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Abstract

Background

Atypical meningiomas are common central nervous system neoplasms with high recurrence

rate and poorer prognosis compared to their grade I counterparts. Surgical excision and

radiotherapy remains the mainstay therapy but medical treatments are limited. We explore

new drug candidates using computational drug repurposing based on the gene expression

signature of atypical meningioma tissue with subsequent analysis of drug-generated

expression profiles. We further explore possible mechanisms of action for the identified drug

candidates using ingenuity pathway analysis (IPA).

Methods

We extracted gene expression profiles for atypical meningiomas (12 samples) and normal

meningeal tissue (4 samples) from the Gene Expression Omnibus, which were then used to

generate a gene signature comprising of 281 differentially expressed genes. Drug candi-

dates were explored using both the Board Institute Connectivity Map (cmap) and Library of

Integrated Network-Based Cellular Signatures (LINCS). Functional analysis of significant

differential gene expression for drug candidates was performed with IPA.

Results

Using our integrated approach, we identified multiple, already licensed, drug candidates

such as emetine, verteporfin, phenoxybenzamine and trazodone. Analysis with IPA

revealed that these drugs target signal cascades potentially relevant in pathogenesis of

meningiomas, particular examples are the effect on ERK by trazodone, MAP kinases by

emetine, and YAP-1 protein by verteporfin.
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Conclusion

Gene expression profiling and use of drug expression profiles have yielded several plausible

drug candidates for treating atypical meningioma, some of which have already been sug-

gested by preceding studies. Although our analyses suggested multiple anti-tumour mecha-

nisms for these drugs, further in vivo studies are required for validation.

Importance of the study

To our knowledge this is the first study which combines relatively new, yet established

computational techniques to identify additional treatments for a difficult to manage cerebral

neoplasm. Beyond proposing already approved drug candidates in the management of

atypical meningioma the study highlights the promise held by computational techniques in

improving our management strategies.

Introduction

Meningiomas are the most frequently encountered brain tumours in adults with an incidence

of 1–8 per 100,000 person per year [1]. They constitute approximately one third of all central

nervous system neoplasms and are subdivided into 3 tiers based on histopathological proper-

ties by the World Health Organization grading. The majority (65–80%) are benign slow grow-

ing lesions (WHO grade I) with an 80–90% chance of 5-year disease-free survival post

treatment [2]. The remaining subtypes are atypical (WHO grade II) and malignant meningio-

mas (WHO grade III), which carry more aggressive characteristics and consequently greater

morbidity and mortality. The most common of these subtypes is atypical meningiomas, which

were initially thought to constitute only 5% of all cases. However with the introduction of the

2000 and 2007 WHO criteria, atypical meningiomas apparently put out 20–35% of all cases [3]

with WHO grade III meningiomas representing less than 3% of new diagnosis [4].

Current management of atypical meningiomas is maximal safe surgical excision, yielding a

10-year disease specific survival rate of 69% after first recurrence [5]. Use of radiotherapy for

atypical meningiomas currently varies across centers and is mostly applied in cases where only

subtotal resection could be achieved or surgery was not feasible. Review of evidence from

between 1966–2010 demonstrated improvement of local control with adjuvant radiotherapy

[6] in particular with subtotal resection. However even with combined surgical treatment and

radiotherapy median 5-year progression free survival rate was 54.2% and the mean 5-year

overall survival was 67.5% [6].

These outcomes have upheld the need for additional treatment modalities such as chemother-

apy. Several drug trials have targeted key mechanisms of oncogenesis in recurrent/inoperable

meningiomas such as cell replication (cytotoxic agents), hormonal mechanisms (progesterone

antagonists), aberrant cell signaling (e.g. growth factor and downstream signaling mechanisms)

and angiogenesis (VEGF inhibitors). Results were mixed overall, only some candidates were

promising in a small case series [7], and high volume studies to solidify efficacy and safety pro-

files are still lacking. As the treatment of atypical meningiomas remains problematic, the desire

persists to identify further drug candidates to improve outcomes.

Drug repurposing allows the reapplication of existing medical therapies to alternative dis-

eases either by screening entire drug libraries [8] or based on similarities of drug and disease

signatures [9]. There are several advantages of drug repurposing over conventional de-novo

drug development. By screening already approved candidates it allows for bypassing the safety
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profiling stage translating into lower cost and better time efficiency. Therefore the average

15-year and over $1 billion associated with bringing a new drug onto the market can be sub-

stantially reduced [10]. Computational techniques carry the benefit of hypothesis generation,

i.e. the identification of drug-disease pairs, which can then inform systemic testing of candi-

date compounds. Computational drug repositioning in the past has yielded several new candi-

dates such as terbutaline sulfate for amyotrophic lateral sclerosis [11] or the anticonvulsant

topiramate in the treatment of inflammatory bowel disease [12]. Disease signatures may be

derived from a variety sources including biomedical literature, protein interactions, chemoin-

formatics or genetic data. Linking disease-drug profiles based on genetic information is now

one of the most well-established modalities of drug repurposing, and which is freely achievable

through several online resources. The first step of this technique is to acquire a specific signa-

ture constituted of genes that are up- or down regulated in the disease state. The disease is then

paired with drug candidates based on similarities shared between the disease-specific signature

and the expression profile various drugs induce in cultured human cells. Examples for such

catalogues of transcriptomic responses to drugs include the Connectivity Map (cmap), estab-

lishing the effects of 7,000 expression profiles representing 1,309 compounds [13]. Another

similar database is the NIH Library of Integrated Network-Based Cellular Signatures (LINCS),

which tests 2,915 drugs in 9 cell lines and a further 12,761 small molecules with lighter cover-

age in a variety of 37 cell lines [14]. In the current study we applied the gene expression signa-

ture of atypical meningiomas [15] to cmap and LINCS to propose new drug candidates for

augmenting our current management of this complex and intractable disease.

Methods

Disease gene expression data analysis

Disease expression data was obtained from the NCBI Gene Expression Omnibus (GEO)

[16,17]. Our analyses focused on data obtained from study GSE4329015. In brief, this study

measured gene expression levels from 47 meningioma tumour samples (of which 12 were

atypical meningioma tumours) and from 4 normal meninges samples. Raw data files from this

study were downloaded and normalized using Robust Multi-array Average (RMA) imple-

mented in GenePattern’s [18] ExpressionFileCreator module. Functional analysis of atypical

meningioma vs. normal meninges was conducted using Gene Set Enrichment Analysis

(GSEA) [19] implemented in GenePattern [18].

Differential gene expression analysis between atypical meningioma and normal meninges

was conducted using the ComparativeMarkerSlection module. To select significant differen-

tially expressed genes for our disease gene signature we applied a fold-change threshold of>3,

p-value <0.001 and a false discovery rate (FDR) threshold of<0.05.

Analysis of drug-induced gene expression signatures

Disease-specific gene expression signatures (generated as described above) were used to query

against gene expression profiles of drugs obtained from the Connectivity Map [13] and Library

of Integrated Network-Based Cellular Signatures (LINCS) [20] (Fig 1). In brief, the Connectiv-

ity Map (cmap) is a collection of gene expression data from cultured human cells treated with

bioactive small molecules and contains more than 7,000 expression profiles representing 1,309

compounds. The LINCS project includes assay results from cultured and primary human cells

treated with bioactive small molecules, ligands such as growth factors and cytokines, or genetic

perturbations. The L1000 dataset of LINCS includes 2,915 drugs in 9 cell lines and a further

12,761 small molecules with lighter coverage in a variety of 37 cell lines. In addition to making

these data available, both cmap and L1000, include a simple pattern-matching algorithm that
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uses common changes in gene-expression to enable the discovery of functional connections

between drugs, genes and diseases [13,21]. In both cases, the systems generate a list of signa-

tures rank ordered by the strength of the match to the query. Each signature is given a score

ranging from -1 to 1, were 1 signifies a correlating differential expression pattern and a score

of -1 signifies a gene expression pattern that is oppositional to the disease-specific gene expres-

sion pattern. Molecules which induce a gene expression signature that is oppositional to that

of the disease represent potential therapeutic candidates (Fig 1).

Pathway analysis

The links between each of the drug candidates and the disease-derived gene signature was fur-

ther explored using Ingenuity Pathways Analysis (IPA) [22]. For each of the candidate drugs, a

network was generated to illustrate the links between the drug and genes differentially

expressed in atypical meningioma (our disease gene signature). In these networks, genes and

drugs candidates are represented as nodes, and are connected by an edge if there is at least one

association between the two (based on IPA’s interactions database).

Results

Differential gene expression in atypical meningioma

The results of the original gene expression experiment can be found in reference [23]. To inter-

pret the biological significance of atypical meningioma gene expression levels we assessed its

enrichment with KEGG23 pathways and Gene Ontology (GO) terms [24]. Using GSEA, sev-

eral KEGG pathways suggestive of neoplastic processes were found to be significantly up-regu-

lated in atypical meningioma (Table 1). These included DNA excision repair, RNA

polymerase, pathways related to thyroid cancer and endometrial cancer. In contrast, the only

pathway found to be significantly down-regulated was the NOD-like receptor-signaling path-

way. This was somewhat unexpected as this pathway is primary associated with inflammatory

processes in particular chronic conditions such as Crohn’s disease or Blau syndrome. Analysis

Fig 1. Analysis pipeline. In the first step gene expression values are compared between disease and control sample sets, resulting in a disease-derived gene expression

signature. Next the disease expression signature is used to query databases of signatures associated with a variety of compounds. Compounds demonstrating an

expression signature oppositional (anti-correlating) to that of the disease are suggested as possible therapeutic candidates.

https://doi.org/10.1371/journal.pone.0194701.g001
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Table 1. Interpretation of gene expression levels.

KEGG Pathways

Up-regulated Down-regulated

Pathway P-value Pathway P-value

Base excision repair 0 NOD like receptor signaling pathway 0.0325

Thyroid cancer 0

RNA polymerase 0.0055

Endometrial cancer 0.0068

N glycan biosynthesis 0.0132

Adherens junction 0.0138

Pyrimidine metabolism 0.0268

Nucleotide excision repair 0.0323

Non small cell lung cancer 0.0337

Galactose metabolism 0.0491

Gene Ontology Biological Processes

Up-regulated Down-regulated

Process P-value Process P-value

Positive regulation of phosphate metabolic process 0.0074 Cell maturation 0.0081

Insulin receptor signaling pathway 0.0087 Developmental maturation 0.0084

RNA export from nucleus 0.0111 Cell migration 0.0099

Transmembrane receptor protein tyrosine kinase signaling pathway 0.0112 Negative regulation of map kinase activity 0.0111

Base excision repair 0.0123 Muscle development 0.0143

Cellular protein complex assembly 0.0133 Rhythmic process 0.0195

Transcription initiation from RNA polymerase ii promoter 0.0134 Microtubule based movement 0.0196

Protein amino acid n linked glycosylation 0.0136 Regulation of biological quality 0.0197

Nuclear export 0.0152 Cell development 0.0203

Protein complex assembly 0.0159 Synaptic transmission 0.0209

Regulation of protein modification process 0.0167 Nervous system development 0.0217

Mitochondrion organization and biogenesis 0.0206 Regulation of action potential 0.0219

Nucleotide excision repair 0.0223 Muscle cell differentiation 0.0225

Stress activated protein kinase signaling pathway 0.0248 Myoblast differentiation 0.0228

Positive regulation of protein modification process 0.0261 Cytoskeleton dependent intracellular transport 0.0264

Carbohydrate metabolic process 0.0268 Negative regulation of cell differentiation 0.0297

Positive regulation of protein metabolic process 0.0269 Behavior 0.0309

Macromolecular complex assembly 0.0270 Protein homooligomerization 0.0325

Cellular component assembly 0.0336 Transmission of nerve impulse 0.035

JNK cascade 0.0358 Central nervous system development 0.0352

DNA repair 0.0361 Regulation of g protein coupled receptor protein signaling pathway 0.0374

Carbohydrate catabolic process 0.0363 Skeletal muscle development 0.0384

Cellular carbohydrate catabolic process 0.0363 Cell proliferation go 0008283 0.0386

Transcription initiation 0.0401 Locomotory behavior 0.0493

Interaction with host 0.0449

Nucleobasenucleosidenucleotide and nucleic acid transport 0.0455

Positive regulation of metabolic process 0.0465

Regulation of protein amino acid phosphorylation 0.0479

Golgi vesicle transport 0.0486

Glycoprotein metabolic process 0.0493

Positive regulation of phosphorylation 0.0495

https://doi.org/10.1371/journal.pone.0194701.t001
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of Gene Ontology terms significantly associated with atypical meningioma confirmed up-reg-

ulation of categories intuitive of neoplasia such as Insulin receptor signaling pathway, trans-

membrane receptor protein tyrosine kinase signaling pathway, and base and nucleotide

excision repair (Table 1). Several GO terms related to cell maturation and development were

down-regulated in atypical menigiomas, in keeping with a neoplastic process.

Interpretation of gene expression levels using enrichment analysis with KEGG pathways

and Gene Ontology (GO) terms.

A gene signature for atypical meningioma

We next derived a gene expression signature for atypical meningiomas by comparing gene

expression levels between atypical meningioma tumour samples (n = 12) and normal menin-

ges samples (n = 4). After applying a fold-change threshold of>3, p-value<0.001 and an FDR

threshold of<0.05, 42 transcripts were found to be up-regulated while 239 were down-regu-

lated in atypical meningioma relative to normal samples (Fig 2). Up-regulated genes included

cyclin D1, G protein-coupled estrogen receptor 1, neurite growth-promoting factor 2, amyloid

beta (A4) precursor-like protein 2, and calreticulin. While down-regulated genes included

tumour suppressor genes (deleted in liver cancer 1), extracellular matrix components (tenas-

cisn C, lumican, decorin, sarcoglycan, epsilon), cell adhesion molecules (platelet and endothe-

lial cell adhesion molecule 1[PECAM-1], Intercellular adhesion molecule 2 [ICAM-2], E

selectin) and genes of structural molecules (desmin, actin, tubulin, myosin heavy chain).

Drug repurposing for atypical meningioma

The gene expression signature generated for atypical meningioma was used to query two

repositories for perturbation-induced expression signatures. These queries resulted in a list of

bioreactive small-molecules that demonstrate gene expression signatures that are anti-corre-

lated to that of atypical meningioma and therefore represent potential therapeutic candidates

(Table 2).

Only drug candidates with a connectivity score of<-0.6 (from at least one data resource)

are displayed, excluding non-drug small molecules; for cmap candidates, we only included

those with a p value<0.05. For cmap scores, the arithmetic mean of the connectivity scores is

given for each of the listed candidates. For LINCS scores, the best (lowest) score is given for

each of the listed candidates.

Drug candidate pathway analysis

We used Ingenuity Pathway Analysis for the highest-ranking drug candidates to assess their

link to the differential gene expression profile and pathways. The association between the top

two drug candidates, verteporfin and emetine, and genes from our atypical meningioma gene

signature are depicted in Fig 3. Interactions from the pathway analysis showed verteporfin and

emetin’s direct/indirect interactions with cascades relevant to apoptosis (caspase 3, 9, B-cell

lymphoma 2 [BLC-2], cytochrome c) or cell proliferation (Epidermal Growth Factor Receptor

[EGFR], and Mitogen Activated Protein Kinase [MAPK]). Interestingly, both emetine and ver-

teporfin interacted with caspase 3.

Discussion

Multiple, successful new therapies have been identified in the past using drug repurposing

based on differential gene expression profiles. Examples include amyotrophic lateral sclerosis

[11] and inflammatory bowel disease [12]. The strategies applied to verify drug candidates in

Drug repurposing for new treatments of atypical meningiomas
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these studies were based on electronic patient records [11] or experimental studies in animal

models [12], respectively. Atypical meningiomas are difficult to manage due to high recur-

rence rate, and treatment modalities are limited to surgical excision and radiotherapy. In the

current paper we take a fully computational approach to support potential effects of drug

Fig 2. Gene expression heatmaps for most differentially expressed genes in atypical meningioma. (a) Top 25 up-regulated genes in atypical meningioma in

comparison to normal meninges. (b) Top 25 down-regulated genes in atypical meningioma in comparison to normal meninges.

https://doi.org/10.1371/journal.pone.0194701.g002
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candidates by bio-functional analysis in IPA. Each of the top three drug candidates were found

to interact with at least one of the cascades previously proposed in the pathogenesis of

meningioma.

Verteprofin

Verteporfin ranked as the best candidate based on its connectivity score in both cmap and

LINCS; it is currently used in ophthalmology as a photosensitizer in the treatment of second-

ary choroidal neovascularization and other conditions including choroidal hemangiomas [25].

Our pathway analysis showed its indirect interactions with transcription factors relevant to cell

differentiation, apoptosis and ontogenesis such as yes-associated protein 1 [YAP1], cyto-

chrome C, Poly [ADP-ribose] polymerase 1 (PARP-1), caspase 3, caspase 9, and EGFR. The

relevance of these transcription factors in meningioma biology is well traceable in the

literature.

YAP1 overexpression can result in increased contact independent cell proliferation [26].

Subsequently YAP1 was found to express in all grades of meningiomas and its deletion caused

impaired cell proliferation and migration in vitro, whereas overexpression translates to prolif-

eration and anchorage independent cell growth [27]. Recent results demonstrated that verte-

porfin interferes with the TEAD (TEA domain family member)-YAP pathway [28], which has

been suggested to drive the neoplastic transformation of arachnoid cap cells and promote mei-

ningioma progression. Additionally, in vitro evidence showed inhibition of meningioma

growth together with an increased sensitivity to irradiation post verteporfin treatment [29].

EGFR has been previously identified as a promising therapeutic target in non-small cell

lung tumours, with treatment effect linked to point mutations of the tyrosine kinase domain

[30]. EGFR is expressed in 50–80% of meningiomas [31], and activation of the EGFR signal

was shown to stimulate meningioma proliferation in vitro [32], further suggesting it as a

potential treatment target. However in a recent phase II trial consisting of twenty-five patients,

EGFR inhibitors gefitinib and erlotinib did not show significant activity against atypical

meningioma [33]. Furthermore, evidence suggests a lack of mutations in the thyrosine kinase

domain of the receptor previously linked to treatment response [31]. Although the role of

EGFR in meningioma treatment remains uncertain, our results suggest verteporfin may offer a

new therapeutic action via this pathway.

Another potentially anti-neoplastic action of verteporfin proposed by IPA is the effect on

cytochrome-c. The cytoplasmic release of cytochrome c is a key factor in mitochondria depen-

dent apoptosis. This mechanism has been demonstrated in meningioma cell lines by modulat-

ing cytochrome-c release through the N-Myc Downstream Regulated Gene 4 (NDRG4).

Table 2. Top drug repurposing candidates from cmap and LINCS.

Drug name C-map score LINCS score

verteporfin -0.749 -0.4658

emetine -0.721 -0.6047

phenoxybenzamine -0.708 -0.3464

trazodone -0.601 -0.3759

omeprazole -0.616 -0.3973

sulconazole -0.610 -0.4093

8-azaguanine -0.603 -

azacitidine 0.638 -0.6268

IL1 - -0.6141

cercosporin - -0.6042

https://doi.org/10.1371/journal.pone.0194701.t002
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Silencing of NDRG4 translated to an up-regulation of p53 and subsequent release of cyto-

chrome c with significantly reduced proliferation rates in meningioma cell cultures [34]. These

findings further support the therapeutic action of verteporfin through cytochrome c in

meningiomas.

Other potential targets for verteporfin include: PARP-1, which is involved in single strand

DNA repairs and was recently demonstrated to have highest expression levels in grade II sub-

types meningiomas [35] and the pro-apoptotic protein caspase-3 shown to correlate with the

histological grade of meningioma, cell proliferation index and mitotic count [36]. Furthermore

the presence of active Caspase 3 fragments have been demonstrated in atypical meningiomas

[37]. Verteporfin has been shown to induce apoptotic cell death in HeLa cells via induction of

caspase 3 [38], however this mechanism has not been demonstrated in meningioma cells.

While these findings need to be interpreted in the context of caspase regulators, the presence

Fig 3. IPA interaction network for verteporfin and emetine, and differentially expressed genes from our atypical meningioma gene

signature. Genes and drugs candidates are represented as nodes, and are coloured based on fold-change of expression values, ranging

from green (down-regulated in atypical meningioma) to red (up-regulated in atypical meningioma). Nodes in white represent genes that

were not included in our atypical meningioma gene signature but serve as a link in the network to the candidate drugs. A line connects

two nodes if there is any known relationship between the two; solid lines represent direct interactions while dotted lines represent

indirect interactions.

https://doi.org/10.1371/journal.pone.0194701.g003
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of caspase component (including caspase 3) in atypical meningioma support the hypothesis of

verteporfin effect.

Emetine

A second proposed candidate, emetine, is a naturally occurring substance extracted from the

syrup of ipecac and has a long history of use for the treatment of amoebiasis dating back to the

1500s. It is currently the drug of choice to induce emesis after ingestion of potential toxins

[39]. Emetine has been available as an over the counter medication since 1966 in the United

States with over 50,000 doses given per year according to poison control center records [40].

On a cellular level it has been identified as an inhibitor of translation [41] and has been widely

used suppressor of protein synthesis in cellular models [42]. Glioblastoma multiforme cell

lines pretreated with emetine and transplanted intraparenchymaly demonstrated reduced

tumour growth in mouse models [43] supporting emetine as a promising candidate for treat-

ing atypical meningioma.

Our IPA analysis revealed that emetine interacts with BLC-2, MAPK, Eukaryotic transla-

tion initiation factor 2 (eIF2) and Cytochrome P450 3A4 (CYP3A4) proteins. Similar to verte-

porfin it had an interaction with caspase 3. The anti-apoptotic protein BLC-2 has been

detected in meningiomas. Although not associated with clinical outcome it was more abun-

dantly expressed in atypical variants [44]. MAPK activation has been implicated in the patho-

genesis of meningiomas [45] and its inhibition resulted in slowed cell growth and increased

apoptosis in malignant meningioma cultures [46] at the expense of increased recurrence. A

key regulator of cell proliferation, eIF2, has low expression levels in meninges but is increased

in atypical meningioma tissue [47]. CYP3A4 is a member of the cytochrome P450 family

(CYP) and metabolises neuroactive steroids such as testosterone and estradiol in cerebral tis-

sue [48]. So far it has not been implicated in meningioma pathogenesis, however its involve-

ment in testosterone and estradiol metabolism may suggest its relevance as a significant

portion of meningiomas are thought to be “hormone fed” [49].

Phenoxybenzamine

Phenoxybenzamine is a non-selective alpha-blocker mainly used for its antihypertensive

effects in the setting of pheochromocytoma. It has been identified as a small molecular inhibi-

tor of glioblastoma cell viability and invasion in vivo [50]. This effect was suggested to be inde-

pendent of its alpha-antagonist function and attributed to its inhibitory effect on the EGFR

pathway [51]. As discussed above, several lines of evidence support the role of EGFR signaling

pathway in the pathogenesis of meningiomas.

Phenoxybenzamine also binds and inhibits calmodulin [52], a ubiquitous calcium binding

protein, which promotes neoplasia [53] by enhancing cell proliferation, tumour growth, angio-

genesis and metastasis [54]. Although calmodulin expression is documented in meningiomas

[55] its contribution to meningioma pathogenesis remains to be established. Potential anti-

neoplastic effects of phenoxybenzamine may also occur through prolactin or glucocorticoid

related pathways in meningiomas [52,56].

Other potential candidates include trazodone, omeprazole, sulconazole and 8-azaguanine,

however these were associated with lower scores or supported by evidence from only one of

the drug-signature resources we searched and are therefore less likely to be of interest. An

additional drug that was identified by our approach is azacitidine, however, the scores from

cmap and LINCS were contradicting. While the drug’s gene expression signature from LINCS

was oppositional to that associated with atypical meningioma, suggesting it may be a potential

therapeutic candidate, the gene signature from cmap had the same directionality as the disease.
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The most likely reason for the disparity in these outputs is the underlying differences between

cmap and LINCS. Such differences include the number of genes examined for each of the

tested drugs (1000 in LINCS and ~20,000 in cmap), the number of drugs for which a signature

was generated (up to 15,676 in LINCS and 1,309 in cmap) and the specific cell lines used to

produce the drug-associated gene expression signatures. This mismatch between the two

resources illustrates a potential pitfall in such analyses, where the results are somewhat

dependable on how the drug gene expression signatures were generated. By conducting repur-

posing analyses using more than one data resource, and by integrating the results, as was per-

formed here, the confidence in concordant potential candidates increases.

Study limitations

Our study derives drug candidates from a single genetic dataset. Although these candidates

scored high on the c-map and LINCS matching algorithms it was still desirable to increase the

power of the analysis by including additional datasets. We have explored this option and iden-

tified multiple datasets describing gene expression profiles for human atypical meningioma tis-

sue [15,57–63]. On review of these datasets we have identified the following difficulties with

integrating them into our analysis: 1) the high throughput platforms used in these studies did

not interface with the c-map or LINCS 2) Neither of the additional studies had normal menin-

ges as controls and inclusion of atypical meningioma data alone would render the combined

dataset unbalanced from our purposes 3) finally there was a concern regarding the batch effect

caused by the inclusion of additional (unbalanced) studies, particularly given the lack of “nor-

mal” meningeal tissue in these dataset. The batch effect is a collective term used to describe

sources of variation other then the biological effect of interest (differences in handling, tech-

niques and processing for example). It is an increasingly recognized hurdle in data analytics

and has been a topic of recent discussions (reviewed by Goh et al [64]) and also suggested as

one of the newly emerging challenges of the field. Batch effect correction algorithms are being

developed to tackle the problem however there is limited knowledge on their reliability and

they are particularly vulnerable to increased false positive or false negative rates in unbalanced

datasets [65,66].

Conclusion

Our analysis has successfully identified a series of small molecules as potential drug candidates

to expand the chemotherapeutic treatment of atypical meningiomas. Ingenuity pathway analy-

sis provided further insight into the mechanism of action for the drug candidates proposed by

the connectivity map and LINCS. While our analyses have uncovered some highly plausible

drug candidates for the treatment of atypical meningiomas, this approach is hypothesis-gener-

ating, and experimental validation of our results is necessary before clinical translation.
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