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    Introduction 
 Integrin-linked kinase (ILK) is a signaling and scaffold protein 

localized to focal and fi brillar adhesions ( Hannigan et al., 2005 ; 

 Legate et al., 2006 ). Identifi ed as an interactor of integrin  � 1 

and 3 cytoplasmic domains ( Hannigan et al., 1996 ), ILK also 

regulates cell survival, proliferation, migration, and angiogene-

sis and Pi3 kinase – dependent signal transduction ( Hannigan 

et al., 2005 ). By interacting with the focal adhesion proteins 

PINCH, paxillin, and  � - and  � -parvin, ILK regulates integrin-

mediated cell adhesion and cytoskeletal dynamics within focal 

adhesions to regulate cell adhesion, spreading, and migration 

( Legate et al., 2006 ). Tissue-specifi c gene knockout studies 

have revealed several essential roles of ILK in embryonic 

development, tissue homeostasis, and organ function ( Bendig 

et al., 2006 ;  White et al., 2006 ;  Lorenz et al., 2007 ). In addition, 

ILK appears to be differentially required for cell survival and 

growth in normal versus cancer cells ( Troussard et al., 2006 ). 

The diversity of phenotypes observed in these studies suggests 

complex regulation of ILK activity and adaptor functions. 

 To identify novel ILK protein – protein interactions that 

will provide further insights into the diverse functions of ILK, 

we analyzed ILK complexes by stable isotope labeling with 

amino acids in cell culture (SILAC) – based mass spectrometry 

( Dobreva et al., 2008 ). In addition to identifying known inter-

actors, such as PINCH and  � -parvin, we also identifi ed, with 

equal robustness, tubulin, and tubulin-interacting proteins, espe-

cially those known to localize to centrosomes, such as ch-TOG 

(XMAP215 and CKAP5;  Gergely et al., 2003 ) and RUVBLl 

(Pontin 52;  Gartner et al., 2003 ). Ch-TOG has been shown to 

be essential for organizing spindle poles as well as stabilizing 

spindle microtubules ( Gergely et al., 2003 ). RUVBL1 is an ATP 

helicase and has several established nuclear functions ( Weiske 

and Huber, 2005 ). However, this protein also binds to tubulin 

and has been shown to localize to centrosomes within mitotic 

spindles ( Gartner et al., 2003 ). 

 In this paper we show that in addition to its focal adhesion 

functions, ILK localizes to centrosomes with several newly 

identifi ed binding partners and plays an essential role in mitotic 

spindle assembly and mitosis. 

 Results and discussion 
 Proteomic analysis of ILK interactors 
within the cytoskeleton identifi es  � - and 
 � -tubulin, ch-TOG, and RUVBL1 
 To identify novel ILK-interacting proteins in the cytoskeleton, 

ILK was immunoprecipitated from cytoskeletal HEK293 cell 

 I
ntegrin-linked kinase (ILK) is a serine-threonine kinase 

and scaffold protein with well defi ned roles in focal 

adhesions in integrin-mediated cell adhesion, spread-

ing, migration, and signaling. Using mass spectrometry –

 based proteomic approaches, we identify centrosomal 

and mitotic spindle proteins as interactors of ILK.  � - and 

 � -tubulin, ch-TOG (XMAP215), and RUVBL1 associate 

with ILK and colocalize with it to mitotic centrosomes. 

Inhibition of ILK activity or expression induces profound 

apoptosis-independent defects in the organization of the 

mitotic spindle and DNA segregation. ILK fails to localize 

to the centrosomes of abnormal spindles in RUVBL1-

depleted cells. Additionally, depletion of ILK expression or 

inhibition of its activity inhibits Aurora A – TACC3/ch-TOG 

interactions, which are essential for spindle pole organi-

zation and mitosis. These data demonstrate a critical and 

unexpected function for ILK in the organization of centro-

somal protein complexes during mitotic spindle assembly 

and DNA segregation.

 Integrin-linked kinase localizes to the centrosome 
and regulates mitotic spindle organization 

  Andrew B.   Fielding ,  1    Iveta   Dobreva ,  1    Paul C.   McDonald ,  1    Leonard J.   Foster ,  2   and  Shoukat   Dedhar   1,2   

  1 Department of Cancer Genetics, British Columbia Cancer Research Centre of the British Columbia Cancer Agency, Vancouver, BC, Canada V5Z 1L3 
  2 Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada V6E 4A2   



JCB • VOLUME 180 • NUMBER 4 • 2008 682 

  Fig. 1 (F and G)  shows colocalization in centrosomes of ILK 

with two of its newly identifi ed associating proteins, RUVBL1 

and ch-TOG. Ch-TOG shows partial colocalization with ILK as, 

in addition to being present in centrosomes, it is also found on 

the mitotic spindle as previously reported ( Gergely et al., 2003 ). 

We also assessed whether  � -parvin, a well-established ILK 

binding partner, localizes to centrosomes.  Fig. 1 H  shows cells 

costained for ILK and  � -parvin in both interphase and mitosis. 

Although the  � -parvin antibody clearly stains focal adhesions 

where it colocalizes with ILK ( Fig. 1 H , bottom), it does not 

show colocalization with the prominent ILK staining at the centro -

somes ( Fig. 1 H , top), confi rming the differential partitioning of 

ILK and  � -parvin that is shown in  Fig. 1 B . 

 RUVBL1 depletion causes a mitotic spindle 
defect and prevents localization of ILK to 
the centrosomes 
 Because RUVBL1 was specifi cally enriched with ILK in the 

SILAC-based proteomic analysis, we wanted to determine 

whether it might be involved in recruiting ILK to the centro-

somes. We therefore depleted RUVBL1 expression with 

siRNA ( Fig. 2 A ). This resulted in the disruption of the mitotic 

spindle and DNA segregation as shown in  Fig. 2 B . Quantifi -

cation of this effect showed that 27% of mitotic cells showed 

this phenotype in RUVBL1 siRNA cells compared with only 4% 

in control cells ( Fig. 2 C ). Although centrosomes were intact, 

as shown by pericentrin localization, ILK failed to localize to 

the centrosomes in the RUVBL1-depleted cells ( Fig. 2 D ) 

in 100% of cells that showed the spindle defect. These data 

suggest that RUVBL1 is involved in recruiting ILK to the centro-

somes, although it is possible that the severity of the spindle 

phenotype observed may indirectly prevent the localization of 

ILK to the centrosome. 

 Collectively, these results demonstrate that ILK can localize 

simultaneously to two distinct cellular regions, focal adhesions, 

and the centrosome by interacting with different protein partners 

and cytoskeletal components. 

 Inhibition of ILK activity and expression 
disrupts mitotic spindle organization 
 The striking localization of ILK to centrosomes suggests that 

it may play an important role in centrosome integrity, mitotic 

spindle organization, or microtubule polymerization. To address 

the role of the kinase activity of ILK in these functions, we ini-

tially used an ILK inhibitor, QLT-0267, which is a highly selec-

tive inhibitor of ILK activity ( Troussard et al., 2006 ). 

 HEK293 or HeLa cells were exposed to increasing con-

centrations of QLT-0267 for 7 h and then fi xed and immuno-

stained for  � -tubulin and DNA to identify mitotic cells. 

Examination of these cells revealed the appearance of abnormal 

mitotic spindles at 5  μ M QLT-0267, whereas at 10  μ M, 100% 

of mitotic cells showed spindle defects ( Fig. 3 B ). Specifi cally, 

there was asymmetrical localization of microtubules to spindle 

poles. It has previously been shown that QLT-0267 inhibits ILK 

kinase activity with an IC50 of between 2 and 5  μ M, depending 

on the cell type ( Troussard et al., 2006 ). This correlates very 

well with the effect on the mitotic spindle that is presented in 

extracts and immune complexes were resolved by SDS-PAGE and 

analyzed by SILAC-based gel-enhanced liquid chromatography/

tandem mass spectrometry (GelC-MS/MS). Details of isotope 

labeling and analysis are described in  Dobreva et al. (2008) . 

Together with cytoskeletal proteins already known to bind ILK, 

e.g., PINCH and  � -parvin ( Hannigan et al., 2005 ;  Legate et al., 

2006 ), several novel interactors were identifi ed. A high propor-

tion of these proteins are known to associate with the mitotic 

spindle and/or centrosomes. Our attention was drawn to  � - and 

 � -tubulin as well as to the tubulin binding proteins ch-TOG and 

RUVBL1. To confi rm these interactions, anti-FLAG immuno-

precipitates from cytoskeletal extracts of FLAG-ILK – expressing 

cells were Western blotted with antibodies to  � - and  � -tubulin, 

ch-TOG, and RUVBL1. As shown in  Fig. 1 A , these proteins 

could be readily detected in FLAG-ILK, but not FLAG, immuno-

precipitations. In addition, endogenous interactions were also 

confi rmed ( Dobreva et al., 2008 ). Yeast two-hybrid analysis in-

dicated that the interaction of ILK with  � -tubulin and RUVBL1 

is not direct (unpublished data). 

 As ILK associated with proteins that localize to mitotic 

spindles and/or centrosomes, we next purifi ed mitotic spindles 

(including centrosomes), as previously described ( Sauer et al., 

2005 ), and assessed whether ILK was present there. Enrichment 

of mitotic spindles and centrosomes was confi rmed by immuno-

fl uorescence microscopy (not depicted), and Western blotting re-

vealed that in addition to known mitotic spindle proteins, such as 

 � -tubulin and ch-TOG, a proportion of ILK also associated with 

the purifi ed spindles together with RUVBL1, whereas PINCH 

and  � -parvin (known focal adhesion ILK interactors) were not 

present on spindles ( Fig. 1 B ). These data show that ILK can 

partition between actin and tubulin cytoskeletal networks by as-

sociating with distinct protein components. We therefore exam-

ined the subcellular localization of ILK to determine whether it 

localizes to mitotic spindles and/or centrosomes. 

 ILK localizes to interphase and mitotic 
centrosomes 
 Immunofl uorescence localization of ILK with a monoclonal anti-

ILK antibody shows a largely focal and fi brillar adhesion pattern 

of ILK ( Fig. 1 C ) as previously reported ( Sepulveda and Wu, 2006 ). 

However, costaining with pericentrin, a resident centrosomal 

protein, reveals that ILK is also present in centrosomes in 

interphase cells ( Fig. 1 C ). Cells at various stages of mitosis also 

show clear ILK-pericentrin colocalization ( Fig. 1 D ). The centro-

some localization of ILK was confi rmed by costaining with an 

alternative polyclonal anti-ILK antibody and an anti –  � -tubulin 

antibody to stain microtubules and the mitotic spindle ( Fig. 1 E ). 

ILK staining was clearly concentrated at the centrosomes/micro-

tubule organizing centers (MTOCs) from which the mitotic spin-

dle radiates. ILK also localized to the centrosomes in HEK293 

and IMR-90 cells (Fig. S1, A – C, available at http://www.jcb

.org/cgi/content/full/jcb.200710074/DC1). Staining cells with 

IgG controls and secondary antibodies confi rmed the specifi city 

of the ILK centrosomal staining (Fig. S1, D and E). As an ad-

ditional control, it can be seen that upon ILK knockdown with 

siRNA, ILK staining is no longer observed in interphase (Fig. S1 F) 

or mitotic (see  Fig. 4 B ) centrosomes. 
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 Figure 1.    ILK interacts with tubulin, RUVBL1, and ch-TOG and localizes to centrosomes.  (A) FLAG-ILK was immunoprecipitated from the cytoskeleton of 
HEK293 cells, and the presence of  � - and  � -tubulin, ch-TOG, and RUVBL1 was determined by Western blot. (B) Detergent-soluble fractions (S1 and S2), 
isolation buffer – soluble fraction (S3), and purifi ed mitotic spindles (P) from HeLa cells Western blotted for indicated proteins are shown. (C – H) HeLa cells 
costained for ILK and indicated proteins as well as DNA. Insets are close-ups of small squares (C) or of centrosomes (F). Arrowheads, centrosomes; arrow, 
focal adhesions. Bars,  � 10  μ m.   
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Z-VAD-FMK. These data demonstrate that ILK activity is re-

quired locally for the maintenance of mitotic spindle integrity 

during mitosis. 

 Although QLT-0267 is highly selective for ILK and the ef-

fects of the inhibitor on the activation of downstream targets of 

ILK, such as Akt, can be rescued by overexpression of active, but 

not inactive, ILK ( Troussard et al., 2006 ), it is still possible that 

the observed defects were caused by off-target effects. We there-

fore used siRNA to silence ILK expression to determine whether 

ILK is essential for mitotic spindle assembly and mitosis. As shown 

in  Fig. 4 A , ILK siRNA resulted in  > 95% inhibition of ILK 

expression in HeLa cells. Examination of mitotic spindles in con-

trol and ILK siRNA – treated cells confi rmed depletion of ILK ex-

pression in centrosomes and clearly showed a large increase in 

the accumulation of abnormal mitotic fi gures in the ILK siRNA –

 treated cells ( Fig. 4 C ). Cells showed similar disrupted pheno-

types of mitotic spindles ( Fig. 4 B ) to those observed for QLT-0267 

treatment, with asymmetrical and unorganized spindles resulting 

in misaligned chromosomes. The percentage of cells in a 

prometaphase/metaphase-like state with correctly aligned chro-

mosomes was much greater in the control than in the ILK 

siRNA – treated cells ( Fig. 4 D ). The percentage of cells in later 

phases of mitosis declined dramatically in the ILK siRNA – treated 

cells, suggesting that cells were arrested in early stages of mitosis 

( Fig. 4 E ). This is consistent with the increased mitotic index of 

cells treated with the ILK inhibitor, suggesting that perturbation 

of ILK function causes a block in mitosis. 

 ILK is required for Aurora A – TACC3/ch-TOG 
interactions 
 The current paradigm for the regulation of mitotic spindle orga-

nization is that Aurora A kinase phosphorylates TACC3, which 

this paper, suggesting that ILK kinase activity is likely to be 

the driving force behind the phenotypes observed. Quantifi ca-

tion of the proportion of cells in mitosis showed that QLT-0267 

had a dose-dependent effect on the mitotic index ( Fig. 3 A ), 

suggesting that the observed spindle defects were leading to an 

arrest in mitosis. Exposure over the same time period to other 

similar small molecule kinase inhibitors, such as the Mek in-

hibitor PD098059, did not have any effects on spindle assembly 

( Fig. 3 D ). To determine whether the ILK inhibitor affected 

ILK localization or centrosomal integrity, we immunostained 

cells that were exposed to 5  μ M QLT-0267 for ILK, ch-TOG, 

and pericentrin. ILK still localized to the centrosomes of the 

abnormal mitotic spindles ( Fig. 3 C ), as did ch-TOG and peri-

centrin (Fig. S2, available at http://www.jcb.org/cgi/content/

full/jcb.200710074/DC1), indicating that the ILK inhibitor does 

not alter the localization of these proteins. 

 Inhibition of ILK expression ( Fukuda et al., 2003 ) or ki-

nase activity ( Troussard et al., 2006 ) can induce apoptosis, with 

QLT-0267 causing apoptosis after 18 h of exposure ( Troussard 

et al., 2006 ). The mitotic spindle defects seen here, however, are 

observed after just 7 h. Nevertheless, to verify that the observed 

spindle phenotype was not an indirect result of the cells under-

going apoptosis, two approaches were taken. First, cells were 

treated with 5  μ M QLT-0267 for just 1 h.  Fig. 3 E  shows that 

these cells showed the same spindle phenotype as those treated 

for 7 h. Second, cells were treated with 5  μ M QLT-0267 to-

gether with the antiapoptotic pan-caspase inhibitor Z-VAD-FMK 

for 7 h. These cells also showed the same spindle phenotype, 

suggesting that this effect occurs in the absence of apoptosis 

( Fig. 3 F ).  Fig. 3 (G and H)  verifi es that little or no apoptosis 

is seen at 1 or 7 h of treatment with 5  μ M QLT-0267 and that 

what little may be occurring can be successfully blocked with 

 Figure 2.    RUVBL1 is required for ILK localization to the centrosome and its absence leads to mitotic spindle defects.  (A) RUVBL1 protein was depleted by 
RUVBL1 siRNA as shown by Western blot. (B) RUVBL1 siRNA – treated cells. (C) Histogram showing the percentage of disrupted mitotic cells in control and 
RUVBL1 siRNA – treated cells. Data are mean  ±  SD of three independent experiments in which  > 100 mitotic cells were counted for each condition. (D) Cells 
stained with ILK and pericentrin show localization of ILK to centrosomes in control but not RUVBL1 siRNA – treated cells. Bars,  � 10  μ m.   



685THE CENTROSOMAL FUNCTION OF ILK IN MITOSIS  •  FIELDING ET AL.

 Figure 3.    Treatment with the ILK inhibitor QLT-0267 causes apoptotic-independent effects on mitotic spindles and an accumulation of cells in mitosis.  
(A) HEK293 cells were treated with increasing concentrations of QLT-0267 for 7 h and the mitotic index was calculated. Data are mean  ±  SD of three inde-
pendent experiments in which  > 400 cells were counted for each condition. (B and C) Cells were treated with QLT-0267 for 7 h and stained as indicated. 
(D) Cells were treated with the MEK inhibitor PD098059. (E and F) HeLa cells were treated with QLT-0267 for 1 h (E) or QLT-0267 + Z-VAD-FMK for 7 h (F). 
Bars,  � 10  μ m. (G) Quantifi cation of apoptosis in indicated samples by Cell Death Detection ELISA PLUS. All samples, except QLT-0267 5  μ m 1 h, are from 
the 7-h time point. Data are mean  ±  SD from two experiments. (H) Indicated cell lysates (all 7-h treatments) were Western blotted for PARP.   



JCB • VOLUME 180 • NUMBER 4 • 2008 686 

spindle, however, no RUVBL1 can be seen at the centrosome. 

As  Fig. 2  shows that RUVBL1 disruption leads to loss of ILK 

localization at the centrosome, these data suggest that ILK and 

RUVBL1 may localize to the centrosome as a co-complex and 

are dependent on each other for their centrosomal localization. 

 In this paper, we provide two novel and unexpected re-

sults. First, we have shown that ILK localizes to focal adhesions 

and centrosomes simultaneously in interphase cells. ILK also 

colocalizes with the tubulin-interacting proteins ch-TOG and 

RUVBL1 through all phases of mitosis. Surprisingly, the focal 

adhesion partner of ILK,  � -parvin ( Legate et al., 2006 ), did not 

localize in centrosomes, whereas RUVBL1 appears to be re-

quired for localization of ILK to centrosomes. These results 

suggest that ILK associates with distinct protein partners to lo-

calize to distinct subcellular regions. Although unexpected for 

ILK, the localization of focal adhesion proteins to centrosomes 

is not without precedent, as several focal adhesion proteins, such 

as HEF1 ( Pugacheva and Golemis, 2005 ), Ajuba ( Hirota et al., 

2003 ), zyxin ( Hirota et al., 2000 ), and paxillin ( Herreros et al., 

2000 ), have also been shown to localize and function in centro-

somes and MTOCs. 

 Second, ILK plays an essential role in mitotic spindle or-

ganization because disruption of its kinase activity or inhibition 

of its expression has profound effects on this structure. The simi-

lar phenotype of ch-TOG- and ILK-depleted spindles ( Gergely 

et al., 2003 ) suggests that ILK may play an important role in 

ch-TOG function, such as in the regulation or maintenance of 

ch-TOG – TACC3 interaction ( Gergely et al., 2003 ;  LeRoy et al., 

2007 ). Disruption of the interaction between Aurora A and 

TACC3/ch-TOG in ILK-depleted cells suggests that ILK is 

recruits ch-TOG, a protein required for microtubule polymeri-

zation and spindle organization ( Gergely et al., 2003 ;  Barros 

et al., 2005 ;  Kinoshita et al., 2005 ). To determine the role of 

ILK in mitotic spindle organization, we analyzed whether the 

interaction between Aurora A and TACC3/ch-TOG is affected 

in the absence of ILK. As shown in  Fig. 5 A , although immuno-

precipitation of Aurora A from control siRNA-treated cells re-

sults in the copurifi cation of both TACC3 and ch-TOG, these 

proteins are not associated with Aurora A in ILK siRNA – treated 

cells. The ILK inhibitor QLT-0267 also resulted in the inhibi-

tion of interaction of TACC3 with Aurora A ( Fig. 5 B ), indicating 

that the kinase activity of ILK may be required for its proper 

function in the centrosome. Examination of the localization of 

Aurora A, TACC3, and ch-TOG demonstrated that although the 

spindles are disrupted in these cells, these proteins still co  -

lo calize to centrosomes at sites of microtubule nucleation ( Fig. 5, 

C and D ). Therefore, although the interactions between these 

proteins are impaired in ILK-depleted cells, as seen by co-

immunoprecipitation, ILK depletion does not cause a severe mis-

localization of these proteins. To test whether ILK may have an 

effect on the activation of Aurora A, we also costained siRNA-

treated cells for total and phospho – T288 – Aurora A. As can be 

seen in  Fig. 5 E , however, phospho – T288 – Aurora A is still pre-

sent at centrosomes treated with ILK siRNA, suggesting that 

ILK does not affect the activation of Aurora A in this manner. 

ILK siRNA – treated cells were also stained for RUVBL1 to ex-

amine the potential effect of ILK depletion on RUVBL1 local-

ization.  Fig. 5 F  shows two mitotic cells in ILK siRNA – treated 

cells. One cell appears normal and RUVBL1 can be seen to lo-

calize to one of the centrosomes. In the cell showing an aberrant 

 Figure 4.    ILK siRNA results in aberrant mitotic spindles, misaligned chromosomes, and the prevention of progress through mitosis.  (A) Western blot of 
HeLa cell extracts after ILK siRNA treatment. The amount of ILK remaining after knockdown is shown as a percentage of ILK in control siRNA and is adjusted 
according to  � -actin levels. (B) HeLa cells treated with control or ILK siRNA show similar aberrant spindle and misaligned chromosome phenotypes to the 
QLT-0267 – treated cells. Bars,  � 10  μ m. (C – E) Histograms showing the percentage of mitotic cells with aberrant spindles (C), with misaligned chromosomes (D), 
and in the various stages of cell division (E) in ILK and control siRNA-treated cells. Data are mean  ±  SD from three independent experiments in which  > 50 
mitotic cells were analyzed.   
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localization of ILK to focal adhesions and centrosomes would 

suggest independent roles, although it will be interesting to 

determine whether ILK function in centrosomes alters in cells 

in which focal adhesions are disrupted or integrin activity is 

modulated. Second, what are the precise functions and targets 

of ILK in the centrosome and mitotic spindle? Based on our results, 

ILK appears to be required for the formation of the Aurora A –

 TACC3/ch-TOG complex. In addition, some of the known 

signaling effectors of ILK, namely Akt, GSK-3, and  � -catenin, 

have all been shown to localize in centrosomes and mitotic 

spindles ( Wakefi eld et al., 2003 ;  Huang et al., 2007 ). 

 In this paper, we have identifi ed a novel role of ILK in 

mitosis as a centrosomal protein required for mitotic spindle 

organization by regulating the interplay between Aurora A and 

TACC3/ch-TOG. The precise functions of ILK in the centro-

somes will be the focus of future studies. 

required in the centrosomes for the maintenance of these inter-

actions. It remains to be determined whether ILK regulates 

Aurora A kinase activity or TACC3 phosphorylation. 

 Supporting a functional role for ILK at the centrosome, a 

siRNA screen to identify protein kinases involved in regulating 

the cell cycle in  Drosophila   melanogaster  cells identifi ed ILK 

as being required for mitosis ( Bettencourt-Dias et al., 2004 ). 

ILK silencing resulted in abnormal spindle assembly and al-

tered chromosomal segregation. In addition, integrin function 

can regulate mitotic spindle assembly and cytokinesis ( Reverte 

et al., 2006 ). This interesting fi nding suggests a complex inter-

play between adhesion complexes and the MTOC and requires 

further investigation. 

 Our fi ndings raise some interesting and important ques-

tions. First, are the focal adhesion and centrosomal functions 

of ILK connected or are they independent? The simultaneous 

 Figure 5.    ILK siRNA causes a disruption of Aurora A – TACC3/chTOG interaction.  (A) HeLa cells were transfected with control or ILK siRNA and synchro-
nized with nocodazole. Aurora A kinase was immunoprecipitated from cytoskeletal extracts with a monoclonal anti – Aurora A antibody and then Western 
blotting was performed with polyclonal antibodies against Aurora A, TACC3, and ch-TOG. (B) A similar experiment to A was performed on cells treated 
with QLT-0267 and a DMSO control. (C – F) Effect of ILK siRNA on localization of ILK-interacting proteins. Hela cells were transfected and stained as indi-
cated. Phospho – Aurora A/B/C staining is presumably phospho – Aurora A rather than Aurora B or C, as it colocalizes with total Aurora A; Aurora B is not 
found on centrosomes, and Aurora C is only expressed in testis. Bars,  � 10  μ m.   
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blocked with Odyssey blocking buffer (LI-COR Biosciences) and incubated 
overnight with primary antibodies diluted in TBS, 5% BSA, or 0.05% 
Tween. The primary antibodies were detected by Alexa Fluor 680 (Invitrogen) 
or IRDye 800 – conjugated secondary antibodies (Rockland Immuno-
chemicals, Inc.) diluted at 1:5,000 in 5% nonfat dry milk, TBS buffer, 
and 0.2% NP-40 and visualized with the Odyssey IR imaging system 
(LI-COR Biosciences). 

 Immunofl uorescence microscopy 
 HeLa and HEK293 cells were cultured under standard conditions and fi xed 
in  � 20 ° C methanol for 10 min. PBS containing 1% BSA was added to 
cells for 30 min to block nonspecifi c interactions. Primary antibodies were 
then added for 16 h at 4 ° C in goat serum/gelatin blocking buffer, cells 
were washed, and secondary antibodies were added for 1 h at room tem-
perature also in blocking buffer. HOECHST was added to stain DNA and 
coverslips were mounted in mounting medium (Vector Laboratories). Cells 
were viewed under a fl uorescence microscope (Axioplan 2; Carl Zeiss, 
Inc.) using a 40 × /0.75 objective (Plan-Neofl uar; Carl Zeiss, Inc.) at room 
temperature. Images were acquired using a camera (AxioCam HRc; Carl 
Zeiss, Inc.) and AxioVision3.1 software (Carl Zeiss, Inc.), saved as tif fi les, 
and processed using Photoshop CS2 (Adobe). Only brightness/contrast 
adjustments were made to images. 

 Antibodies, ILK inhibitor, and siRNA 
 The following primary antibodies were used: rabbit anti-RUVBL1 (Protein-
tech); rabbit anti – ch-TOG, anti-ILK, and anti-pericentrin (AbCam); rabbit 
anti –  � -parvin and mouse DM1A  � -tubulin, anti – Aurora A, and anti –  � -actin 
(Sigma-Aldrich); mouse anti-ILK (Millipore); rabbit anti-TACC3 (Santa Cruz 
Biotechnology, Inc.); and rabbit anti-PARP and anti – phospho – Aurora A 
(Thr288)/B (Thr232)/C (Thr198; Cell Signaling Technology). Secondary 
antibodies used for immunofl uorescence labeling were Alexa Fluor goat 
anti – mouse (488 nm) and goat anti – rabbit (594 nm; Invitrogen). QLT-0267 
(Quadra Logic Technology, Inc.) was diluted in DMSO and added to cells 
for 7 h unless otherwise stated. ILK (AAG ACG CTC AGC AGA CAT GTG 
GA), RUVBL1, or control nonsilencing (AAT TCT CCG AAC GTG TCA 
CGT) siRNAs (QIAGEN) were introduced into cells by using siLentFect 
reagent (Bio-Rad Laboratories), according to the manufacturer ’ s instructions. 
To achieve suffi cient ILK knockdown in centrosomes, cells were transfected 
twice (at day 0 and 2) with 100 nM ILK siRNA and then fi xed/harvested 
on day 5. RUVBL1 siRNA was transfected once on day 0 and cells were 
fi xed/harvested on day 3. Apoptosis was measured using Cell Death De-
tection ELISA PLUS (Roche). The assay and data analysis were performed 
according to the manufacturer ’ s instructions. 

 Online supplemental material 
 In Fig. S1, ILK localizes to centrosomes in metaphase in three human cell 
lines and can be detected there using three different anti-ILK antibodies. 
Cells were also transfected with either ILK or control siRNA, stained for ILK, 
pericentrin, and HOECHST and imaged in interphase. In Fig. S2, pericen-
trin and ch-TOG still localize to the spindle poles in cells treated with QLT-
0267, a specifi c small molecule inhibitor of ILK. Although the tubulin staining 
shows an aberrant mitotic spindle, pericentrin and ch-TOG still localize to 
the sites of spindle nucleation. Online supplemental material is available at 
http://www.jcb.org/cgi/content/full/jcb.200710074/DC1. 
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