sgRNAs). Based on the docking score, phytocompounds asparoside-C, asparoside-D, asparoside-F, racemoside-A, and rutin (from *Asparagus racemosus*) were found to be effective against nsp15 endoribonuclease [16]. The 100 nano-second based molecular dynamic simulation study and molecular mechanics-generalized born solvent accessibility calculations demonstrated that some phytoconstituents such as withanolide-N, ashwagandanolide, withanoside-X, and dihydrowithaferin-A from *Withania somnifera* could potentially suppress the nsp15 endoribonuclease activity of SARS-CoV-2 [17]. Another study revealed the binding capacity of silymarin, sarsasapogenin, ursonic acid, rosmarinic acid, curcumin, ajmalicine, novobiocin, aranotin, gingerol, and alpha terpinyl acetate to nsp15 protein [106].

5.6. 2'-O-methyltransferase (2'-O-MTase)/nsp16

This is a highly conserved protein of coronaviruses. It is known to play an essential role in viral replication and evasion of host cell innate immunity [64]. Phytocompounds like eryvarin-M, osajin, raddeanine, and silydianin have been found to exhibit the best docking results [46] (Table-1).

6. SARS-CoV-2 assembly inhibitors

Structural proteins, membrane, envelope and nucleocapsid, play essential roles in the assembly and formation of the infectious virion particles. Therefore, targeting these proteins could be a promising approach to inhibit virus multiplication and transmission.

6.1. Envelope protein

E protein (8–12 kDa) is involved in host cell binding, penetration, virion assembly, and budding. It is a transmembrane ion channel protein with an N-terminal ectodomain and an endodomain at C-terminus. Structural insights revealed that compounds from *Withania somnifera* could block the ion channel activity of E protein by binding to the pore region [5].

6.2. Nucleocapsid protein

N protein is a 419 amino acid protein with conserved N-terminal domain (NTD), Serine/Arginine rich motif (SR) domain, central linker

region, and a C-terminal domain (CTD). It plays an essential role in viral genome packaging and efficient replication. The N protein is highly immunogenic and is produced in high amounts during infection [22,96].

An *in-silico* screening study revealed emodin, anthrarufin, alizarine, aloe-emodin, and dantron as phytocompounds with good binding affinity with the N-terminal domain of N protein. ADMET prediction revealed that anthrarufin, emodin, aloe-emodin, alizarine, and dantron could be potential candidate drugs to treat COVID-19 [69].

7. In vitro and in vivo anti-SARS-CoV-2 activities of plant-derived compounds

Plant-based polyphenols (such as phenolic acids, anthocyanins, lignans, flavonoids, and stilbenes) and carotenoids (such as xanthophylls and carotenes) are being used to generate antivirals against various coronaviruses. Recent data on plant-derived compounds showed their potent and significant SARS-CoV-2 inhibition activity in-vitro and in-vivo. A comprehensive study, conducted by Jia-Tsrong Jan et al., screened 190 supplements as well as traditional medicines from Chinese herbs to identify the SARS-CoV-2 infection inhibitors in-vitro in Vero-E6 cells. in-vitro enzymatic assays were coupled with in-silico modelling to confirm the antiviral activity against SARS-CoV-2 protease and RNAdependent-RNA-polymerase (Jan et al., 2021). Further, the efficacy of these promising compounds was tested in a hamster challenge model. This study identified the anti-SARS-CoV-2 activity in nelfinavir, Perilla frutescens, mefloquine, and Mentha haplocalyx [38]. This observation is very encouraging and warrants an urgent need for testing several other potent phytocompounds in small animal models to speed up the process of developing COVID-19 therapeutics.

A wide range of natural compounds has been proposed to be used in treating COVID-19(either alone or in combination with FDA-approved drugs) including ginkgolic acid, shiraiachrome A, resveratrol, and baicalein. Moreover, ginkgolic acid is a specific covalent inhibitor of SARS-CoV-2 cysteine proteases, targeting PLpro and 3-CLpro *in-vitro* [93]; and [15] (please refer Table 2 and 3 for antiviral and immunomodulatory functions of small molecule inhibitors).

In another study, 122 Thai natural products for anti-SARS-CoV-2 activity were screened using fluorescence-based nucleoprotein detection combined with viral plaque reduction assay. This work showed that the extract of Boesenbergia rotunda and its phytochemical compound, panduratin A reduce SARS-CoV-2 infectivity in Vero E6 cells at pre-entry and post-infection phases [42]. Artemisinin B, an antimalarial drug derived from Chinese herbs, also showed anti-SARS-CoV-2 in these cells by blocking SARS-CoV-2 at the post-entry level [14].

Anti-SARS-CoV-2 activity evaluation of *Andrographis paniculata* extract and Andrographolide in human lung epithelial-carcinoma cellline (Calu-3) using a high-content imaging platform in combination with plaque reduction assay showed potent inhibition of SARS-CoV-2 infection with minimal cytotoxicity [72]).

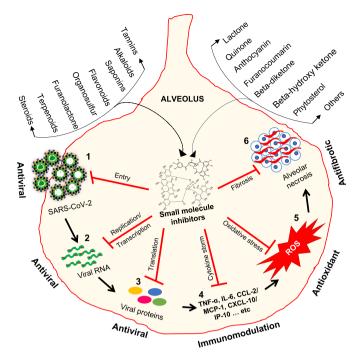
In another study, Glycyrrhizin showed potential antiviral activity against SARS-CoV-2 by inhibiting the viral 3-CL pro that is essential for viral replication [86]. Similarly, several other plant-derived compounds including tea polyphenols EGCG, theaflavin, baicalein, and shuanghuanglian inhibit 3-CLpro activity and the viral replication in Vero E6 cell line [39,50,78]. Overall, the potent antiviral and anti-inflammatory activities of plant-derived compounds further warrants need of developing phytochemical-based SARS-CoV-2 treatment options.

Table 3

Effect of small molecule inhibitors on host factors as well as on different cytokines (immunomodulatory functions)

Sl no	Compound/ plant	Properties	Biological/immune-action	Studies in In-vivo models	References
01	Quercetin	Impacts on ACE2 and Furin	a) Gene silencing b) Expression studies c) Transgenic mouse models	Quercetin affected ACE2 expression. In addition, it was found that it could alter the expression of 98 of 332 (30%) genes which encode human proteins that serve as target for the SARS-CoV-2	[29]
02	citral and lemon grass	anti-inflammatory action	Inhibits IL-6, IL-10, TNF- α , IL-4, IFN Υ and IL-1 β , either release or production and NLRP3 inflammasome activation via blocking activites of proteins, NF-kB,p65, ATP-induced caspase-1	In macrophages challenges with LPS-induced mouse ASLN model	[98,104]
03	Ginsenoside	anti-inflammatory action	Down-regulates IL-6, TNF- α , mRNA expression via blocking the activation of NF-kB	II/R induced lung injury in-vivo	[102]
04	Withaferin-A	Immunosuppressant	Affect the release of TNF-α, IL-1α, IL-1β, IL-5, IL-3, IL-6, IL-8, IP-10, CCL2, MCP-1, SDF-1α, MIP-1α, MIP-1β and GM-CSF.	ATP-stimulated monocyte-derived THP-1 cells. Also mouse and human islet cells – <i>in vitro</i> .	[77,99]
05	Kaempferol	anti-inflammatory action	TNF- $\alpha,$ IL-1 $\beta,$ IL-6, IL-8 via inhibiting the activation of PKC θ	human mast cells	[105]
06	EGCG	Regulation of cytokine driven signaling pathways	Downregulating the IL-6 and IL-6 driven JAK- STAT pathway Similarly by affecting IL-1 driven MAPK pathway Reduced the protein levels of the receptors including CD11a, CXCR3, and CCR2 in human T- lymphocyte cells	Primary human melanocytes, human T cells or purified CD8 $^+$ T cells from PBMC	[18,60]
		-	Prevents the cytokine storm and mucous hypersecretion in COVID-19		[81]
07	Cannabidol	anti-inflammatory and immunosuppressive	These effects are mediated by inhibition of pro- inflammatory cytokine release (e.g. tumor necrosis factor-a, Interferon-gamma, IL-1b, IL-6, and IL-17) and stimulation of several anti- inflammatory cytokine production (e.g. IL-4, IL-5, IL-10, and IL-13).	COVID 19 Patients	https://clinicaltr ials.gov/ct2/sh ow/NCT04731116
08 09	F _{THC} F _{CBD}		Only low anti-inflammatory activity showed reduction of IL-6 and IL-8 secretion levels	Epithelial cancer cell lines (A549) Epithelial cancer cell lines (A549)	[6] [6]
	- 000		from lung epithelial cells with an IC50 values of 3.45 and $3.49 \ \mu\text{g/mL}$ respectively.		L-J

7.1. Clinical evaluation of plant-based therapeutics


In-depth systemic randomized and non-randomized ongoing clinical trials of single plant species (Tinospora cordifolia, Nigella sativa, Boswellia serrata, Acai Palm Berry, Caesalpinia spinosa, Cinchona/Stevia, Cannabis sp, Brazilian Green Propolis), plant-based bioactive compounds (EGCG, quercetin, silvmarin, hesperidin, escin, colchicine, resveratrol, cannabidiol, melatonin etc.), as well as poly-herbal formulations (ArtemiC, Drug - ADAPT-232, Dietary supplement: Inflammation-I, Inflammation-II, Inflammation-III, Tomeka, Shanshamani Vati Plus, Dietary Supplement: QuadraMune (TM), Ayurvedic formulation, Dietary Supplement: Cretan IAMA, Individualized-Chinese herbal medicine) showed their potential to interfere with COVID-19 pathogenesis via inhibiting virus replication, virus-mediated pneumonia as well as inmmune dysregulation such as cytokine storming (Supplementary Table). Certain antiinflammatory herbal medicines from Andrographis paniculata, Citrus spp, and Cuminum cyminum can relieve fever and cough in COVID-19 patients [37]). Few other medicinal plants such as Glycyrrhiza glabra, Thymus vulgaris, Allium sativum, Althea officinalis, Panax ginseng and constituents of Camellia sinensis may modulate the immune system and

provide supportive therapy against COVID-19 via upregulating levels of interleukins (IL-1 α , IL-1 β), monocytes, and lymphocytes in patients [4, 37]. Apart from these, green tea polyphenols can prevent airway blockage by reducing mucin hypersecretion, a phenomenon seen in COVID-19 patients [81]. Moreover, several plant species act as good source of expectorants as they can elevate the water contents of respiratory mucus or diluent of mucus and thus also contributing towards prohibiting airway blockage [26,44].

8. Conclusions

Since December 2019, SARS-CoV-2 infection and transmission have been a huge concern worldwide. Currently available therapies inhibit SARS-CoV-2, however, they could be associated with severe side effects as well as drug-nutrition interactions which could be harmful to severely infected patients.

On other hand, the complementary approach including plantderived compounds could be used in controlling COVID-19 in the future. Our review herein presented a compilation of *in-silico*, *in-vitro*, cell culture, and *in-vivo* studies on numerous plants, plant formulations,

Fig. 11. The possible multifaceted roles of plant-derived small molecules in inhibiting SARS-CoV-2 mediated lung damage caused by viral replication and its related pathological consequences.

and their bioactive constituents that may block the life cycle of SARS-CoV-2 in all possible ways. Beyond the antiviral functions, plantderived therapeutic drugs show diverse pharmacological actions (such as anti-inflammatory, antioxidant, anti-fibrotic activities), the remarkable tolerance, stability in the systemic circulation which could offer a greater advantage in reducing the risk of COVID-19 induced pathogenesis without much of side effects (Fig. 11). As a proof of concept, certain plant-based therapeutics are under different phases of clinical trials.

Taken together, this review article provides a summary of diverse mechanisms of action of plant-based therapeutics to mitigate COVID-19. The knowledge obtained here could be applied to further understand the COVID-19 replication cycle and related antiviral mechanisms.

Declaration of competing interest

The authors declare that there is no conflict of interest.

Funding

No funding was involved in the creation of the manuscript.

Ethical approval statement

As this is a review article, ethical approval is not applicable here.

CRediT authorship contribution statement

B. Uma Reddy: Conceptualization, Methodology, Supervision, Validation, Writing – original draft, Writing – review & editing. **Nanda Kishore Routhu:** Writing – review & editing, Writing – original draft. **Anuj Kumar:** Conceptualization, Data curation, Methodology, Writing – original draft, Writing – review & editing.

Data availability

Data derived from public domain resources. No new data was used for the research described in this article.

Acknowledgements

We thank Mayra Segura for proofreading and language editing.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.micpath.2022.105512.

References

- I. Abdelli, F. Hassani, S.B. Brikci, S. Ghalem, In-silico study the inhibition of angiotensin converting enzyme 2 receptor of COVID-19 by *Ammoides verticillata* components harvested from Western Algeria, J. Biomol. Struct. Dyn. 39 (9) (2021) 3263–3276, https://doi.org/10.1080/07391102.2020.1763199.
- [2] D. Agagündüz, M.N. Çelik, M.E.C. Dazıroglu, R. Capasso, Emergent drug and nutrition interactions in COVID-19: a comprehensive narrative review, Nutrients 13 (2021) 1550, https://doi.org/10.3390/nu13051550.
- [3] J. Ahmad, S. Ikram, F. Ahmad, I.U. Rehman, M. Mushtaq, SARS-CoV-2 RNA Dependent RNA polymerase (RdRp) - a drug repurposing study, Heliyon 6 (7) (2020), e04502, https://doi.org/10.1016/j.heliyon.2020.e04502.
- [4] S. Alam, M. Sarker, S. Afrin, F.T. Richi, C. Zhao, J.R. Zhou, I.N. Mohamed, Traditional herbal medicines, bioactive metabolites, and plant products against COVI-19: update on clinical trials and mechanism of actions, Front. Pharmacol. 12 (2021) 671498, https://doi.org/10.3389/fphar.2021.671498.
- [5] R.A. Alharbi, Structure insights of SARS-CoV-2 open state envelope protein and inhibiting through active phytochemical of ayurvedic medicinal plants from *Withania somnifera*, Saudi J. Biol. Sci. 28 (6) (2021) 3594–3601, https://doi.org/ 10.1016/j.sjbs.2021.03.036.
- [6] S.M. Anil, N. Shalev, A.C. Vinayaka, S. Nadarajan, D. Namdar, E. Belausov, I. Shoval, K.A. Mani, G. Mechrez, H. Koltai, Cannabis compounds exhibit antiinflammatory activity in vitro in COVID-19 related inflammation in lung epithelial cells and proinflammatory activity in macrophages, Sci. Rep. 11 (1) (2021) 1462, https://doi.org/10.1038/s41598-021-81049-2.
- [7] S. Arokiyaraj, A. Stalin, B.S. Kannan, H. Shin, Geranii herba as a Potential Inhibitor of SARS-CoV-2 main 3CLpro, spike RBD, and regulation of unfolded protein response: an in-silico approach, Antibiotics (Basel) 9 (12) (2020) 863, https://doi.org/10.3390/antibiotics9120863.PMID.33287311.
- [8] V. Armijos-Jaramillo, J. Yeager, C. Muslin, Y. Perez-Castillo, SARS-CoV-2, an evolutionary perspective of interaction with human ACE2 reveals undiscovered amino acids necessary for complex stability, Evol. Appl. 13 (9) (2020) 2168–2178, https://doi.org/10.1111/eva.12980.
- [9] R.A. Al-Horani, S. Kar, Potential Anti-SARS-CoV-2 Therapeutics that target the post-entry stages of the viral life cycle: a comprehensive review, Viruses 12 (10) (2020) 1092, https://doi.org/10.3390/v12101092.
- [10] M. Alazmi, O. Motwalli, Molecular basis for drug repurposing to study the interface of the S protein in SARS-CoV-2 and human ACE2 through docking, characterization, and molecular dynamics for natural drug candidates, J. Mol. Model. 26 (12) (2020) 338, https://doi.org/10.1007/s00894-020-04599-8.
- [11] R. Alexpandi, J.F. De Mesquita, S.K. Pandian, A.V. Ravi, Quinolines-based SARS-CoV-2 3CLpro and RdRp inhibitors and spike-RBD-ACE2 inhibitor for drugrepurposing against COVID-19: an in-silico analysis, Front. Microbiol. 11 (2020) 1796. https://doi: 10.3389/fmicb.2020.01796.
- [12] A. Basu, A. Sarkar, U. Maulik, Molecular docking study of potential phytochemicals and their effects on the complex of SARS-CoV2 spike protein and human ACE2, Sci. Rep. 10 (1) (2020) 17699, https://doi.org/10.1038/s41598-020-74715-4.
- [13] D. Bestle, M.R. Heindl, H. Limburg, T.V.L. Van, O. Pilgram, H. Moulton, D. A. Stein, K. Hardes, M. Eickmann, O. Dolnik, C. Rohde, H.D. Klenk, W. Garten, T. Steinmetzer, E. Böttcher-Friebertshäuser, TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells, Life Sci. Alliance 3 (9) (2020), e202000786, https://doi.org/10.26508/lsa.202000786.
- [14] R. Cao, H. Hu, Y. Li, X. Wang, M. Xu, J. Liu, H. Zhang, Y. Yan, L. Zhao, W. Li, T. Zhang, D. Xiao, X. Guo, Y. Li, J. Yang, Z. Hu, M. Wang, W. Zhong, Anti-SARS-CoV-2 potential of artimisinins in-vitro, ACS Infect. Dis. 6 (9) (2020) 2524–2531, https://doi.org/10.1021/acsinfecdis.0c00522.
- [15] Z. Chen, Q. Cui, L. Cooper, P. Zhang, H. Lee, Z. Chen, Y. Wang, X. Liu, L. Rong, R. Du, Ginkgolic acid and anacardic acid are specific covalent inhibitors of SARS-CoV-2 cysteine proteases, Cell Biosci. 11 (1) (2021) 45, https://doi.org/10.1186/ s13578-021-00564-x.
- [16] R.V. Chikhale, S.K. Sinha, R.B. Patil, S.K. Prasad, A. Shakya, N. Gurav, R. Prasad, S.R. Dhaswadikar, M. Wanjari, S.S. Gurav, *In-silico* investigation of

phytochemicals from *Asparagus racemosus* as plausible antiviral agent in COVID-19, J. Biomol. Struct. Dyn. (2020) 1–15, https://doi.org/10.1080/ 07391102.2020.1784289.

- [17] R.V. Chikhale, S.S. Gurav, R.B. Patil, S.K. Sinha, S.K. Prasad, A. Shakya, S. K. Shrivastava, N.S. Gurav, R.S. Prasad, Sars-cov-2 host entry and replication inhibitors from Indian ginseng: an in-silico approach, J. Biomol. Struct. Dyn. (2020) 1–12, https://doi.org/10.1080/07391102.2020.1778539.
- [18] M. Chourasia, P.R. Koppula, A. Battu, M.M. Ouseph, A.K. Singh, EGCG, a green tea catechin, as a potential therapeutic agent for symptomatic and asymptomatic SARS-CoV-2 infection, Molecules 26 (2021) 1200, https://doi.org/10.3390/ molecules26051200.
- [19] B. Coutard, C. Valle, X. de Lamballerie, B. Canard, N.G. Seidah, E. Decroly, The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade, Antivir. Res. 176 (2020) 104742, https://doi.org/10.1016/j.antiviral.2020.104742.
- [20] F.M.A. da Silva, da Silva KPA, L.P.M. de Oliveira, E.V. Costa, H.H. Koolen, M.L. B. Pinheiro, A.Q.L. de Souza, A.D.L. de Souza, Flavonoid glycosides and their putative human metabolites as potential inhibitors of the SARS-CoV-2 main protease (Mpro) and RNA-dependent RNA polymerase (RdRp), Mem. Inst. Oswaldo Cruz 115 (2020), e200207, https://doi.org/10.1590/0074-02760200207
- [21] P. Das, R. Majumder, M. Mandal, P. Basak, In-Silico approach for identification of effective and stable inhibitors for COVID-19 main protease (M pro) from flavonoid based phytochemical constituents of Calendula officinalis, J. Biomol. Struct. Dyn. (2020) 1–16, https://doi.org/10.1080/07391102.2020.1796799.
- [22] B. Ding, Y. Qin, M. Chen, Nucleocapsid proteins: roles beyond viral RNA packaging, Wiley Interdiscip. Rev. RNA 7 (2) (2016) 213–226, https://doi.org/ 10.1002/wrna.1326.
- [23] M. Donoghue, F. Hsieh, E. Baronas, K. Godbout, M. Gosselin, N. Stagliano, M. Donovan, B. Woolf, K. Robison, R. Jeyaseelan, R.E. Breitbart, S. Acton, A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9, Circ. Res. 87 (5) (2000) E1–E9, https://doi.org/ 10.1161/01.res.87.5.e1.
- [24] O.O. Elekofehinti, O. Iwaloye, C.D. Famusiwa, O. Akinseye, J.B.T. Rocha, Identification of main protease of coronavirus SARS-CoV-2 (Mpro) inhibitors from Melissa officinalis, Curr. Drug Discov. Technol. 17 (2020) 1–19, https://doi. org/10.2174/1570163817999200918103705.
- [25] H.R.A. El-Mageed, D.A. Abdelrheem, M.O. Rafi, M.T. Sarker, K. Al-Khafaji, M. J. Hossain, R. Capasso, T.B. Emran, In silico evaluation of different flavonoids from medicinal plants for their potency against SARS-CoV-2, Biologics 1 (2021) 416–434, https://doi.org/10.3390/biologics1030024.
- [26] Z. Esam, Protective potential of expectorants against COVID-19, Med. hypoth. 142 (2020) 109844–202044, https://doi.org/10.1016/j.mehy.2020.109844.
- [27] Z. Fakhar, B. Faramarzi, S. Pacifico, S. Faramarzi, Anthocyanin derivatives as potent inhibitors of SARS-CoV-2 main protease: an in-silico perspective of therapeutic targets against COVID-19 pandemic, J. Biomol. Struct. Dyn. (2020) 1–13, https://doi.org/10.1080/07391102.2020.1801510.
- [28] J. Gao, Z. Tian, Yang X. Breakthrough, Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies, Biosci. Trends 14 (2020) 72–73, https://doi.org/10.5582/ bst.2020.01047.
- [29] G.V. Glinsky, Tripartite combination of candidate pandemic mitigation agents: vitamin D, quercetin, and estradiol manifest properties of medicinal agents for targeted mitigation of the COVID-19 pandemic defined by genomics-guided tracing of SARS-CoV-2 targets in human cells, Biomedicines 8 (5) (2020) 129, https://doi.org/10.3390/biomedicines8050129.
- [30] J. Grein, N. Ohmagari, D. Shin, G. Diaz, E. Asperges, A. Castagna, T. Feldt, G. Green, M.L. Green, F.X. Lescure, E. Nicastri, R. Oda, K. Yo, E. Quiros-Roldan, A. Studemeister, J. Redinski, S. Ahmed, J. Bernett, D. Chelliah, D. Chen, S. Chihara, S.H. Cohen, J. Cunningham, A. D'Arminio-Monforte, S. Ismail, H. Kato, G. Lapadula, E. L'Her, T. Maeno, S. Majumder, M. Massari, M. Mora-Rillo, Y. Mutoh, D. Nguyen, E. Verweij, A. Zoufaly, A.O. Osinusi, A. DeZure, Y. Zhao, L. Zhong, A. Chokkalingam, E. Elboudwarej, L. Telep, L. Timbs, I. Henne, S. Sellers, H. Cao, S.K. Tan, L. Winterbourne, P. Desai, R. Mera, A. Gaggar, R. P. Myers, D.M. Brainard, R. Childs, T. Flanigan, Compassionate use of remdesivir for patients with severe covid-19, N. Engl. J. Med. 382 (24) (2020) 2327–2336, https://doi.org/10.1056/NEJMoa2007016.
- [31] G.A. Gyebi, O.B. Ogunro, A.P. Adegunloye, O.M. Ogunyemi, S.O. Afolabi, Potential inhibitors of coronavirus 3-chymotrypsin-like protease (3CL pro): an insilico screening of alkaloids and terpenoids from African medicinal plants, J. Biomol. Struct. Dyn. 39 (9) (2021) 3396–3408, https://doi.org/10.1080/ 07391102.2020.
- [32] K. Hilpert, Is the gut microbiome a target for adjuvant treatment of COVID-19? Biologics 1 (2021) 285–299, https://doi.org/10.3390/biologics1030017.
- [33] I. Hamming, W. Timens, M. Bulthuis, A. Lely, G. Navis, V.H. Goor, Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis, J. Pathol. 203 (2004) 631–637, https://doi.org/10.1002/path.1570.
- [34] M. Hussain, N. Jabeen, A. Amanullah, A.A. Baig, B. Aziz, S. Shabbir, F. Raza, N. Uddin, Molecular docking between human TMPRSS2 and SARS-CoV-2 spike protein: conformation and intermolecular interactions, AIMS Microb. 6 (3) (2020) 350–360, https://doi.org/10.3934/microbiol.2020021.
- [35] M. Hoffmann, H. Kleine-Weber, S. Schroeder, N. Krüger, T. Herrler, S. Erichsen, T. S. Schiergens, G. Herrler, N.H. Wu, A. Nitsche, M.A. Müller, C. Drosten, S. Pöhlmann, SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is

blocked by a clinically proven protease inhibitor, Cell 181 (2) (2020) 271–280, https://doi.org/10.1016/j.cell.2020.02.052, e8.

- [36] M. Hoffmann, H. Kleine-Weber, S. Pöhlmann, A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells, Mol. Cell. 78 (4) (2020) 779–784, https://doi.org/10.1016/j.molcel.2020.04.022, e5.
- [37] A. Jalali, F. Dabaghian, H. Akbrialiabad, F. Foroughinia, M.M. Zarshenas, A pharmacology-based comprehensive review on medicinal plants and phytoactive constituents possibly effective in the management of COVID-19, Phytother Res. 35 (4) (2020) 1925–1938, https://doi.org/10.1002/ptr.6936.
- [38] J.T. Jan, T.J.R. Cheng, Y.P. Juang, H.H. Ma, Y.T. Wu, W.B. Yang, C.W. Cheng, X. Chen, T.H. Chou, J.J. Shie, W.C. Cheng, R.J. Chein, S.S. Mao, P.H. Liang, C. Ma, S.C. Hung, C.H. Wong, Identification of existing pharmaceuticals and herbal medicines as inhibitors of SARS-CoV-2 infection, Proc. Natl. Acad. Sci. U. S. A. 118 (5) (2021), e2021579118, https://doi.org/10.1073/pnas.2021579118.
- [39] M. Jang, Y.I. Park, Y.E. Cha, R. Park, S. Namkoong, J.I. Lee, J. Park, Tea polyphenols EGCG and theaflavin inhibit the activity of SARS-CoV-2 3CL-protease invitro, Evid-Based Compl. Alt. Med. 2020 (2000) 5630838, https://doi.org/ 10.1155/2020/5630838.
- [40] S. Joshi, M. Joshi, M.S. Degani, Tackling SARS-CoV-2: proposed targets and repurposed drugs, Future Med. Chem. 12 (17) (2020) 1579–1601, https://doi. org/10.4155/fmc-2020-0147.
- [41] P. Kar, N.R. Sharma, B. Singh, A. Sen, A. Roy, Natural compounds from Clerodendrum spp. as possible therapeutic candidates against SARS-CoV-2: an *in-silico* investigation, J. Biomol. Struct. Dyn. 19 (2020) 1–12, https://doi.org/ 10.4155/fmc-2020-0147.
- [42] P. Kanjanasirirat, A. Suksatu, S. Manopwisedjaroen, B. Munyoo, P. Tuchinda, K. Jearawuttanakul, S. Seemakhan, S. Charoensutthivarakul,
 P. Wongtrakoongate, N. Rangkasenee, S. Pitiporn, N. Waranuch, N. Chabang,
 P. Khemawoot, K. Sa-ngiamsuntorn, Y. Pewkliang, P. Thongsri,
 S. Chutipongtanate, S. Hongeng, S. Borwornpinyo, Thitithanyanont A High-content screening of Thai medicinal plants reveals Boesenbergia rotunda extract and its component Panduratin A as anti-SARS-CoV-2 agents, Sci. Rep. 10 (2020) 19963, https://doi.org/10.1038/s41598-020-77003-3.
- [43] S. Khaerunnisa, H. Kurniawan, R. Awaluddin, S. Suhartati, S. Soetjipto, Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study, Preprints (2020) 2020030226, https:// doi.org/10.20944/preprints202003.0226.v1.
- [44] M.A. Khan, Z.A. Khan, M. Charles, P. Pratap, A. Naeem, Z. Siddiqui, N. Naqvi, S. Srivastava, Cytokine storm and mucus hypersecretion in COVID-19: review of Mechanisms, J. Iflamm Res. 14 (2021) 175–189, https://doi.org/10.2147/JIR. S271292.
- [45] R.N. Kirchdoerfer, A.B. Ward, Structure of the SARS-CoV NSP12 polymerase bound to NSP7 and NSP8 co-factors, Nat. Commun. 10 (1) (2019) 2342, https:// doi.org/10.1038/s41467-019-10280-3.
- [46] K. Kousar, A. Majeed, F. Yasmin, W. Hussain, N. Rasool, Phytochemicals from selective plants have promising potential against SARS-CoV-2: investigation and corroboration through molecular docking, MD simulations, and quantum computations, BioMed Res. Int. (2020) 6237160, https://doi.org/10.1155/2020/ 6237160.
- [47] S.A. Kulkarni, S.K. Nagarajan, V. Ramesh, V. Palaniyandi, S.P. Selvam, T. Madhavan, Computational evaluation of major components from plant essential oils as potent inhibitors of SARS-CoV-2 spike protein, J. Mol. Struct. 1221 (2020) 128823, https://doi.org/10.1016/j.molstruc.2020.128823.
 [48] K.J.S. Kumar, M.G. Vani, C.S. Wang, C.C. Chen, Y.C. Chen, L.P. Lu, C.H. Huang, C.
- [48] K.J.S. Kumar, M.G. Vani, C.S. Wang, C.C. Chen, Y.C. Chen, L.P. Lu, C.H. Huang, C. S. Lai, S.Y. Wang, Geranium and lemon essential oils and their active compounds downregulate angiotensin-converting enzyme 2 (ACE2), a SARS-CoV-2 spike receptor-binding domain, in epithelial cells, Plants 9 (6) (2020) 770, https://doi.org/10.3390/plants9060770.
- [49] V. Kumar, J.K. Dhanjal, P. Bhargava, A. Kaul, J. Wang, H. Zhang, S.C. Kaul, R. Wadhwa, D. Sundar, Withanone and withaferin-A are predicted to interact with transmembrane protease serine 2 (TMPRSS2) and block entry of SARS-CoV-2 into cells, J. Biomol. Struct. Dyn. (2020) 1–13, https://doi.org/10.1016/j. phymed.2020.153317.
- [50] H. Liu, F. Ye, Q. Sun, H. Liang, C. Li, S. Li, R. Lu, B. Huang, W. Tan, L. Lai, Scutellaria baicalensis extract and baicalin inhibit replication of SARS CoV-2 and its 3C -like protease in-vitro, J. Enzym. Inhib. Med. Chem. 36 (1) (2021) 497–503, https://doi.org/10.1080/14756366.2021.1873977.
- [51] S. Mahmud, G.K. Paul, M. Afroze, S. Islam, S.B.R. Gupt, M.H. Razu, S. Biswas, S. Zaman, M.S. Uddin, M. Khan, N.A. Cacciola, T.B. Emran, M.A. Saleh, R. Capasso, J. Simal-Gandara, Efficacy of phytochemicals derived from Avicennia officinalis for the management of COVID-19: a combined in silico and biochemical study, Molecules 26 (8) (2021) 2210, https://doi.org/10.3390/ molecules26082210.
- [52] B.K. Maiti, Potential role of peptide-based antiviral therapy against SARSCoV-2 infection, ACS Pharmacol. Transl. Sci. 3 (2020) 783–785, https://doi.org/ 10.3389/fphar.2020.575444.
- [53] S. Maiti, A. Banerjee, Epigallocatechin gallate and theaflavin gallate interaction in SARS-CoV-2 spike-protein central channel with reference to the hydroxychloroquine interaction: bioinformatics and molecular docking study, Drug Dev. Res. 82 (1) (2020) 86–96, https://doi.org/10.1002/ddr.21730.
- [54] J.K. Millet, G.R. Whittaker, Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein, Proc. Natl. Acad. Sci. U.S.A. 111 (42) (2014) 15214–15219, https://doi.org/10.1073/ pnas.1407087111.
- [55] D. Mitra, D. Verma, B. Mahakur, A. Kamboj, R. Srivastava, S. Gupta, A. Pandey, B. Arora, K. Pant, P. Panneerselvam, A. Ghosh, D.P. Barik, P.K.D. Mohapatra,

Molecular docking and simulation studies of natural compounds *Vitex negundo* L. against papain-like protease (PL^{pro}) of SARS CoV-2 (coronavirus) to conquer the pandemic situation in the world, J. Biomol. Struct. Dyn. (2021) 1–22, https://doi.org/10.1080/07391102.2021.1873185.

- [56] P. Mondal, J. Natesh, A. Ajees, A. Salam, S. Thiyagarajan, S.M. Meeran, Traditional medicinal plants against replication, maturation and transmission targets of SARS-CoV-2: computational investigation, J. Biomol. Struct. Dyn. (2020) 1–18, https://doi.org/10.1080/07391102.2020.1842246.
- [57] S.S. Mousavi, A. Karami, T.M. Haghighi, S.G. Tumilaar, Fatimawali, R. Idroes, S. Mahmud, I. Celik, D. Ağagündüz, T.E. Tallei, T.B. Emran, R. Capasso, In silico evaluation of Iranian medicinal plant phytoconstituents as inhibitors against main protease and the receptor-binding domain of SARS-CoV-2, Molecules 26 (18) (2021) 5724, https://doi.org/10.3390/molecules26185724.
- [58] M. Muchtaridi, M. Fauzi, N.K.K. Ikram, A.M. Gazzali, H.A. Wahab, Natural flavonoids as potential angiotensin-converting enzyme 2 inhibitors for anti-SARS-CoV-2, Molecules 25 (17) (2020) 3980, https://doi.org/10.3390/ molecules25173980.
- [59] A.A.T. Naqvi, K. Fatima, T. Mohammad, U. Fatima, I.K. Singh, A. Singh, S.M. Atif, G. Hariprasad, G.M. Hasan, M.I. Hassan, Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: structural genomics approach, Biochim. Biophys. Acta (BBA) - Mol. Basis Dis. 1866 (10) (2020) 165878, https:// doi.org/10.1016/j.bbadis.2020.165878.
- [60] W. Ning, S. Wang, X. Dong, D. Liu, L. Fu, R. Jin, A. Xu, Epigallocatechin-3-gallate (EGCG) suppresses the Trafficking of Lymphocytes to epidermal melanocytes via inhibition of JAK2: its implication for Vitiligo treatment, Biol. Pharm. Bull. 38 (11) (2015) 1700–1706, https://doi.org/10.1248/bpb.b15-00331.
- [61] L.C. Nguyen, D. Yang, V. Nicolaescu, T.J. Best, H. Gula, D. Saxena, J.D. Gabbard, S.N. Chen, T. Ohtsuki, J.B. Friesen, N. Drayman, A. Mohamed, C. Dann, D. Silva, L. Robinson-Mailman, A. Valdespino, L. Stock, E. Suárez, K.A. Jones, S.A. Azizi, J. K. Demarco, W.E. Severson, C.D. Anderson, J.M. Millis, B.C. Dickinson, S. Tay, S. A. Oakes, G.F. Pauli, K.E. Palmer, The National COVID Cohort Collaborative Consortium, D.O. Meltzer, G. Randall, M.R. Rosner, Cannabidiol inhibits SARS-CoV-2 replication through induction of the host ER stress and innate immune responses, Sci. Adv. 8 (8) (2022), https://doi.org/10.1126/sciadv.abi6110.
- [62] K.B. Pandeya, A. Ganeshpurkar, M.K. Mishra, Natural RNA dependent RNA polymerase inhibitors: molecular docking studies of some biologically active alkaloids of *Argemone mexicana*, Med. Hypotheses 144 (2020) 109905, https:// doi.org/10.1016/j.mehy.2020.109905.
- [63] A. Paoloni-Giacobino, H. Chen, M.C. Peitsch, C. Rossier, S.E. Antonarakis, Cloning of the TMPRSS2 gene, which encodes a novel serine protease with transmembrane, LDLRA, and SRCR domains and maps to 21q22.3, Genomics 44 (3) (1997) 309–320, https://doi.org/10.1006/geno.1997.4845.
- [64] A. Paramasivam, RNA 2[']-O-methylation modification and its implication in COVID-19 immunity, Cell Death Dis. 6 (1) (2020) 118, https://doi.org/10.1038/ s41420-020-00358-z.
- [65] T.P. Peacock, D.H. Goldhill, J. Zhou, L. Baillon, R. Frise, O.C. Swann, R. Kugathasan, R. Penn, J.C. Brown, R.Y. Sanchez-David, L. Braga, M.
 K. Williamson, J.A. Hassard, E. Staller, B. Hanley, M. Osborn, M. Giacca, A.
 D. Davidson, D.A. Matthews, W.S. Barclay, The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets, Nat Microbiol 6 (7) (2021) 899–909, https://doi.org/10.1038/s41564-021-00908-w.
- [66] D.S.N.B.K. Prasanth, M. Murahari, V. Chandramohan, S.P. Panda, L.R. Atmakuri, C. Guntupalli, In silico identification of potential inhibitors from Cinnamon against main protease and spike glycoprotein of SARS CoV-2, J. Biomol. Struct. Dyn. (2020) 1–15, https://doi.org/10.1080/07391102.2020.1779129.
- [67] M.T.U. Qamar, S.M. Alqahtani, M.A. Alamri, L.L. Chen, Structural basis of SARS-CoV-2 3CL pro and anti-COVID-19 drug discovery from medicinal plants, J. Pharm. Anal. 10 (4) (2020) 313–319, https://doi.org/10.1016/j. jpha.2020.03.009.
- [68] N. Redondo, S. Zaldívar-López, J.J. Garrido, M. Montoya, SARS-CoV-2 accessory proteins in viral pathogenesis: knowns and unknowns, Front. Immunol. 12 (2021) 708264, https://doi.org/10.3389/fimmu.2021.708264.
- [69] R. Rolta, R. Yadav, D. Salaria, S. Trivedi, M. Imran, A. Sourirajan, D.J. Baumler, K. Dev, In-silico screening of hundred phytocompounds of ten medicinal plants as potential inhibitors of nucleocapsid phosphoprotein of COVID-19: an approach to prevent virus assembly, J. Biomol. Struct. Dyn. (2020) 1–18, https://doi.org/ 10.1080/07391102.2020.1804457.
- [70] I.O. Rosas, N. Bräu, M. Waters, R.C. Go, B.D. Hunter, S. Bhagani, D. Skiest, M. S. Aziz, N. Cooper, I.S. Douglas, S. Savic, T. Youngstein, L.D. Sorbo, A.C. Gracian, D.J.D.L. Zerda, A. Ustianowski, M. Bao, S. Dimonaco, E. Graham, B. Matharu, H. Spotswood, L. Tsai, A. Malhotra, Tocilizumab in hospitalized patients with severe covid-19 pneumonia, N. Engl. J. Med. 384 (16) (2021) 1503–1516, https://doi.org/10.1056/NEJMoa2028700.
- [71] M. Russo, S. Moccia, C. Spagnuolo, I. Tedesco, G.L. Russo, Roles of flavonoids against coronavirus infection, Chem. Biol. Interact. 328 (2020) 109211, https:// doi.org/10.1016/j.cbi.2020.109211.
- [72] K. Sa-ngiamsuntorn, A. Suksatu, Y. Pewkliang, P. Thongsri, P. Kanjanasirirat, S. Manopwisedjaroen, S. Charoensutthivarakul, P. Wongtrakoongate, S. Pitiporn, P. Khemawoot, S. Chutipongtanate, S. Borwornpinyo, A. Thitithanyanont, S. Hongeng, Anti-SARS-COV-2 activity of Andrographis paniculata extract and its major component Andrographolide in human lung epithelial cells and cytotoxicity evaluation in major organ cell representatives, J Nat Prod 84 (4) (2021) 1261–1270, https://doi.org/10.1021/acs.jnatprod.0c01324.
- [73] A. Sharma, S. Goyal, A.K. Yadav, P. Kumar, L. Gupta, In-silico screening of plantderived antivirals against main protease, 3CL pro and endoribonuclease, NSP15

proteins of SARS-CoV-2, J. Biomol. Struct. Dyn. (2020) 1–15, https://doi.org/10.1080/07391102.2020.1808077.

- [74] M.T. Sarker, A.Q.F. Hasan, M.O. Rafi, M.J. Hossain, H.R.A. El-Mageed, R. M. Elsapagh, R. Capasso, T.B. Emran, A comprehensive overview of the newly emerged COVID-19 pandemic: features, origin, genomics, epidemiology, treatment, and prevention, Biologics 1 (2021) 357–383, https://doi.org/ 10.3390/biologics1030021.
- [75] S.K. Sinha, A. Shakya, S.K. Prasad, S. Singh, N.S. Gurav, R.S. Prasad, S.S. Gurav, An in-silico evaluation of different saikosaponins for their potency against SARS-CoV-2 using NSP15 and fusion spike glycoprotein as targets, J. Biomol. Struct. Dyn. 39 (9) (2021) 3244–3255, https://doi.org/10.1080/ 07391102.2020.1762741.
- [76] E.J. Snijder, E. Decroly, J. Ziebuhr, The nonstructural proteins directing coronavirus RNA synthesis and processing, J. Adv. Virus Res. 96 (2016) 59–126, https://doi.org/10.1016/bs.aivir.2016.08.008.
- [77] J.A. SoRelle, T. Itoh, H. Peng, M.A. Kanak, K. Sugimoto, S. Matsumoto, M.F. Levy, M.C. Lawrence, B. Naziruddin, Withaferin A inhibits pro-inflammatory cytokine-induced damage to islets in culture and following transplantation, Diabetologia 56 (4) (2013) 814–824, https://doi.org/10.1007/s00125-012-2813-9.
 [78] H.X. Su, S. Yao, W.F. Zhao, M.J. Li, J. Liu, W.J. Shang, H. Xie, C.Q. Ke, H.C. Hu,
- [78] H.X. Su, S. Yao, W.F. Zhao, M.J. Li, J. Liu, W.J. Shang, H. Xie, C.Q. Ke, H.C. Hu, M.N. Gao, K.Q. Yu, H. Liu, J.S. Shen, W. Tang, L.K. Zhang, G.F. Xiao, L. Ni, D. W. Wang, J.P. Zuo, H.L. Jiang, F. Bai, Y. Wu, Y. Ye, Y.C. Xu, Anti-SARS-CoV-2 activities in-vitro of shuanghuanglian preparations and bioactive ingredients, Acta Pharmacol. Sin. 41 (2020) 1167–1177, https://doi.org/10.1038/s41401-020-0483-6.
- [79] R. Suručić, B. Tubić, M.P. Stojiljković, D.M. Djuric, M. Travar, M. Grabež, K. Šavikin, R. Škrbić, Computational study of pomegranate peel extract polyphenols as potential inhibitors of SARS-CoV-2 virus internalization, Mol. Cell. Biochem. 476 (2) (2021) 1179–1193, https://doi.org/10.1007/s11010-020-03981-7.
- [80] R. Suručić, M. Travar, M. Petkovic, B. Tubic, M.P. Stojiljković, M. Grabez, K. Savikin, G. Zdunic, R. Škrbić, Pomegranate peel extract polyphenols attenuate the SARS-CoV-2 S-glycoprotein binding ability to ACE2 Receptor: in-silico and invitro studies, Bioorg. Chem. 114 (2021) 105145, https://doi.org/10.1016/j. bioorg.2021.105145.
- [81] T.E. Tallei, Fatimawali, N.J. Niode, R. Idroes, B.M. Redwan Martin Zidan, S. Mitra, I. Celik, F. Nainu, D. Agagunduz, T.B. Emran, R. Capasso, A comprehensive review of the potential use of green tea polyphenols in the management of COVID-19, Evid. Based Complement. Alternat. Med. (2021) 7170736, https://doi.org/10.1155/2021/7170736.
- [82] B.T.P. Thuy, T.T.A. My, N.T.T. Hai, L.T. Hieu, T.T. Hoa, H.T.P. Loan, N.T. Triet, T. T.V. Anh, P.T. Quy, P.V. Tat, N.V. Hue, D.T. Quang, N.T. Trung, V.T. Tung, L. K. Huynh, N.T.A. Nhung, Investigation into SARS-CoV2 resistance of compounds in essential oil, ACS Omega 5 (2020) 8312–8320, https://doi.org/10.1021/ acsomega.0c00772.
- [83] S. Tong, Y. Su, Y. Yu, C. Wu, J. Chen, S. Wang, J. Jiang, Ribavirin therapy for severe COVID-19: a retrospective cohort study, Int. J. Antimicrob. Agents 56 (3) (2020) 106114, https://doi.org/10.1016/j.ijantimicag.2020.106114.
- [84] M.K. Tripathi, P. Singh, S. Sharma, T.P. Singh, A.S. Ethayathulla, P. Kaur, Identification of bioactive molecule from *Withania somnifera* (Ashwagandha) as SARS-CoV-2 main protease inhibitor, J. Biomol. Struct. Dyn. (2020) 1–14, https://doi.org/10.1080/07391102.2020.1790425.
- [85] V. Umashankar, S.H. Deshpande, H.V. Hegde, I. Singh, D. Chattopadhyay, Phytochemical moieties from Indian traditional medicine for targeting dual hotspots on SARS-CoV-2 spike protein: an integrative in-silico approach, Front. Med. 8 (2021) 672629, https://doi.org/10.3389/fmed.2021.672629.
- [86] L. van de Sand, M. Borman, M. Alt, L. Schipper, C.S. Heilingloh, E. Steinmann, D. Todt, U. Dittmer, C. Elsner, O. Witzke, A. Krawczyk, Glycyrrhizin effectively inhibits SARS-CoV-2 in-vitro by inhibiting the viral main protease, Viruses 13 (4) (2021) 609, https://doi.org/10.3390/v13040609.
- [87] S. Vardhan, S.K. Sahoo, *In-silico* ADMET and molecular docking study on searching potential inhibitors from limonoids and triterpenoids for COVID-19, Comput. Biol. Med. 124 (2020) 103936, https://doi.org/10.1016/j. compbiomed.2020.103936.
- [88] P. V'kovski, A. Kratzel, S. Steiner, H. Stalder, V. Thiel, Coronavirus biology and replication: implications for SARS-CoV-2, Nat. Rev. Microbiol. 19 (3) (2021) 155–170, https://doi.org/10.1038/s41579-020-00468-6.
- [89] Y. Wan, J. Shang, R. Graham, R.S. Baric, F. Li, Receptor recognition by novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS, J. Virol. 94 (2020), https://doi.org/10.1128/JVI.00127-20. Print 2020 Mar 17.
- [90] Y. Wang, D. Zhang, G. Du, R. Du, J. Zhao, Y. Jin, S. Fu, L. Gao, Z. Cheng, Q. Lu, Y. Hu, G. Luo, K. Wang, Y. Lu, H. Li, S. Wang, S. Ruan, C. Yang, C. Mei, Y. Wang, D. Ding, F. Wu, X. Tang, X. Ye, Y. Ye, B. Liu, J. Yang, W. Yin, A. Wang, G. Fan, F. Zhou, Z. Liu, X. Gu, J. Xu, L. Shang, Y. Zhang, L. Cao, T. Guo, Y. Wan, H. Qin, Y. Jiang, T. Jaki, F.G. Hayden, P.W. Horby, B. Cao, C. Wang, Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial, Lancet 395 (2020) 1569–1578, https://doi.org/10.1016/ S0140-6736(20)31022-9. https://clinicaltrials.gov.
- [91] C.C. Wen, Y.H. Kuo, J.T. Jan, P.H. Liang, S.Y. Wang, H.G. Liu, C.K. Lee, S. T. Chang, C.J. Kuo, S.S. Lee, C.C. Hou, P.W. Hsiao, S.C. Chien, L.F. Shyur, N. S. Yang, Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus, J. Med. Chem. 50 (17) (2007), https://doi.org/10.1021/jm070295s, 4087-95.
- [92] C. Wu, Y. Liu, Y. Yang, P. Zhang, W. Zhong, Y. Wang, Q. Wang, Y. Xu, M. Li, X. Li, M. Zheng, L. Chen, H. Li, Analysis of therapeutic targets for SARS-CoV-2 and

discovery of potential drugs by computational methods, Acta Pharm. Sin. B 10 (5) (2020) 766–788, https://doi.org/10.1016/j.apsb.2020.02.008.

- [93] L.J. Yang, R.H. Chen, S. Hamdoun, P. Coghi, J.P.L. Ng, D.W. Zhang, X. Guo, C. Xia, B.Y.K. Law, V.K.W. Wong, Corilagin prevents SARS-CoV-2 infection by targeting RBD-ACE2 binding, Phytomedicine 87 (2021) 153591, https://doi.org/ 10.1016/j.phymed.2021.153591.
- [94] H. Yang, M. Yang, Y. Ding, Y. Liu, Z. Lou, Z. Zhou, L. Sun, L. Mo, S. Ye, H. Pang, G. F. Gao, K. Anand, M. Bartlam, R. Hilgenfeld, Z. Rao, The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor, Proc. Natl. Acad. Sci. U.S.A. 100 (23) (2003) 13190–13195, https://doi.org/10.1073/pnas.1835675100.
- [95] P. Zhou, X.L. Yang, X.G. Wang, B. Hu, L. Zhang, W. Zhang, H.R. Si, Y. Zhu, B. Li, C.L. Huang, H.D. Chen, J. Chen, Y. Luo, H. Guo, R.D. Jiang, M.Q. Liu, Y. Chen, X. R. Shen, X. Wang, X.S. Zheng, K. Zhao, Q.J. Chen, F. Deng, L.L. Liu, B. Yan, F. X. Zhan, Y.Y. Wang, G.F. Xiao, Z.L. Shi, A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature 579 (7798) (2020), https://doi. org/10.1038/s41586-020-2012-7, 270-3.
- [96] R. Zhou, R. Zeng, Av Brunn, J. Lei, Structural characterization of the C-terminal domain of SARS-CoV-2 nucleocapsid protein, Mol. Biomed. 1 (2) (2020) 1–11, https://doi.org/10.3389/fmolb.2020.605236.
- [97] V. Raj, J.G. Park, K.H. Cho, P. Choi, T. Kim, J. Ham, J. Lee, Assessment of antiviral potencies of cannabinoids against SARS-CoV-2 using computational and in -vitro approaches, Int. J. Biol. Macromol. 168 (2021) 474-485, https://doi. org/10.1016/j.ijbiomac.2020.12.020.
- [98] T.F. Bachiega, J.M. Sforcin, Lemongrass and citral effect on cytokines production by murine macrophages, J. Ethnopharmacol 137 (1) (2011) 909–913, https:// doi.org/10.1016/j.jep.2011.07.021.
- [99] S Dubey, H Yoon, M.S. Cohen, P Nagarkatti, M Nagarkatti, D Karan, Withaferin A associated differential regulation of inflammatory cytokines, Front. Immunol. 9 (195) (2018) 1–10, https://doi.org/10.3389/fimmu.2018.00195.
- [100] S. Dhanasekaran, P.S. Pradeep, Scope of phytotherapeutics in targeting ACE2 mediated Host-Viral Interface of SARS-CoV2 that causes COVID-19, ChemRxiv (2020), https://doi.org/10.26434/chemrxiv.12089730.v1.
- [101] R Ghosh, A Chakraborty, A Biswas, S Chowdhuri, Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors - an in-silico docking and molecular dynamics simulation study, J. Biomol. Struct. Dyn. (2020) 1–13, https://doi.org/10.1080/07391102.2020.1779818.
- [102] Y. Jiang, Z. Zhou, Q.T. Meng, Q. Sun, W. Su, S. Lei, Z. Xia, Z.Y. Xia, Ginsenoside Rb1 treatment attenuates pulmonary inflammatory cytokine release and tissue injury following intestinal ischemia reperfusion injury in mice, Oxid. Med. Cell. Longev. (2015) 843721, https://doi.org/10.1155/2015/843721.
- [103] S. Jo, S Kim, D.Y. Kim, M.S. Kim, D.H. Shin, Flavonoids with inhibitory activity against SARS-CoV-2 3CLpro, J. Enzyme Inhib. Med. Chem. 35 (1) (2020) 1539–1544, https://doi.org/10.1080/14756366.2020.1801672.
- [104] S.M. Ka, J.C. Lin, T.J. Lin, F.C. Liu, L.K. Chao, C.L. Ho, L.T. Yeh, H.K. Sytwu, K. F. Hua, A. Chen, Citral alleviates an accelerated and severe lupus nephritis model by inhibiting the activation signal of NLRP3 inflammasome and enhancing Nrf2 activation, Arthritis Res. Ther. 17 (2015) 331, https://doi.org/10.1186/s13075-015-0844-6.
- [105] D. Kempuraj, B. Madhappan, S. Christodoulou, W. Boucher, J. Cao, N. Papadopoulou, C.L. Cetrulo, T.C. Theoharides, Flavonols inhibit proinflammatory mediator release, intracellular calcium ion levels and protein kinase C theta phosphorylation in human mast cells, Br. J. Pharmacol 145 (7) (2005) 934–944, https://doi.org/10.1038/sj. bjp.0706246.
- [106] S Kumar, P Kashyap, S Chowdhury, S Kumar, A Panwar, A Kumar, Identification of phytochemicals as potential therapeutic agents that binds to NSP15 protein target of coronavirus (SARS-CoV-2) that are capable of inhibiting virus replication, Phytomedicine 85 (2021) 153317, https://doi.org/10.3390/ plants9060770.
- [107] M. Kuzikov, E. Costanzi, J. Reinshagen, F. Esposito, L. Vangeel, M. Wolf, B. Ellinger, C. Claussen, G. Geisslinger, D. Iaconis, C. Talarico, C. Manelfi, R. Cannalire, G. Rossetti, J. Gossen, S. Albani, F. Musiani, K. Herzog, Y. Ye, B. Giabbai, N. Demitri, D. Jochmans, S.D. Jonghe, J. Rymenants, V. Summa,

E. Tramontano, A.R. Beccari, P. Leyssen, P. Storici, J. Neyts, P. Gribbon, A. Zaliani, Identification of inhibitors of SARS-CoV-2 3CL-Pro enzymatic activity using a small molecule in-vitro repurposing screen, ACS Pharmacol. Transl. Sci. 4 (3) (2021.) 1096–1110, https://doi.org/10.1021/acsptsci.0c00216.

- [108] Q. Li, D. Yi, X. Lei, X. Lei, J. Zhao, Y. Zhang, X. Cui, X. Xiao, T. Jiao, X. Dong, X. Zhao, H. Zeng, C. Liang, L. Ren, F. Guo, X. Li, J. Wang, S. Cen, Corilagin inhibits SARS-CoV-2 replication by targeting viral RNA-dependent RNA polymerase, Acta. Pharm. Sin. B 11 (6) (2021) 1555–1567.
- [109] R. Majumder, M. Mandal, Screening of plant-based natural compounds as a potential COVID-19 main protease inhibitor: an in silico docking and molecular dynamics simulation approach, J. Biomol. Struct. Dyn (2020) 1–16, https://doi. org/10.1016/j.arabjc.2021.103315.
- [110] J. Cho, Y.J. Lee, J.H. Kim, S.I. Kim, S.S. Kim, B.S. Choi, J.H. Choi, Antiviral activity of digoxin and ouabain against SARS-CoV-2 infection and its implication for COVID-19, Sci Rep 10 (2020) 16200, https://doi.org/10.1038/s41598-020-72879-7.
- [111] K.T. Choy, A.Y.L. Wong, P. Kaewpreedee, S.F. Sia, D. Chen, K.P.Y. Hui, D.K. W. Chu, M.C.W. Chan, P.P.H. Cheung, X. Huang, M. Peiris, H.L. Yen, Remdesivir, lopinavir, emetine and homoharringtonine inhibit SARS-CoV-2 replication invitro, Anitiviral Res 178 (2020) 104786, https://doi.org/10.1016/j.anitiviral.2020.104786.
- [112] Y.H. Jin, J.S. Min, S. Jeon, J. Lee, S. Kim, T Park, D. Park, M.S. Jang, C.M. Park, J. H. Song, H.R. Kim, S. Kwon, Lycorine, a non-nucleoside RNA dependent RNA polymerase inhibitor, as potential treatment for emerging coronavirus infections, Phytomedicine 86 (2020) 153440, https://doi.org/10.1016/j. nbumed 2020 153440
- [113] Q. Ma, R. Li, W. Pan, W. Huang, B. Liu, Y Xie, Z. Wang, C. Li, H. Jiang, J. Huang, Y. Shi, J. Dai, K. Zheng, X. Li, M. Hui, L. Fu, Z. Yang, Phillyrin (KD-1) exerts antiviral and anti-inflammatory activities against novel coronavirus (SARS-CoV-2) and human coronavirus 229E (HCoV-229E) by suppressing the nuclear factor kappa B (NF-kB) signaling pathway, Phytomedicine 78 (2020) 153296, https:// doi.org/10.1016/j.phymed.2020.153296.
- [114] H. Ohashi, K. Watashi, W. Saso, K. Shionoya, S. Iwanami, T. Hirokawa, T. Shirai, S. Kanaya, Y. Ito, K.S. Kim, T. Nomura, T. Suzuki, K. Nishioka, S. Ando, K. Ejima, Y. Koizumi, T. Tanaka, S. Aoki, K. Kuramochi, T. Suzuki, T. Hashiguchi, K. Maenaka, T. Matano, M. Muramatsu, M. Saijo, K. Aihara, S. Iwami, M. Takeda, J.A. McKeating, T. Wakita, Potential anti-COVID-19 agents, cepharanthine and nelfinavir, and their usage for combination treatment, iScience 24 (2021) 102367, https://doi.org/10.1016/j.isci.2021.102367.
- [115] J.Y. Park, J.H. Kim, Y.M. Kim, H.J. Jeong, D.W. Kim, K.H. Park, H.J. Kwon, S. J. Park, W.S. Lee, Y.B. Ryu, Tanshinones as selective and slow-binding inhibitors for SARS-CoV cysteine proteases, Bioorg Med Chem 20 (19) (2012) 5928–5935, https://doi.org/10.1016/j.bmc.2012.07.038.
- [116] D. Kim, J-Y. Lee, J-S. Yang, J-W. Kim, V.N. Kim, H. Chang, The architecture of SARS-CoV-2 transcriptome, bioRxiv (2020), https://doi.org/10.1101/ 2020.03.12.988865.
- [117] A.A.F. de Vries, SARS-CoV-2/ COVID-19:a primer for cardiologists, Neth Heart J. 28 (2020) 366–383, https://doi.org/10.1007/s12471-020-01475-1.
- [118] J Bian, Z Li, Angiotensin-converting enzyme 2 (ACE2): SARS-CoV-2 receptor and RAS modulator, Acta Pharmaceutica Sinica B (2021) 1–12, https://doi.org/ 10.1016/j.apsb.2020.10.006.
- [119] I.S. Mahmoud, Y.B. Jarrar, Targeting the intestinal TMPRSS2 protease to prevent SARS-CoV-2 entry into enterocytes-prospects and challenges, Molecular Biology Reports (2021) 4667–46754675, https://doi.org/10.1007/s11033-021-06390-1.
- [120] W-F. Zhang, P Stephen, J-F. Theriaul, R. Wang, S-X Lin, Novel Coronavirus Polymerase and Nucleotidyl-Transferase Structures: Potential to Target New Outbreaks, J. Phys Chem Lett (2020) 4430–4435, https://doi.org/10.1021/acs. jpclett.0c00571.
- [121] Margaret E Fairman-Williams, Ulf-Peter Guenther, Eckhard Jankowsky, SF1 and SF2 helicases: family matters, Curr Opin Struct Biol (2010) 313–324, https://doi. org/10.1016/j.sbi.2010.03.011.
- [122] Y.M. Bar-On, A. Flamholz, R. Phillips, R. Milo, SARS-CoV-2 (COVID-19) by the numbers, Elife 9 (2020), https://doi.org/10.7554/eLife.57309 e57309.