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Abstract

Background: In addition to sequence conservation, protein multiple sequence alignments contain evolutionary
signal in the form of correlated variation among amino acid positions. This signal indicates positions in the
sequence that influence each other, and can be applied for the prediction of intra- or intermolecular contacts.
Although various approaches exist for the detection of such correlated mutations, in general these methods utilize
only pairwise correlations. Hence, they tend to conflate direct and indirect dependencies.

Results: We propose RMRCM, a method for Regularized Multinomial Regression in order to obtain Correlated
Mutations from protein multiple sequence alignments. Importantly, our method is not restricted to pairwise
(column-column) comparisons only, but takes into account the network nature of relationships between protein
residues in order to predict residue-residue contacts. The use of regularization ensures that the number of
predicted links between columns in the multiple sequence alignment remains limited, preventing overprediction.
Using simulated datasets we analyzed the performance of our approach in predicting residue-residue contacts, and
studied how it is influenced by various types of noise. For various biological datasets, validation with protein
structure data indicates a good performance of the proposed algorithm for the prediction of residue-residue
contacts, in comparison to previous results. RMRCM can also be applied to predict interactions (in addition to only
predicting interaction sites or contact sites), as demonstrated by predicting PDZ-peptide interactions.

Conclusions: A novel method is presented, which uses regularized multinomial regression in order to obtain
correlated mutations from protein multiple sequence alignments.

Availability: R-code of our implementation is available via http://www.ab.wur.nl/rmrcm

Background
The amount of available sequence data is growing
explosively. Annotation of those sequences at the pro-
tein residue level, which includes prediction of func-
tional sites, binding sites and connections between sites,
is essential in understanding structure and function of
those sequences. Methods that associate specific parts of
protein sequences with certain properties either use
existing signatures or predict functional properties of
the sequence de novo. Among the former, domain or
motif based approaches compare sequences with data-
bases of for example regular expressions, rule based
motifs [1], or Hidden Markov Models [2]. Such signa-
tures are inferred using sequence alignments, or

information such as protein interaction data in combi-
nation with protein sequences [3,4].
Among methods that predict functional sites without

using existing signatures, conservation of amino acids in
sequence alignments is a well-known indicator of func-
tional properties. In addition to conservation of col-
umns, protein multiple sequence alignments often
display correlations between columns. Such correlation
contains information about which residues are located
close to each other in 3D space and about functional
sites [5,6]. Although several approaches to obtain such
signals from sequence alignments exist [7-13], almost all
of these are limited towards analysis of pairwise rela-
tionships between columns in the alignment. However,
co-evolving contacts can be thought of as chains that
percolate through the protein structure, inducing indir-
ect dependencies [14]: when m and n are correlated,
and n and p are correlated, m and p are likely to be
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detected as correlated as well, although in reality they
do not directly influence each other. Hence, observed
correlation does not necessarily imply that residues are
located close to each other.
Several years ago it was proposed that graphical mod-

els, which take into account the network nature of
dependencies, could be used to model protein structures
[15]. At that time, the graphical model structure was
learned with help from a protein structure and not from
sequence data only. Only recently methods have
appeared which, using sequence data only, analyze cor-
related mutations within the framework of graphical
models [16-18].
We use recent advances in structure learning of gra-

phical models (e.g. [19]) and learn a network structure
where nodes describe columns in the multiple sequence
alignment. This method can overcome the problem of
indirect dependencies. In addition, because for every
column in a multiple sequence alignment we predict
(potentially) a number of other columns that are directly
correlated with it, we find ‘higher-order’ multi-body
contacts. This is relevant because it is known, based on
contact statistics in protein structures, that multi-body
contact frequencies are poorly predicted from pairwise
contact potentials [20,21]. However, in the current
study, the validation of our algorithm is focused on pair-
wise contacts because their assessment can be done in a
straightforward way using protein structure data.
Our main contribution is a novel algorithm for corre-

lated mutation analysis, Regularized Multinomial
Regression based Correlated Mutations (RMRCM). We
demonstrate its performance in network reconstruction
using simulated datasets. The method was applied to
analyze proteins and protein-protein interactions, and
validated by comparing predicted residue connections
with contacts observed in protein structures. We
demonstrate the applicability of our approach by analyz-
ing various types of datasets, and by predicting protein-
peptide interactions.

Methods
Definition of the problem
Our objective was to identify correlations between col-
umns in a protein multiple sequence alignment (MSA).
These links contain information about which residues
influence each other and can be used to predict which
residues are located close to each other in 3D space. To
achieve that, we defined a multinomial regression setup
and fitted regression models where each column is
regressed with all other columns in the MSA to find
links between the columns. Our method RMRCM (Reg-
ularized Multinomial Regression based Correlated

Mutations) was implemented in R and is available via
http://www.ab.wur.nl/rmrcm.

Multinomial regression setup
In our method, an input MSA (A) is first converted to
numerical form by mapping the sequences to factors
with 21 levels (1 to 20 for aminoacids; gaps are mapped
to 21). Subsequently, it is expanded to a matrix M with
21 times the number of columns of A by replacing each
column by a binary matrix of 21 columns with a 1
representing the occurrence of each particular aminoa-
cid (Figure 1). This matrix contains the starting data for
RMRCM.
Consider the usual regression setup: we have a

response variable y and a predictor matrix X, and we
approximate the regression function by E(y) = Xb where
b are the regression coefficients. Our aim is to fit a
regression model for each column of the MSA, and
hence, the factor representing column i from A is taken
as y. As X, we take the matrix M-i, with M-i the matrix
M after deleting the 21 columns that refer to column i
in A. Hence, in our regression problem for column i of
the MSA, Y equals Ai and we find a model which
explains as much as possible variation in Ai using the
independent variables in X = M-i. This is repeated for
each column i in A separately. As y is a factor with 21
classes, the regression model is generalized to that of
multinomial regression, in which we take the symmetric
form proposed by ref. [22]. After each fit, the coeffi-
cients b describe the relationships between columns in
M-i with the ith column in A. These are then projected
back to describe relationships of columns in A with
each other. For this we use the sum of the absolute
values of the regression coefficients. This results in links
being predicted between various columns of the MSA.
Because the problem contains many parameters and a

relatively small number of datapoints, regression would
in general result in many links being predicted. Lasso
[23] is a popular method for regression that uses an L1
penalty to achieve a sparse solution, ridge regression
similarly uses L2, and the elastic net regression method
is a compromise between lasso and ridge regression
[24]. We fit the multinomial regression models with
elastic-net penalties using the algorithm implemented in
the R-package glmnet version 1.4 [22].
The elastic net solves the following problem (equation 1):

arg max
β

[l(y, X, β) − λPα(β)] (1)

with l(y, X, b) the log-likelihood of the multinomial
regression model [22] which depends on the data y, the
predictor matrix X and the coefficients b. Pa is the elastic-
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net penalty, which is a compromise between the ridge
regression penalty (a = 0) and the lasso penalty (a = 1):

Pα(β) =
p∑

j=1

(1 − α)
1
2

β2
j + α | βj | (2)

with p the number of coefficients in b. Non-zero
values for b indicate predicted links between the y-col-
umn and a subset of the X-columns. The regularization
parameter l determines the strength of the elastic net
penalty and the higher value it has, the less coefficients
will be non-zero. Note that the coefficient for the i-j
pair of columns in A can be different from that of j-i;
hence, the coefficients were symmetrized by taking the
average.

Selecting the tuning parameters
After some preliminary testing, a was set to 0.99 in all
experiments presented in this paper. The links are com-
puted for an entire path of solutions of the regulariza-
tion parameter l. The default sequence of 100 values of
l was used, and for selecting the best l, we tested using
the Bayesian Information Criterion (BIC) [25]. BIC is
computed as BIC = -2 l(y, X, b) + k ln(n) where l(.) is
the log-likelihood with b the solution to Eq. (1) for
given l, k is the number of parameters and n is the
number of data points. We chose the predicted links

with minimum BIC for each column separately, i.e. the
regularization parameter was chosen independently for
each column. In addition to the BIC-based selection of
an optimal value of l, we also tested using the sum of
the coefficients b obtained over all values of l. Because
this gave always at least comparable and often somewhat
better results than using the BIC-based selection, unless
otherwise mentioned reported results were obtained
using the sum-of-coefficients approach.

Artificial datasets
To test RMRCM, we used sequence alignments derived
from artificial networks. These networks were generated
as follows. Using 200 nodes, an edge density of 0.1, 0.25
or 0.5 was used and interactions between nodes were
randomly chosen with this probability. Here, edge den-
sity was defined as the fraction of edges out of the total
possible number of edges (200*200*0.5-0.5*200 =
19,900); hence, the networks contained approximately
1990, 4975 or 9950 edges, respectively. For each edge
density value, three different replicate networks were
generated. For each network, different alignments were
generated using Markov Random Field potentials [26,27]
which determine a probability for each amino acid (20
amino acids + 1 gap for a total of 21 characters) at each
node of the network, generating an alignment with 200
columns. These potentials consisted of node and edge

Figure 1 Multinomial setup for correlated mutations. (A) Mapping of amino acid characters to numerical factors. Matrix A represents the
multiple sequence alignment, in which each amino acid is mapped to an integer (1-21). (B) Matrix M indicates the matrix to which A is
converted: each column of A is expanded into 21 columns in M, as indicated for one particular column (column 10, A10, indicated by blue box).
In this expansion, for each entry in the matrix A, the corresponding entry (14 and 12 in the example of column 10) in the M matrix is set to 1;
the other 20 entries are set to 0. (C) Multinomial regression is used to find links between each column Ai of A and all the columns in M-i, i.e. all
columns in M except those representing Ai. To do so, each column of A separately is used as dependent variable (Y) and all the columns in M
that do not refer to that particular column of A are used as independent variables (X). In the example in this figure, Y = A1 (indicated with red
box) and X = {M2,..,M9,M10}. Note that only part of X is shown.
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terms to encode preferences for specific amino acids at
positions in the alignment, and interactions between
positions, respectively. For each node, randomly one
amino acid was selected as most preferred, with asso-
ciated node potential value pprefnode (0.1 or 0.3); all the
other amino acids at this node had a similar potential of
(1-pprefnode)/20 (such that the total probability adds up
to 1). In this way, preference for a certain amino acid at
each position was encoded, whereas the probability for
all other amino acids is equal. For the edge potentials,
sets of preferred amino acid pairs were generated for
each edge separately. For each of the amino acids, two
amino acids were chosen randomly as the preferred
partners of that amino acid. Preferred associations had
edge potential value pprefedge (0.1 or 0.3; “weak” and
“strong” interaction, respectively); others had potential
value of (1-pprefedge)/(21*21-21* 2) (such that the total
probability adds up to 1). With these edge potentials,
preference for certain amino acid combinations at cer-
tain pairs of positions was encoded.
Subsequently, Gibbs sampling was used to generate

samples, i.e. sequences in the alignment. The number of
iterations was set to 100,000, and every 50th iteration
the node labels were recorded. Three different sequence
alignments were generated from this, using the last 50
samples, the last 500 samples or the last 1,000 samples,
with 50 iterations in between. Here each sample consti-
tutes one labelling of the network, i.e. it represents one
sequence in the sequence alignment. Hence, Nseq, the
number of sequences in the samples, was 50, 500 or
1,000. In total, 108 sequence alignments were generated
with the combination of three edge densities, two levels
of pprefnode, two levels of pprefedge, three values of the
number of sequences in the sample and each combina-
tion replicated three times.
The values of the node and edge potentials as defined

above were chosen after some initial tests such as to
generate a range of different sequence similarities within
alignments, as well as a range of interaction strengths,
comparable to what was observed in biological align-
ments (for which we used PFAM entries, see below). In
those alignments, the average sequence pairwise
sequence identity was 0.34 +/- 0.14. In our case, the
sequences generated using the highest values for pre-
ferred node and edge potentials also obtained a pairwise
sequence identity of 0.34 (+/- 0.23); those with lower
values for the potentials obtained somewhat lower
values (0.15 +/- 0.20). In order to calculate and compare
interaction strengths between the artificial aligments
and biological alignments, we used mutual information
(MI, see below) calculated for all pairs of columns in
the sequence alignment. In the biological alignments,
the average value of MI was 0.14 +/- 0.08. In the artifi-
cial alignments, the set with pprefnode = 0.1 and pprefedge

= 0.3 obtain a quite comparable value of MI: 0.11 +/-
0.05. The cases with other values for pprefnode and ppre-
fedge obtained somewhat lower values of MI (0.09 +/-
0.02).
To analyze the influence of correlations between the

samples, instead of sampling every 50 iterations we also
tested sampling every 200 iterations, as well as sampling
every iteration. The latter might correspond to the bio-
logical situation of having sequences that are relatively
closely related phylogenetically. To simulate the situa-
tion of having even more closely related sequences in
part of the dataset, we tested adding additional copies of
a given sequence to the data in order to analyze the
impact of these on the performance of the method.
In addition, two different datasets of alignments with

noise were generated. In the first set ("position-noise”), a
certain percentage (10% or 25%) of all positions in the
sequence alignment were randomly changed into
another amino acid. This type of noise is a crude way to
simulate misalignment. In the second set ("sequence-
noise”) new sets of sequences were generated using only
node potentials and without edge potentials (hence posi-
tions are not coupled to each other). Next, these
sequences were combined with the original sequence
alignments, such that 10% or 25% of the original
sequences were replaced by these newly generated
sequences. This second type of noise simulates the
situation that sequences which are included in an align-
ment do not originate from proteins with the same set
of interactions between residues; this might in particular
happen in the case of analysis of interacting proteins
where ortholog pairs from various species are added to
the alignment, and where a priori it is unclear if all of
these do indeed interact as is the case for the ‘seed’ pair
of proteins.

Validation of the predicted links on simulated datasets
To assess the performance of RMRCM on the above-
mentioned simulated datasets, we calculated the area
under the Receiver Operator Characteristic (ROC) curve
for our predictions, using the R-package ROCR [28]. As
a first approach, we selected the predicted links corre-
sponding to the minimum BIC value (for each MSA col-
umn separately), and for computation of AUC we used
the absolute values of the coefficients (b-values) as
quantitative score. As a second approach, we used the
sum of the absolute values of the coefficients summed
over the whole regularization path as a score. As a third
approach, we also tested using the number of models
(out of 100 models for different l values) in which a
particular link is present. Because this approach gave
very similar results to using the sum over the whole reg-
ularization path we do not report these results here.
Because using the minimum BIC resulted in lower AUC

Sreekumar et al. BMC Bioinformatics 2011, 12:444
http://www.biomedcentral.com/1471-2105/12/444

Page 4 of 13



values than using the sum of the coefficients over the
whole regularization path, only results for the latter
approach are reported for the artificial datasets. As a
standard method to compare the results of our method
for the simulated datasets mutual information (MI) was
used to predict links [8]. MI was calculated including
the correction using mutual entropy proposed pre-
viously [8]. We tested that this indeed gives better per-
formance compared to uncorrected MI but we show
only results for corrected MI.

Biological datasets
As a standard benchmark for contact prediction we ana-
lyzed the contact prediction cases from the most recent
CASP experiment (CASP9), for which both target
sequences as well as predictions submitted by CASP
participants were obtained via http://www.prediction-
center.org. Sequences to generate a multiple sequence
alignment for each target sequence were obtained with
blastp against the NR dataset with an E-value cutoff of
0.01. Because CASP9 results have not been published
yet, we calculated the prediction performance of CASP9
cases using the raw predictions that we obtained via
http://www.predictioncenter.org. We checked they are
consistent with results described in http://predictioncen-
ter.org/casp9/doc/presentations/CASP9_RR.pdf. As
described in the CASP8 contact prediction assessment
paper [29] evaluation was performed on FM and TBM/
FM domains (i.e. cases for which no homologous struc-
tures were available), which in CASP9 constituted in
total 28 domains. Residues were considered to be in
contact if their Cb atoms (Ca for glycines) were within
a distance of 8 Å. For target domains of length L, the
top ranked L/5 and L/10 predictions according to the
predictor scores were evaluated, and only contacts for
residues separated at least 24 residues along the
sequence were taken into account. Predictions were

evaluated using two different scores, accuracy [TP/(TP
+FP), where TP = true positives and FP = false posi-
tives], and Xd, which measures how the distribution of
distances for predicted contact pairs differs from the
distribution of all pairs of residues in the target domain
structure [30].
As a larger benchmark, we obtained a set of sequence

alignments related to PFAM entries [31]. In order to
limit the computational requirements for this analysis,
we restricted this analysis to PFAM entries having
exactly one match of at least length 50 residues to a
representative PDB structure. We separately analzyed
cases with 200-500 sequences in the alignment, 500-
1000, 1000-2000 or 2000-4000 sequences. The number
of cases in those four categories were 604, 356, 62, and
234, respectively. The performance of RMRCM on these
cases was analyzed using the CASP criteria.
In addition to these two benchmarks, we analyzed var-

ious biological datasets (Table 1), including both intra-
and intermolecular analyses, which were previously ana-
lyzed using various methods. In order to compare our
results, we used validation criteria as described in the
original publications; this means that the exact setup
varies somewhat between the different cases. In particu-
lar, for the response regulator and the SK-RR datasets, a
cutoff value of 6 Å was used to define short distances,
for the MADS domain proteins 5 Å, and for the CDD
and PDZ-peptide sets both 5 Å and 15 Å.
To align the sequences, MUSCLE [32] was used. To

compare residue-residue contacts predicted by RMRCM,
structure data were used (Table 1). Although we treat
gaps in our approach on equal footing with amino acids,
biologically it does not make sense to analyze columns
with many gaps. For that reason, we used a cutoff on
the number of gaps in a column, which was set to 50%;
columns with more gaps than the cutoff were excluded
from all analyses.

Table 1 Biological datasets used for RMRCM performance asssessment

Dataset Nsets
a Nprot

b Ncol
b Structurec Reference

PFAM 1256 200/3975 10/521 Severald [31]

CASP9 28 5/501 21/227 Severale www.predictioncenter.org

MADS 12 34/339 78/218 1n6j [36]

Response regulators 1 1433 186 1xhe [16]

CDD 36 125/1922 34/411 Severalf [8]

SK-RR 1 4934 184 2c2a, 1pey, 1f51 [16]

PDZ-peptide 1 2385 162 1n7f [33]
a Nsets, number of separate multiple sequence alignments. Four datasets consists of several multiple sequence alignments, each of which is analyzed separately.
For these, the number of proteins and the number of columns mentioned are the minimum and maximum found in these sets.
b Nprot, number of proteins; Ncol, number of columns in the multiple sequence alignment.
c PDB identifier of structure used to compare predicted residue contacts.
d Obtained via PFAM.
e Obtained via www.predictioncenter.org.
f See ref. [8].
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The PDZ-peptide dataset consists of human and C.
elegans PDZ domains with associated binding peptide
sequences for each of them. For this dataset, in addition
to predicting contacts between the protein and the pep-
tide, the model learned by RMRCM based on the
human data was also used to predict interactions
between C. elegans PDZ-peptide pairs. For all C. elegans
PDZ-peptide sequences, after aligning with the human
sequences, the log likelihood was calculated by summing
the log likelihood for each position (l in equation 1),
using the RMRCM model selected based on minimum
BIC (including a pseudocount of 1.0/210 in the likeli-
hood calculation). In this way, the C. elegans interacting
PDZ-peptide pairs obtain a score based on the model
trained with human data only. In order to compare the
scores for interacting pairs with those for non-interact-
ing pairs, a set of non-interacting PDZ-peptide pairs was
generated. To do so, the data for C. elegans were rando-
mized such that peptides were randomly assigned to
PDZ domains for which no interaction was observed
with that peptide; note that this means that our non-
binding dataset might contain a subset of PDZ-peptide
pairs that do interact and hence the reported perfor-
mance might underestimate the real performance. In
total, in addition to the 1199 experimentally observed
interacting PDZ-peptide pairs, 1199 non-interacting
pairs were assembled. To assess the dependence of the
interaction prediction on the similarity between C. ele-
gans and human PDZ sequences, we calculated binding
site identity as described previously [33].

Results
Indirect dependencies between columns in a multiple
sequence alignment (MSA) cannot easily be distin-
guished from direct dependencies by currently available
pairwise methods for correlated mutation detection.
This limits the applicability of such methods for the pre-
diction of binding sites or residue-residue contacts. To
deal with this, we use recently developed methods in
structure learning of graphical models which apply regu-
larization in order to learn sparse network structures, i.
e. filter out indirect dependencies. To do so, we frame
the problem of finding correlated mutations between
columns in a protein multiple sequence alignment in a
multinomial regression setup. We convert each column
in the MSA into 21 different columns (20 amino acids +
gap) with 1 (0) in each column indicating presence
(absence) of that amino acid in each particular sequence
(Figure 1). Subsequently, the resulting binary matrix is
used as independent variables ("X”) and each column in
the original MSA on its turn is used as dependent vari-
able ("Y”) in a regression approach; in doing so, we find
a model for each column in the original MSA which
explains as much as possible of its variation using the

information from all other columns in the binary matrix.
Regularized regression allows fitting models to such
large datasets and comprises a penalty parameter to get
a balance between a good fit and a small number of
coefficients. These coefficients describe the resulting
predicted links between columns in the MSA. To select
the optimal penalty parameter, we apply the Bayesian
Information Criterium (BIC), or a sum of coefficients
found at different values of the penalty parameter. The
resulting approach is named Regularized Multinomial
Regression based Correlated Mutations (RMRCM);
more details are presented in the Methods section. In
principle, our method finds ‘multi-body’ contacts
between each residue which is used as dependent vari-
able and all residues for which non-zero coefficients are
found with that residue. However, we simply use the
non-zero coefficients here as predictors for pair-wise
interactions between residues.
To obtain insight into the performance of our algo-

rithm, as well as the influence of factors such as noise
or sequence similarity, we analyzed several simulated
datasets. We compared the performance of our
approach with the often used mutual information (MI)
approach for correlated mutations. Next, a number of
protein sequence alignments were analyzed for which
the predicted contacts were validated with protein struc-
ture data and where the performance of RMRCM was
compared with MI as well as some other approaches. In
this step of validation and application to biological data-
sets we used both standard benchmark sets (CASP,
PFAM) as well as a number of datasets which have been
previously analysed.

Validation: artificial datasets
Artificial sequence datasets were generated based on
various artificial networks with different interaction den-
sities, using Gibbs sampling with a potential function
defined over nodes and over edges between interacting
nodes, where interactions could be either weak or
strong. In addition to the generated sequences, datasets
with added noise were also analyzed (see Methods for
description).
The performance of MI and RMRCM was assessed by

comparing the predicted interaction strengths between
pairs of columns in the MSA with the known network
structure using the Area Under the Curve (AUC) value.
We first discuss the results for MI. For the datasets
without noise, on the alignments with only 50
sequences, or from networks with edge density 0.5, MI
resulted in performance very close to random perfor-
mance. For datasets with 500 or 1,000 sequences, the
performance of MI mainly depended on the edge poten-
tial (all cases with weak interactions between nodes had
random performance) and on the interaction density
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(for the cases with strong interactions between nodes,
the performance was better with lower interaction den-
sity). In addition, increasing the number of sequences
from 500 to 1,000 improved the performance (although
in most cases only slightly).
For the datasets with 10% “position-noise”, the perfor-

mance of MI as predictor seemed hardly affected, but
with 25% noise there was in most cases a clear effect.
For the datasets with “sequence-noise”, the noise had
clear impact on the performance of MI predictions at
10% noise added.
In almost all cases, RMRCM resulted in higher AUC

(better prediction performance) than MI (Figure 2). This
held true in particular at the intermediate edge density
of 0.25, where MI predictions deteriorated compared to
edge density of 0.1 whereas our approach suffered much
less. For example, when using 500 sequences at edge
density 0.25, the AUC value for MI was 0.68 +/- 0.02
for the case of weak node potential values and strong
interactions between columns; RMRCM obtained an
AUC of 0.82 +/- 0.01. The datasets resulting from sam-
pling using weak edge potential still obtained random
AUC scores using RMRCM, probably indicating the
absence of any detectable signal in these cases. For the
datasets with noise added, again RMRCM results were
better than MI results (Figure 2).
A general issue in correlated mutation analysis is that

when sequence similarity is high (sequences originate
from closely related species), it can be difficult to disen-
tangle correlation and conservation [34]. To investigate
this, we analyzed the effect of sampling frequency when
generating the datasets. When using 200 iterations
instead of 50 as used above as interval for writing out-
put during the Gibbs sampling (and hence generating
sequences that are somewhat less similar), the

performance only slightly improved (for both MI and
RMRCM). However, when using highly correlated sam-
ples (sampling every iteration) there was a clear impact
on performance, which dropped considerably. For exam-
ple, for the same networks with density 0.25 mentioned
above, AUC for MI was 0.59 +/- 0.01 and that for
RMRCM was 0.63 +/- 0.02.
As the most extreme limit of high correlation between

a number of sequences in the alignment, we tested the
influence of adding additional copies of a given
sequence to the alignment (using the sets with 500
sequences and adding 10, 25 or 50 copies of a randomly
chosen sequence). For MI, there was a clear effect; for
example, for networks with density 0.1, strong edge pre-
ferences and weak node preferences, the AUC for MI
with 10 added copies was 0.98 +/- 0.002, with 25 copies
0.95 +/- 0.01 and with 50 copies 0.92 +/- 0.01. However,
for RMRCM, there was hardly any change in perfor-
mance (data not shown) meaning that also in this
respect it performed better than MI.

Protein datasets: intramolecular analysis
To test our method on biological datasets and demon-
strate its applicability, we first tested two standard
benchmarks, viz. CASP contact prediction cases and a
large set of PFAM entries. In addition, we chose to ana-
lyse various datasets that have been analyzed previously
and where prediction performance was assessed using
available crystal structures. In order to be able to com-
pare with those previously obtained results, we used
validation criteria as described in the original publica-
tions. This means that the exact setup varies somewhat
between the different cases, but it has the important
advantage of allowing comparison with results obtained
by developers of various methods, who are experts on

Figure 2 Performance of RMRCM compared to performance of MI on artificial datasets. (A) Representative example of ROC curves for
RMRCM (dashed) and MI (continuous line) for simulated dataset with network edge density 0.25, and 500 sequences in the multiple sequence
alignment. Performance is assessed by comparing predicted contacts with those in the network used to generate the artificial sequences. (B)
AUC values for MI (x-axis) vs. RMRCM (y-axis) for datasets with 500 or 1,000 sequences. Arrow indicates particular case illustrated in panel A. Black
indicates data without noise, red with “position-noise” (10% and 25%) for interaction density 0.25 and blue with “sequence-noise” (10% and 25%)
for interaction density 0.1.
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those methods and would be expected to obtain the best
result possible with their respective methods.

CASP9 contact prediction
Contact prediction target cases were obtained from the
latest CASP round. We observed a clear dependence of
RMRCM performance for contact prediction on the
number of sequences in the alignment (Figure 3A). We
also provide the average CASP performance in Figure 3
as additional comparison. In fact, for two of the four
alignments with more than 300 sequences (T0604-D3,
501 sequences, and T0553-D2, 358 sequences), the per-
formance of RMRCM was better than that of any of the
CASP9 participants, based on accuracy, i.e. the fraction
of predicted contacts that are indeed contacts in the
crystal structure. When based on Xd, which measures
how the distribution of distances for predicted contact
pairs differs from the distribution of all pairs of residues
in the target domain structure, this was only the case
for T0604-D3, the one with the highest number of
sequences (Figure 3B). For all four of these alignments
RMRCM performance was better than the average
CASP performance. For many of the cases for which
only a small number of sequences was available,
RMRCM performance was not good, even not in com-
parison to the average performance of CASP partici-
pants. Note however that various machine learning
algorithms are used in CASP, which incorporate various
features and as such the performance of RMRCM as a
contact predictor could be boosted by combining the
correlated mutation search with such approaches. This

could include for example specialized beta-sheet contact
prediction algorithms such as applied by NNcon [35].
The dependence of RMRCM performance on the

number of sequences in the input alignment as observed
with the CASP datasets, was similar to what was
observed for the artificial datasets (see above). Another
observation from the artificial datasets, as mentioned
above, was that the contact density had a large influ-
ence. However, we did not find such influence for the
CASP cases although there is indeed quite some varia-
tion in contact density for the CASP cases (data not
shown).

PFAM
We selected a subset of PFAM entries (see Methods for
criteria), which we subdivided according to the number
of sequences in the alignment. A clear dependence for
the contact prediction performance was observed on the
number of sequences in the alignment, such that going
from less than 500 sequences via less than 1,000
sequences to between 1,000 and 2,000 sequences the
performance clearly improved (Table 2). Increasing the
number of sequences even further (between 2,000 and
4,000) did not give any additional improvement in per-
formance. Although direct comparison with perfor-
mance on the CASP cases is obviously not possible, it is
reassuring that the average performance measures
observed with the cases with at least 1,000 sequences
would place RMRCM among the best performing
approaches when compared with available CASP predic-
tion results. Performance of Mutual Information on all

Figure 3 CASP9 prediction performance. (A) CASP prediction performance as measured by accuracy for the L/10 contacts (L = length of
target sequence) with the highest predicted scores, as a function of the number of sequences in the sequence alignment. Red, RMRCM
prediction performance; black, best prediction performance among all CASP participants; blue, average prediction performance among all CASP
participants. For two out of the four cases with the highest number of sequences, RMRCM performance is better than that of any of the CASP
participants; for these two cases, labels are added to identify the CASP targets. (B) Protein structure for target T0604-D3 in cartoon
representation, together with the 20 top-ranked predicted contacts in spacefill (20 corresponds to L/10 for this protein). Identical colors for the
residues indicate pairs of residues for which a contact was predicted. Out of those 20 residues, 14 are contacts according to the CASP criteria,
and most of the others are relatively close to each other as well (within 15 Å).
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those datasets was clearly worse; for example, for the
sets with between 1,000 and 2,000 sequences, the accu-
racy for the L/10 best scoring contacts with MI was
only 0.18 +/- 0.17 compared with 0.23 +/- 0.24 for
RMRCM.
Because these datasets represent a typical setting in

which RMRCM could be applied, we also analyzed the
running time. On average, for the sets with 2000 - 4000
sequences RMRCM needed approximately 15 hours on a
single CPU for a single dataset, meaning that using any
reasonable sized compute cluster one can analyze fairly
large amounts of data. For the smaller sets the running
time was much smaller, for example for the sets with 500-
1000 sequences it was on average less than 2 hours. Run-
ning time showed a positive Pearson correlation coefficient
of ~0.45 (p~10-12) with both number of columns in the
alignment and number of sequences in the alignment.

MADS domain proteins
The MADS domain protein dataset consists of 12 Arabi-
dopsis MADS domain proteins with homologous
sequences from various plant genomes which we previously
analysed using CAPS, an algorithm which uses BLOSUM
and calculates Pearson correlation coefficients between the
transition probability scores (between pairs of sequences)
observed in one column and each other column [7,36]. For
these proteins, the RMRCM predictions in almost all cases
had a significant overrepresentation of short distances com-
pared to the crystal structure: using a c2-test, all but two
out of twelve MADS datasets had p-values below 0.05, and
in most cases the p-value was much smaller; the average
for the ten cases with p < 0.05 was 0.006 +/- 0.01. Although
the distance enrichment of the results previously obtained
with CAPS was in some cases slightly better than for
RMRCM, the number of predicted links was much higher
with our new approach (Figure 4A). To make a proper
comparison, we calculated the F-scores [28] for the pre-
dicted links. With 0.19 +/- 0.09 this was much higher for
RMRCM than what was previously obtained with CAPS
(0.012 +/- 0.015). We also used MI on those datasets, and
found that the distance enrichment of MI-predicted links
was much worse than what was obtained with CAPS or
RMRCM (data not shown).
Note that there is quite some variation in the perfor-

mance for the various MADS domain proteins, which is
mainly related to the different amount of sequences in
the multiple sequence alignments for those proteins, as
observed already when using CAPS (see [36]) and in
line with results mentioned above.

Response regulator proteins
For the response regulator proteins, we calculated the
accuracy vs. rank percentile for predicting contacts

Figure 4 Contact prediction performance. (A) MADS domain proteins: accuracy (TP/(TP+FP)) and coverage (TP/(TP+FN)) for prediction of
residue contacts using RMRCM (black), and CAPS, a method we applied previously to this dataset (red). Note that for CAPS, in three cases no
links were predicted at all; these cases are not shown. (B) Response regulator proteins: accuracy vs. rank percentile for predicting contacts for
mutual information (red), RMRCM (black) or RMRCM restricted to 60 positions among which maximum MI was found (blue).

Table 2 Contact prediction performance on PFAM
datasets

Nprot
a Accuracyb Xdc

L/5d L/10d L/5d L/10d

200-500 0.10 (0.09) 0.11 (0.12) 4.1 (4.2) 4.6 (5.5)

500-1000 0.16 (0.14) 0.21 (0.18) 6.3 (5.2) 8.0 (6.9)

1000-2000 0.24 (0.18) 0.32 (0.24) 9.3 (7.5) 12.1 (9.3)

2000-4000 0.25 (0.19) 0.33 (0.26) 8.8 (7.9) 11.8 (10.1)
a Nprot, number of protein sequences in the alignment.
bAccuracy, fraction of predicted contacts that is correct according to the
crystal structure. Contacts are defined according to the CASP criteria (Cb
atoms (Ca for glycines) within a distance of 8 Å; only contacts for residues
separated at least 24 residues along the sequence were taken into account).
c Xd, measures how the distribution of distances for predicted contact pairs
differs from the distribution of all pairs of residues in the target domain
structure.
d Highest ranked predicted contacts were assessed, using either L/5 or L/10
contacts. Here L refers to the length of the target sequence. Values for
accuracy and Xd are averages (standard deviations).
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(Figure 4B) as was previously done by Weigt et al. [16].
Here, the predicted contacts were sorted based on the
score assigned by RMRCM, and the accuracy of the top
n% predicted contacts, i.e. the fraction of predicted pair-
ings which indeed were in contact in the structure, was
calculated, for various values of n (0-5%). Figure 4B can
be directly compared with Supporting Information Fig-
ure S7 in Weigt et al. The performance of our proce-
dure is quite comparable to their performance, which is
remarkable because our approach is computationally
much less expensive. Weigt et al. had to restrict their
analysis to a subset of only 60 positions in order for the
problem to be computationally tractable whereas we can
easily analyze more columns (for this particular dataset,
187 columns were analyzed with one CPU within a cou-
ple of hours).

CDD
As a final set of protein MSAs for intramolecular analy-
sis we used data previously analyzed using MI [8],
assembled using the Conserved Domain Database
(CDD). Here, combining results for all different datasets,
in the crystal structures 6% of the residue pairs had dis-
tance below 5 Å and 35% below 15 Å. For the BIC-
based predictions, these percentages were 25% and 67%,
respectively; this increased to 41% and 73% when
restricting to the ten highest scoring pairs for each data-
set. The performance when using the sum of the coeffi-
cients along the whole regularization path was quite
comparable although slightly worse than when using
BIC. When restricting to the pairs that had overlap with
the top 100 mutual information-based pairs, these per-
centages were somewhat higher (45% and 79%). The top
100 mutual information based pairs had somewhat
lower enrichment with 24% and 66% within 5 Å and 15
Å, respectively.
Comparison with the results obtained by Martin et al.,

who analyzed only pairs of residues that have no addi-
tional partners ("isolated pairs”), indicated that in our
case the distance enrichment was slightly lower, but
again the number of predicted links was much higher.
For example, for the alignments with at least 150
sequences, using the top 10 predictions for each dataset,
we obtained a fraction of predicted residue pairs within
5 Å of 0.44 compared to 0.66 for Martin et al.; however,
in their case, only 32 pairs were predicted, compared to
240 in our case.

Protein datasets: intermolecular analysis
SK-RR
For the SK - RR interacting proteins, we tested allowing
either only intermolecular contacts, or both inter- and
intramolecular contacts (the intramolecular contacts
were not further analyzed but in building the prediction

model they can influence the intermolecular contacts).
Based on comparison with intermolecular contacts from
the available crystal structure, the exact setup did not
influence much the results. Weigt et al. previously pre-
dicted 6 links which indeed all had a short distance in
the crystal structure. When taking the 6 links with the
highest sum of coefficients based on minimum BIC or
using the sum of all coefficients along the regularization
path, in most cases we also predicted only pairs that
were indeed in contact (except in the case of using only
intermolecular contacts and using minimum BIC; in
that case, one of the predicted links had a larger dis-
tance). Most of the predicted links were the same as
found by Weigt et al.

PDZ-peptide
The PDZ-peptide dataset consists of a set of human
PDZ domains and associated binding peptides for each
PDZ, and a similar set of C. elegans PDZ domains and
interacting peptides. For this dataset, we used RMRCM
to predict residue contacts between the PDZ domain
and the peptides, but in addition we tested using
RMRCM for predicting which PDZ domain interacts
with which peptide. First, we predicted PDZ-peptide
residue connections. Here, using only intermolecular
contacts resulted in much worse intermolecular contact
prediction than using both intra- and intermolecular
contacts. We compared the top 50 predicted intermole-
cular links obtained with the model using both inter-
and intramolecular contacts for RMRCM with those
predicted by MI. Both had about an equal number of
predicted contacts which were found in the crystal
structure within 5 Å (10%). However, the number of
predicted contacts found within 15 Å in the crystal
structure was much higher for RMRCM (80%) com-
pared to MI (50%); the value found for MI is equal to
the overall percentage of pairs of residues found within
15 Å of each other in the crystal structure. Hence,
although MI does not improve over a random predic-
tion, RMRCM clearly does.
Indeed, the majority of the residues predicted using

RMRCM on the PDZ protein are in close proximity of
the ligand peptide (Figure 5A). In some cases, the resi-
dues on the PDZ protein also contact with the residue
on the ligand with which a connection is predicted
whereas in other cases the residues found on the PDZ
domain just are near the binding site but do not directly
contact the peptide residue with which a connection is
predicted (Figure 5A).
In addition, we used the model trained with human

data to predict interactions for C. elegans data based on
the likelihood score. When using a model trained using
both intra- and intermolecular links, this resulted in
poor differentiation between interacting and non-
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interacting C. elegans PDZ-peptide pairs. However,
when using a model trained using only intermolecular
links, there was a clear differentiation; for example,
among the top 100 PDZ-peptide pairs with the highest
score, 97 were indeed interacting, whereas among the
lowest 100 scores, 73 were indeed non-interacting.
Previously, a simple method was proposed using bind-

ing site similarity between PDZ domains to predict
interactions with peptides [33]. In line with the results
of that method, we observed a relationship between the
maximum binding site identity of a C. elegans PDZ with
the human PDZ sequences, and the AUC we obtained
for prediction of interactions of that C. elegans PDZ
sequence (Figure 5B). Interestingly, only below a binding
site identity of 0.6 the interaction prediction became less
reliable. This is an improvement over the previously
observed binding site identity which was needed to reli-
ably transfer interaction information between PDZ
domains (where a value of 0.7 distinguished PDZ
domains with similar from PDZ domains with distinct
binding profiles) [33]. Hence, at least for this particular
dataset, RMRCM is able to push the limit of cross-spe-
cies sequence-based interaction prediction towards
lower similarity levels. Note however that we provide
here just one example of using RMRCM as a way to
predict interactions, because our focus is on predicting
residue-residue connections. Further work would be

needed to assess the performance of RMRCM as a gen-
eral protein-protein (or protein-peptide) interaction
predictor.

Discussion
We present RMRCM, a method for correlated mutation
analysis using regularized multinomial regression, and
demonstrate its performance and applicability with var-
ious datasets. Even though correlations between col-
umns in a multiple sequence alignment can arise due to
various factors, we focus here on using our algorithm to
predict residue-residue contacts. Our algorithm expli-
citly takes into account the occurrence of direct vs
indirect dependencies by using all columns in the multi-
ple sequence alignment simultaneously as independent
variables to predict the variation in a given column.
Existing methods use various approaches such as apply-
ing cutoffs based on randomized alignments to distin-
guish direct from indirect dependencies but RMRCM
uses a more principled approach here.
In comparison with MI, we found on simulated data-

sets that our approach has a better performance in pre-
dicting network edges. Note that our simulation model
might be somewhat limited in its ability to reflect biolo-
gical reality but we used it here as an initial test for our
method. Analysis of CASP and PFAM cases indicates a
very good performance of our algorithm in cases where

Figure 5 PDZ-peptide contact and interaction prediction. (A) Residues predicted on PDZ domain are mostly located in the peptide binding
site. Spacefill indicates PDZ domain and colored spacefill indicates PDZ residues predicted by RMRCM to interact with the peptide; ball-and-stick
indicates peptide that interacts with the PDZ domain. Colors on the peptide indicate with which residues with corresponding colors on the PDZ
domain those residues are predicted to connect; in one case, a residue on the PDZ domain obtains two colors (green and orange) because
connections are predicted with two peptide residues. In some cases (e.g., blue residues) the predicted connections are between residues which
are contacting each other; in other cases (e.g., orange residues) this is not the case, although the residues predicted on the PDZ domain are still
relatively close to the peptide. Two additionally predicted residues on PDZ are at the backside of the molecule and are not visible. (B) Prediction
of C. elegans PDZ-peptide interactions using human interaction data as training set. AUC values for C. elegans PDZ-peptide interaction prediction
based on human interaction data (y-axis) vs. binding site identity of the C. elegans PDZ sequence with the best-matching human sequence (x-
axis). Lines indicate randomly expected AUC (0.5) and binding site identity above which good prediction performance is obtained (0.6).
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enough sequences were available. When analyzing addi-
tional biological datasets, we found in most of these a
comparable or better distance enrichment for RMRCM
compared to existing algorithms, in combination with
much higher numbers of predicted links by RMRCM.
Also, a combination of MI and our new approach seems
particular powerful. A clear dependence of RMRCM
contact prediction performance on the number of
sequences in the alignment was observed, such that
until at least ~1,000 sequences performance increases
when adding more sequences. Nevertheless, also with
sequence alignments with less sequences RMRCM pre-
dictions can be competitive compared to existing algo-
rithms for correlated mutation analysis. Although
currently the requirement of ~1,000 homologous
sequences for a given protein of interest is still some-
what restrictive, one would expect that for proteins that
are present in a large enough range of species quite
soon the current explosion in sequence data due to the
ongoing revolution in sequencing technology will allevi-
ate that restraint. Of particular relevance here are
ongoing projects to sequence hundreds or even thou-
sands of different species (http://genome10k.soe.ucsc.
edu/, http://solgenomics.net/organism/sol100/view,
http://www.bgisequence.com/eu/scientific-initiatives/pro-
jects/1000-plants-and-animals/) For alignments with too
few sequences, RMRCM would probably not be the
method of choice for predicting residue contacts based
on sequence data only.
One additional feature that we plan to add to

RMRCM is to take amino acid similarity (based on e.g.
BLOSUM) into account, by using a prior and/or penalty
term that forces amino acids in a given response-col-
umn that are similar to each other (e.g. K and R) to
obtain links with amino acids in each predictor-column
that are similar to each other (e.g. D and E), or that pro-
mote contacts between “complementary” amino acids (e.
g. K or R with D or E). We expect that this might
further boost performance. Also, currently we do not
correct for the effect of phylogenetic relationships in the
sequence alignment that we use as input [12,37]; doing
so might further improve RMRCM.
During the preparation of this manuscript, a novel

method, GREMLIN, appeared which also uses regulari-
zation to learn a graphical model structure based on
sequence data [38]. In several computational aspects,
including the exact formulation of the regularization,
RMRCM is different from GREMLIN. More important,
however, is that the focus of that study was on validat-
ing the approach by calculating the imputation error, i.e.
the probability of not being able to generate a complete
sequence given an incomplete one. As such, that study,
and the current study where we focus on residue

contact prediction and interaction prediction, are
complementary.
An interesting and useful aspect of RMRCM is that it

is possible to choose subsets of residue interactions to
be taken into account. In particular, we tested using
either only intermolecular contacts or both intra- and
intermolecular contacts; note that existing pairwise cor-
related mutation approaches per se analyze intermolecu-
lar contacts separately from intramolecular contacts in
the sense that they analyze pairs of columns, where each
pair is either intramolecular or intermolecular. Hence,
predictions for intramolecular contacts do not influence
predictions for intermolecular contacts, or the other way
around. In RMRCM this is different, because we can
choose to use either all positions in the alignment as
explanatory variables or just a subset. For the prediction
of residue contacts, although we did not find much dif-
ference for the SK-RR dataset, for the PDZ-peptide
dataset the use of both intra- and intermolecular links
in the model gave much better results for intermolecular
contact prediction compared to using only intermolecu-
lar links in the model. For the prediction of C. elegans
PDZ-peptide interactions based on human interaction
data, the situation was reverse: a model trained using
only intermolecular links performed better. This might
be because the C. elegans PDZ sequence similarity to
human PDZ sequences overwhelms any intermolecular
contribution to the scoring of a C. elegans PDZ - pep-
tide pair when including intramolecular links.

Conclusions
To conclude, the validation using simulated data as well
as biological data, demonstrates the usefulness of
RMRCM. We believe RMRCM is a versatile framework
which will prove quite useful in the annotation of pro-
tein sequences.
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