
1Scientific RepoRts | 5:15710 | DOi: 10.1038/srep15710

www.nature.com/scientificreports

Identification of Reliable 
Components in Multivariate 
Curve Resolution-Alternating 
Least Squares (MCR-ALS): a Data-
Driven Approach across Metabolic 
Processes
Hiromi Motegi1, Yuuri Tsuboi2, Ayako Saga1, Tomoko Kagami1, Maki Inoue1, Hideaki Toki1, 
Osamu Minowa1, Tetsuo Noda1,3 & Jun Kikuchi2,4,5

There is an increasing need to use multivariate statistical methods for understanding biological 
functions, identifying the mechanisms of diseases, and exploring biomarkers. In addition to classical 
analyses such as hierarchical cluster analysis, principal component analysis, and partial least 
squares discriminant analysis, various multivariate strategies, including independent component 
analysis, non-negative matrix factorization, and multivariate curve resolution, have recently been 
proposed. However, determining the number of components is problematic. Despite the proposal 
of several different methods, no satisfactory approach has yet been reported. To resolve this 
problem, we implemented a new idea: classifying a component as “reliable” or “unreliable” based 
on the reproducibility of its appearance, regardless of the number of components in the calculation. 
Using the clustering method for classification, we applied this idea to multivariate curve resolution-
alternating least squares (MCR-ALS). Comparisons between conventional and modified methods 
applied to proton nuclear magnetic resonance (1H-NMR) spectral datasets derived from known 
standard mixtures and biological mixtures (urine and feces of mice) revealed that more plausible 
results are obtained by the modified method. In particular, clusters containing little information were 
detected with reliability. This strategy, named “cluster-aided MCR-ALS,” will facilitate the attainment 
of more reliable results in the metabolomics datasets.

“Omics” technologies, including genomics, transcriptomics, proteomics, and metabolomics/metabonom-
ics, have been developed to obtain a bird’s-eye view of the underlying molecular networks in a cell or 
organism that elaborately regulate its complex biological responses1,2. Comprehensive analysis such omics 
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approach has become possible owing to the accomplishments of recent studies that provide system-level 
measurements for essentially all cellular components in model organisms. Environmental factors that 
could affect these omics variables include diet, aging, and disease, whereas genetic variation comprises 
differences in sex, epigenetics, and gene polymorphisms3,4. Among omics technologies, the metabolome 
is quick to respond to such environmental stimuli, including changes in food intake, and thus could be 
used to monitor the metabolic status of the individual and indicate changes in homeostasis5,6.

Nuclear magnetic resonance (NMR) is widely used to study the metabolome, and its data repro-
ducibility is a major advantage7–10. NMR-based metabolomics studies have been performed at differ-
ent institutions, and often all of the data used in a single study have been collected on an individual 
instrument at a single location. Cross-site analytical validity studies have been conducted, showing that 
interconvertibility of NMR data among different institutions is one of the great advantages of NMR-based 
approaches11. This property is essential for the clinical application of metabolomics-derived biomarker 
discovery assisted by multivariate statistical approaches to the analysis of NMR datasets12,13. The most 
widely used classical multivariate statistical methods are k-means14, hierarchical cluster analysis (HCA)5,15, 
principal component analysis (PCA)16, and partial least squares discriminant analysis (PLS-DA), includ-
ing orthogonal partial least squares discriminant analysis (OPLS-DA)17. With advances in multivariate 
statistical techniques, various strategies have been proposed, including independent component analysis 
(ICA)18, non-negative matrix factorization (NMF)19, and multivariate curve resolution (MCR)20–22. The 
MCR method is useful for resolving spectroscopic data featuring broad macromolecular peaks23 and also 
for estimating concentrations from metabolite mixture spectra23.

For use of these methods, determination of the number of components is the most important task. An 
incorrect choice can lead to loss of information (underestimation) or the inclusion of noise components 
(overestimation). Many methods have been proposed for determining the number of components, includ-
ing the Kaiser criterion24, scree test25, cumulative contribution rate-based method, parallel analysis26, 
Cattell− Nelson− Gorsuch (CNG) test27,28, multiple regression28, and cross-validation29,30. Unfortunately, 
the results are often not consistent among these methods. This inconsistency makes it difficult to use 
ICA/NMF/MCR, as using the wrong number of components in the analysis decreases the reliability of 
the results.

When we began analyzing mouse urinary and fecal 1H-NMR spectra data using multivariate curve 
resolution-alternating least squares (MCR-ALS), we were faced with this problem. A wide range of dif-
ferent “optimal” numbers of components had been estimated by eight different methods (Supplementary 
Table S1). We were interested in determining the effect of changing the number of components. We com-
pared the concentration profiles of all MCR-ALS results when the number of components was changed 
sequentially from three to 10, and the resulting differences were small. Similar components emerged 
reproducibly. However, some components emerged once or only a few times (Supplementary Figure 
S1 for urinary data, Supplementary Figure S2 for fecal data). From this observation, we considered 
that this reproducibility is useful as an indicator of the reliability of a component, i.e., that a reliable 
component emerges reproducibly regardless of the number of components, whereas an unreliable com-
ponent emerges once or just a few times. Only reliable components are considered informative. Because 
a reliable component is identified by repeating the MCR-ALS calculation with a changed total number 
of components, it is no longer necessary to determine the number of components. The release from this 
constraint represents a great advantage for MCR-ALS analysis.

Based on this concept, we have established a modified method for MCR-ALS, named “cluster-aided 
MCR-ALS.” An evaluation of the method using mouse urinary and fecal 1H-NMR spectral data is 
reported in this study.

Results
Concept of cluster-aided MCR-ALS. A flow chart illustrating the process of cluster-aided MCR-
ALS is shown in Fig. 1. The MCR-ALS calculation was repeated with the number of components being 
changed for each calculation. Numerous components were estimated, including concentration profiles 
and spectral profiles. All concentration profiles were collected into one dataset, and cluster analysis was 
performed to group those with similar patterns into single clusters. Large-sized clusters indicate that the 
pattern was reproduced with high frequency, regardless of the number of components. Accordingly, a 
large-sized cluster was considered a reliable cluster. A small-sized cluster indicated a low frequency of 
the emerged pattern and was considered an unreliable cluster. Accordingly, clusters of this size were not 
used for subsequent analysis. To perform the clustering process with objectivity, we introduced statistical 
cluster selection by assessing the uncertainty in hierarchical cluster analysis. For assignment of the opti-
mum selected cluster size with objectivity, the maximum cluster size estimated from a dataset that had 
been randomized to destroy all biological information was set as a threshold size.

In this step, the cluster was composed on the basis only of information from the concentration profile. 
To integrate the information from spectral profiles, the vector product of the concentration profile (C) 
and the corresponding spectral profile (St) was calculated (C ×  St). Because a cluster consists of a set of 
matrices (C ×  St), it is considered to be three-dimensional data (sample ×  spectra ×  elements of cluster; 
Supplementary Figure S3). To represent the cluster in the style of the concentration profiles and spectral 
profiles analogous to the conventional method, the average and the coefficient of variation (CV) of the 
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cluster were calculated. The row and column containing the maximum values were designated as the 
typical spectral profile and concentration profile of the cluster, respectively (Supplementary Figure S3).

Evaluation of the cluster-aided MCR-ALS method using known standard mixtures. To val-
idate the methodology proposed here, known standard mixtures were introduced as model samples. 
Composition of the standard mixture is described in Supplementary Table S2. Varied concentrations 
of amino acids, short-chain fatty acids, and sugars present in urine/feces were included in this mixture.

Conventional MCR-ALS was performed for comparison with cluster-aided MCR-ALS. First, we deter-
mined the number of components using parallel analysis. Parallel analysis is similar to the simple scree 
test, which is widely used for PCA/factor analysis. Parallel analysis estimates the number of components 
in an objective manner instead of by looking for a visual leveling-off point, as in the scree test. The esti-
mated number of components was five (Supplementary Figure S3). The resulting concentration profiles 
and spectral profiles are shown in Supplementary Figure S4.

Using the same dataset, cluster-aided MCR-ALS was performed. The MCR-ALS calculation was 
repeated, changing the number of components from one to 20. The total number of resulting compo-
nents was 210. All concentration profiles were collected into one dataset on which cluster analysis was 
performed. To select the clusters with objectivity, we used “pvclust” developed by Suzuki et al.31. This is 
an R package for hierarchical clustering with probability values (P-values) based on a bootstrap strategy 
to estimate sampling error. In this study, clusters were selected by the pvclust function with an approxi-
mately unbiased (AU) P-value of > 0.95, therefore the uncertainty of the result was less than 5%. In some 
cases, clusters contained undesired elements that showed little similarity to other elements within the 
cluster. To resolve this problem, a correlation coefficient matrix was calculated. If the minimum value 
was under 0.6, the cluster was rejected. Pvclust was re-executed against the rejected cluster to remove 
undesired elements, and the correlation coefficient was confirmed again. This process was repeated until 
the minimum correlation coefficient was greater than 0.6. To determine the minimum cluster size, a 
dataset, randomly shuffled to destroy biological information, was used. We repeated the pvclust calcu-
lation with the shuffled dataset five times. We chose the maximum cluster size for each dataset and set 
the threshold for the cluster size as > 5. As a result, there were 15 selected clusters. Clusters and their 
elements (components) are listed in Supplementary Table S3. Typical concentration profiles and spectral 
profiles of reliable clusters are illustrated in Supplementary Figure S5.

A comparison of the results of conventional and cluster-aided MCR-ALS is summarized in supple-
mentary Table S4. We calculated correlation coefficients between concentrations of compounds and 

Figure 1. Flow chart of cluster-aided multivariate curve resolution-alternating least squares (MCR-ALS). 
The process of cluster-aided MCR-ALS is roughly illustrated. Details are described in the Results section.
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concentration profiles estimated by MCR-ALS. Components with a correlation coefficient of > 0.8 were 
considered as “correctly detected.” Phenylalanine (component 1), isoleucine (component 2), threonine 
(component 3), ethanol, sucrose (component 4), and leucine (component 5) were detected by conven-
tional MCR-ALS. In addition to these results from the conventional method, cluster-aided MCR-ALS 
detected glutamate, tryptophan, proline, alanine, butyrate, glucose, and trehalose. However, aspartate, 
histidine, formate, citrate lactate, malate, and fructose were not detected by either conventional or 
cluster-aided MCR-ALS.

Two clusters were assigned to trehalose (clusters 2.3.2.4.1 and 2.3.2.4.2, see Supplementary Figure S5). 
In contrast, cluster 2.3.2.4.1 showed the pattern of alanine concentration and cluster 2.3.2.4.2 showed 
ethanol (Supplementary table S4). This result is caused by similar concentration patterns among the 
three compounds. Cluster-aided MCR-ALS resolved these compounds into two, and not three, clus-
ters. Accordingly, trehalose was assigned to two clusters. This problem may be solved by increasing the 
number of samples, optimizing the clustering conditions, and/or increasing the resolution of binned 
NMR data. This comparison clearly showed that cluster-aided MCR-ALS detects more compounds than 
the conventional method. However, cluster-aided MCR-ALS does not detect all compounds completely, 
owing to resolution loss by spectral binning.

Experimental design for sampling of mouse urine and feces. To apply the cluster-aided 
MCR-ALS method to biological samples, we collected 1H-NMR spectra data of mouse urine and feces. 
Because MCR-ALS can be used for multi-group analyses, we constructed a multi-group dataset. Male 
and female mice from three different strains were used. The mice were fed either a normal or a high-fat 
diet (HFD). Aged groups were also added. In total, 18 groups of NMR spectra were analyzed, concur-
rently, for each urine and feces sample (see Methods section).

Unlike the practice in general atherosclerosis studies, the HFD was fed to mice for only 4 days, given 
that metabolomic changes occur quickly in response to food changes. It was unnecessary to induce ath-
erosclerosis in the mice, because our purpose was only to evaluate this new method. Additionally, feeding 
HFD for only a short period conserved both time and funds in this experiment.

Urinary and fecal 1H-NMR spectra. At the outset of sample collection, 90 mice (3 strains ×  2 
sexes ×  3 conditions ×  5 mice) were available. However, one mouse, belonging to the DBA/2J female aged 
group, died of unknown causes. All other mice were healthy during the experimental period. Sample 
collection and NMR analysis were performed successfully. The final number of samples was 89.

Many urinary 1H-NMR spectroscopy studies performed in mice have been reported. Our urinary 
spectra data showed a pattern similar to that of previous reports, which include signals from acetate, 
citrate, creatine, creatinine, hippurate, lactate, taurine, trimethylamine (TMA), trimethylamine N-oxide 
(TMAO), and other metabolites. (Supplementary Figure S6A, Supplementary Table S5)32,33. In fecal 
1H-NMR spectra, the peaks were broader than those in urinary spectra. To obtain more detailed infor-
mation, bin width was set to 0.02 ppm, a higher resolution than that of the urinary spectra (0.04 ppm). We 
identified 29 metabolites in fecal extracts, including short-chain fatty acids (lactate, acetate, butanoate, and 
succinate) and branched-chain amino acids (leucine, isoleucine, and valine; Supplementary Figure S6B, 
Supplementary Table S5). These are commonly observed in feces derived from mammalian species34,35.

Principal component analysis. To summarize the data and for comparison with MCR-ALS, PCA 
was performed. Details of the first four components are shown in Supplementary Figures S7 (urine) 
and S8 (feces). In the urinary data analysis, the normal diet group (ND; control and aged mice) and the 
HFD group were clearly separated in the PC1–PC2 score plot. In each group, a sex difference was also 
observed (Supplementary Figure S7A). A strain difference (C57BL/6J vs. others) was observed in the 
PC3–PC4 scores plot. However, these groups were not separated clearly (Supplementary Figure S7B). 
In the fecal data analysis, a strain difference was observed in the PC1–PC2 score plot (Supplementary 
Figure S8A). In the PC3–PC4 score plot, HFD-fed mice formed a group (Supplementary Figure S8B). 
However, these groups overlapped with another group. Five typical variable loadings corresponding to 
each group were selected, and chemical shift values were indicated (Supplementary Figures S7C, S7D, 
S8C, and S8D). For example, in the urinary dataset, the loading corresponding to 2.88 ppm was located 
in the group of HFD-fed male mice. The signal was assigned to TMA. Signals ranging from 3.5 to 
4.0 ppm were located in the HFD-fed female mouse group, suggesting that sugars are related to separate 
in PC1 direction (Supplementary Figure S7C).

PCA is a popular multivariate analysis method. However, clustering in PCA score plot is not objective 
in this method, but is performed visually. Additionally, assignment of loading to the group is difficult 
when groups overlap. Finally, no statistical index is provided for grouping.

Conventional MCR-ALS. Conventional MCR-ALS was performed for comparison with cluster-aided 
MCR-ALS. First, we determined the number of components using parallel analysis. Parallel analysis 
is similar to the simple scree test, which is widely used for PCA/factor analysis. Parallel analysis esti-
mates the number of components in an objective manner instead of by visual searching for a leveling-off 
point, as in the scree test. The estimated number of components was six for both urinary and fecal 
data (Supplementary Figure S9). The resulting concentration profiles and spectral profiles are shown in 
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Supplementary Figures S10 (urine) and S11 (feces). Only concentration profiles of urinary data analysis 
are shown in the right panels of Fig. 2. In urinary data analysis, component 1 revealed a HFD-dependent 
increase in both sexes of all strains. Spectral profiles showed that sugar (region including 3.76 ppm), 
TMAO (3.26 ppm), dimethylamine (DMA; 2.71 ppm), and lactate (1.33 ppm) were associated with the 
change. Components 3 and 4 showed a sex-dependent increase in HFD feeding. TMAO (3.30 ppm) and 
TMA (2.88 ppm) contributed to the changes. In component 5, acetate (1.92 ppm) appeared to be present 
at high levels in aged C57BL/6J mice. A HFD-specific decrease, except in C3H/HeJ mice, was observed 
for component 6. Many metabolites may contribute to the decrease in component 6.

The result of fecal analysis is shown in Supplementary Figure S11. For component 4, relatively low 
levels were observed in C57BL/6J mice. Acetate (1.92 ppm), short-chain fatty acids (lactate, acetate, 
butanoate, and succinate), and branched-chain amino acids (leucine, isoleucine, and valine; region con-
taining 0.92 ppm) may be linked to this change.

Although some strain differences were observed for components 3 and 4, no marked effect of diet or 
aging was observed.

Cluster-aided MCR-ALS. The MCR-ALS calculation was repeated, changing the number of com-
ponents sequentially from one to 89. The total number of resulting components was 4,005 for both 
the urinary and fecal datasets. The components were reduced to 3,077 (urine) and 2,550 (feces) after 
components with all elements zero were removed. All concentration profiles were combined into one 
dataset on which cluster analysis was performed. Cluster selection was performed in the same way as 
standard mixture analysis except that analysis of shuffled data was repeated 10 times for determining 
the minimum cluster size. Finally, we identified 21 (urine) and 35 (feces) reliable clusters. Clusters and 
their elements (components) are listed in Supplementary Tables S6 (urine) and S7 (feces). Typical con-
centration profiles and spectral profiles of reliable clusters are illustrated in Supplementary Figures S12 
(urine) and S13 (feces).

Figure 2. Results of cluster-aided multivariate curve resolution-alternating least squares (MCR-ALS) 
and conventional MCR-ALS. Concentration profiles of the results of urinary data analysis. In the bar graph, 
the order of the samples is indicated at the bottom of the figure. B6, C57BL/6J; C3, C3H/HeJ; D2, DBA/2J; 
Cont, control group; HFD, high-fat-diet-fed group; Aged, aged group. Typical concentration profiles in 21 
identified reliable clusters analyzed by cluster-aided MCR-ALS are shown on the left side of the figure. Six 
components analyzed by conventional MCR-ALS are shown on the right side. The number in parentheses 
indicates the cluster size. Colored clusters/components indicate that the component belongs to the same 
color cluster. Scales of bar graphs are in arbitrary units. The colors of the bars correspond to coefficients of 
variation.
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Comparison between conventional and cluster-aided MCR-ALS. Concentration profiles for 
both methods of urinary analysis are shown in Fig.  2. In cluster-aided MCR-ALS, 21 reliable clusters 
were estimated, a number larger than the number of components (six) in conventional MCR-ALS, esti-
mated by parallel analysis. Three pairs (cluster 92_1_2 vs. component 3, cluster 67 vs. component 4, 
cluster 136_2_1 vs. component 5) were composed of a cluster and its element, indicating that a similar 
pattern was observed for both methods. However, components 1, 2, and 6 of conventional MCR-ALS 
were not elements of any of the clusters identified by cluster-aided MCR-ALS, suggesting that they were 
elements of unreliable clusters. For component 1, similar patterns were observed for clusters 30 and 35. 
It is possible that component 1 and clusters 30 and 35 did not group into a common cluster because of 
incomplete optimization of the clustering conditions.

Supplementary Figure S14 shows the concentration profiles from the fecal data analysis, in which 35 
clusters were assigned. As with the urinary analysis, the number of reliable clusters was larger than the 
number of components (six) in the conventional method. Four pairs (cluster 176 vs. component 2, cluster 
220_2_1 vs. component 5, cluster 189 vs. component 4, cluster 203_9 vs. component 1) were clusters 
and their elements. Cluster 224_10 and cluster 210_2_7 showed high CVs caused by low concentrations.

For further comparison, we focused on three metabolites: taurine, TMAO, and TMA, because they 
are well characterized in the field of urine metabolomics. The 1H-NMR chemical shifts of taurine 
were 3.26 and 3.43 ppm. The signals were confirmed by 1H-13C-heteronuclear single quantum coher-
ence (HSQC)-NMR. From the result of cluster-aided MCR-ALS, both taurine signals were observed in 
cluster 144_5 (Fig.  3A). The concentration profile showed higher levels in control mice than in HFD 
or aged mice. However, taurine signals were not observed in the results of conventional MCR-ALS 
(Supplementary Figure S10).

The TMAO signal was assigned to 3.28 ppm in 1H-13C-HSQC-NMR spectra. Unfortunately, 3.28 ppm 
was situated at the boundary of two bins (3.26 and 3.30 ppm). The TMAO signal was accordingly assigned 
as either 3.26 or 3.30 ppm because of variation in experimental conditions such as sample temperature, 
pH, and ionic strength. The TMAO signal was observed in cluster 92_1_2 (3.30 ppm) and cluster 117_4 
(3.26 ppm; Fig.  3B). High values in HFD-feeding female mice (except in C57BL/6J) were observed in 
cluster 92_1_2. In contrast, only C57BL/6J female mice showed a high level in cluster 117_4. In con-
ventional MCR-ALS, cluster 92_1_2 and component 3 showed a similar pattern, whereas no cluster 
117_4-like pattern was identified.

Clusters 67, 78, and 85 showed high levels of TMA (2.88 ppm) in male HFD-fed mice (Supplementary 
Figure S12). In conventional MCR-ALS, cluster 67 and component 4 displayed similar patterns, whereas 
cluster 78- and 85-like patterns were not observed.

Quantitative analysis. Figure  4A shows a quantitative comparison using a color-coded bar graph 
representation of the 2.88-ppm value corresponding to the TMA signal. This value consists mostly of 

Figure 3. Details of the selected results of cluster-aided multivariate curve resolution-alternating least 
squares. (A) Typical concentration profile and spectral profile of cluster 144_5 in urine analysis. (B) Profiles 
of clusters 92_1_2 and 117_4 in urine analysis. The colors of the bars correspond to coefficients of variation.
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clusters 67, 78, and 85. The graph shows that cluster 67 is a major contributor to the increase of TMA. 
Although clusters 78 and 85 are minor contributors, it appears that these clusters carry biological infor-
mation. In cluster 85, a strong 2.71 ppm signal corresponding to DMA was observed. Cluster 85 may indi-
cate a TMA- and DMA-coupled metabolic pathway. Cluster 78 may be another minor TMA-associated 
pathway.

The color-coded bar graph in Fig.  4B represents the 0.94 ppm signal from the fecal NMR analysis. 
Cluster 176 was a large contributor to this signal, showing a lower intensity level in C57BL/6J mice in all 
conditions. Cluster 174, with higher intensity levels in control C3H/HeJ female mice, showed a smaller 
contribution to the signal. The change observed in cluster 174 was not present in other clusters, therefore 
mainly contributed by cluster 176.

Discussion
In PCA, the importance of a principal component is assessed by its eigenvalue or contribution. These 
parameters are based on the amount of information in each component; in this strategy, components 
with large amounts of information are preferentially chosen over components with less information. 
Many methods for determining numbers of components are also based on the amount of information. 
However, although there is no evidence to suggest that all biologically informative components contain 
large amounts of information; biologically informative components with small amounts of information 
are not detected by conventional methods. In biological systems, large changes may be triggered by 
small changes5,34,36. For example, it is probably necessary to detect small changes (with small amounts 
of information) for early detection of disease (thus, pre-symptomatic changes) for disease prevention. In 
this study, we implemented a novel idea: the classification of components as either “reliable” or “unre-
liable.” This classification is based on the reproducibility of similar components when the number of 
components in an MCR-ALS calculation is varied. Since this strategy has no relation to the amount of 
information, cluster-aided MCR-ALS can identify more components with low information than can the 
conventional method. Indeed, the numbers of estimated clusters were larger than those from the parallel 
analysis, which was used for conventional MCR-ALS to determine the number of components. To assess 
the amount of information within a cluster, the sum of squared deviations was calculated (Supplementary 
Figure S15).

In the urinary data analysis, clusters 67 and 92_1_2 showed a high sum of squared deviations. 
These patterns were observed in both cluster-aided MCR-ALS and the conventional method (red bar 
in Supplementary Figure S15A). Furthermore, these patterns (diet difference and sex difference) corre-
sponded to the pattern of the PC1–PC2 score plot of PCA.

In the fecal analysis, patterns of clusters 176 and 203_9 were observed in both the cluster-aided 
and conventional methods (red bar in Supplementary Figure S15B). Cluster 176 showed low levels in 

Figure 4. Color-coding bar graph representation. (A) Signals of 2.88 ppm in urine. (B) Signals of 0.94 ppm 
(feces). Right panels show spectral profiles of each cluster.
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C57BL/6J mice and cluster 203_9 shows a countertrend. This pattern corresponds to the PC1–PC2 plot 
of PCA. These clusters are of major components containing large amounts of information.

Other clusters showed a smaller sum of squared deviations, and most of these were identified by 
cluster-aided MCR-ALS. As seen in Fig.  4A, clusters 78 and 85 in the urinary analysis may contain 
biological information associated with TMA metabolism. Cluster 174 in the fecal analysis (Fig.  4B) 
may reflect an unknown metabolism associated with strain differences. Cluster-aided MCR-ALS has the 
potential to detect hidden biological process observed by analytical data sets.

In this study, we evaluated a cluster-aided MCR-ALS method by focusing on three metabolites: tau-
rine, TMAO, and TMA. A decrease in mouse urinary taurine under HFD feeding conditions has been 
reported37. The results of microarray analysis indicate that transcriptional downregulation occurred in 
the genes of the taurine synthesis pathway, including those encoding cysteine dioxygenase (Cdo), cysteine 
sulfinate decarboxylase (Csd), and cystathionine beta-synthase (Cbs), in the livers of HFD-fed C57BL/6J 
male mice38. An age-associated decrease in urinary taurine in Fischer 344 male rats was reported by 
Dawson et al.39. Other groups have observed a similar age-related taurine decrease in the plasma and 
liver of rats40,41. In mice, Cbs was less efficient in the livers of aged mice42. Considering these results, we 
may infer that both HFD feeding and aging reduce urinary taurine levels. In the results of cluster-aided 
MCR-ALS, in both HFD feeding and aging, decreases were observed in cluster 144_5 (Fig. 3A). Cluster 
144_5 may indicate agreement with the findings of previous reports on taurine metabolism. It is worth 
mentioning that we did not detect taurine signals in the results of the conventional analysis, suggesting 
that cluster-aided MCR-ALS gives more accurate results than the conventional method.

With respect to TMA, we observed high levels (2.88 ppm) in the HFD-fed group in both conven-
tional and cluster-aided MCR-ALS. TMA is produced from choline by gut microbiota and converted 
to TMAO by flavin-containing monooxygenase form 3 (FMO3) in liver43,44. FMO3 activity shows a 
difference between the sexes in mice (with females having higher levels), whereas no difference has 
been observed in humans45. Thus, female mice typically have lower levels of TMA and higher levels 
of TMAO than males. Results of both the conventional and cluster-aided MCR-ALS methods showed 
this change (TMA =  cluster67:component4, TMAO =  cluster92_1_2:component3). Additionally, cluster 
117_4, which had a shifted signal of TMAO in only the C57BL/6J mice, was identified by cluster-aided 
MCR-ALS. Binning of spectra is a commonly used method for the reduction of data size. However, in 
some instances, identical signals are allocated to different bins because of variation among samples. In 
this study, cluster-aided MCR-ALS was able to differentiate and classify variable signals successfully, 
whereas the same signals could not be identified by the conventional method.

In the urinary analysis, pvclust initially identified 151 clusters with an AU P-value of > 0.95, whereas 
the final number of retained clusters was 21. In a similar manner, 231 clusters were identified and 35 
clusters were retained in the fecal data analysis. In both datasets, approximately 85% of clusters were con-
sidered unreliable. We cannot yet explain why unreliable components comprise a large fraction of total 
clusters. Unreliable clusters may reflect a loss of precision caused by an excess of variables. In theory, the 
number of samples is larger than the number of variables. However, in many cases, this is not practical 
in the analysis of omics datasets. Another factor causing this is the threshold values for selecting reliable 
clusters. Two threshold values are important; one is the AU P-value, estimated by the R package pvclust. 
We used 0.95 as a threshold value. Higher values, such as 0.97, 0.98, or 0.99 should be tested to optimize 
analytical conditions. The other threshold value is the size of the cluster, which reflects the reproducibility 
of the component. A large size means a highly reproducible component. To determine the threshold size, 
pvclust was performed with a randomly shuffled dataset. A reliable cluster size should be larger than the 
threshold size. In principle, this process should be repeated many (at least 1,000) times. However, we 
repeated the analysis only 10 times (five times in standard mixture analysis) because of limited access to 
a high-performance computing environment. It is also necessary to optimize the clustering algorithm, 
which may be Euclidean, maximum, or Manhattan for the distance matrix, or methods such as Wards, 
single, complete, and median for cluster forming. Because this calculation must be repeated many times, 
high-performance computer resources such as a supercomputer should be used.

In summary, we introduced the idea of “reliable” and “unreliable” components based on the repro-
ducibility of components in repeated MCR-ALS calculations with the number of components changed 
for each calculation. We evaluated this strategy, named “cluster-aided MCR-ALS,” using urinary and fecal 
1H-NMR datasets as a test case. Concentration and spectral profiles of identified reliable clusters showed 
more plausible patterns than the results of conventional MCR-ALS. Cluster-aided MCR-ALS avoids the 
need to determine the number of components prior to the analysis, a requirement of the conventional 
method. This report has shown that cluster-aided MCR-ALS is a feasible method for analysis of 1H-NMR 
datasets. Cluster-aided MCR-ALS will also be applicable to other omics data. The algorithm can also be 
applied to other methods such as ICA/NMF. Optimization of the conditions and speed of the calculation 
will be necessary for further development of the cluster-aided MCR-ALS strategy.

Methods
Chemicals. The internal standard for 1H-NMR spectroscopy, 3-(trimethylsilyl)-1-propanesulfonate 
sodium salt (DSS), was purchased from Sigma-Aldrich Japan. Stable isotopically labeled substrate, 13C6-
D-Glucose, was obtained from Cambridge Isotope Laboratories, Inc., USA.
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Animal handling. All animal experiments were approved by the Animal Research Committee of 
the RIKEN BioResource Center and were performed in accordance with RIKEN guidelines for animal 
experiments. Three laboratory mouse strains, C57BL/6J, C3H/HeJ, and DBA/2J, were purchased from 
a commercial breeder (CLEA Japan, Inc., Japan) and maintained in our facility (RIKEN BioResource 
Center Research Building for Animal Models of Human Disease). All mice were maintained at con-
stant room temperature (23 °C ±  2 °C) and humidity (55 ±  10%) under a light/dark cycle of 12/12 h in 
a specific pathogen-free (SPF) environment. The pathogens were specified in categories A and B of the 
International Council for Laboratory Animal Science. Mice were weaned between the ages of 4 and 5 
weeks. Mice had ad libitum access to water and conventional chow diet, CA-1 (CLEA Japan, Inc., Japan).

Sample collection. Laboratory mice were divided into three experimental groups, “control,” “HFD 
feeding,” and “aged,” from which all NMR samples were collected. The control group consisted of 30 
14-week-old mice, both females and males, of three strains (five mice from each sex of each strain). 
On day 1, the mice were placed into the metabolic cage unit (CL-0355; CLEA Japan, Inc., Japan) in 
the evening. Mice had access to ND, which is a conventional chow diet (CA-1) and 2% 13C6-D-glucose 
water, ad libitum. After habituation for 4 days (from the evening of day 1 to day 4), urine and feces were 
collected within a time span of 18 h from the evening of day 4 to the morning of day 5.

For the HFD-feeding group, 16-week-old mice were used. Except for the use of a HFD, the number 
of mice and sampling procedures were the same as the control group. The period of HFD feeding was 
approximately 4 days (evening of day 1 to morning of day 5).

Sampling was performed in the same way for the aged group as for the control group. However, for 
the aged group, 60-week-old mice were used for urine and feces collection.

The HFD used in this study was custom-designed based on CA-1 feed (CLEA Japan, Inc., Japan), and 
named HFD-RIKEN. It was composed of 70% CA-1, 18.55% granulated sugar, 10% cocoa butter, 1.25% 
cholesterol, and 0.2% cholate.

Sample preparation and 1H-NMR spectroscopy. Urine and feces extract samples were suspended 
in 10% (v/v) deuterium oxide (D2O), and 1 mM sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS) 
was used as an internal standard. After centrifugation, the extracted supernatant was transferred into a 
5-mm Φ  NMR tube. All one-dimensional (1D) Watergate spectra were acquired at 298 K on a DRX-500 
spectrometer (Bruker Biospin, Rheinstetten, Germany), operating at 500.13 MHz and equipped with a 
1H inverse triple-resonance probe with triple-axis gradients (Bruker Biospin), as previously described46. 
Briefly, 32,768 data points with a spectral width of 12,500 Hz were collected into 16 transients and one 
dummy scans, and residual water signals were suppressed by Watergate pulse sequence with a 2-s cycle 
time. Prior to Fourier transformation, the free induction decays were multiplied by an exponential 
window function corresponding to a 0.3 Hz line broadening factor. The acquired spectra were manu-
ally phased and baseline-corrected. Two-dimensional (2D) 1H-13C-HSQC) spectra were recorded on a 
Bruker DRU-700 NMR spectrometer equipped with a 1H inverse cryogenically cooled probe with a z-axis 
gradient as previously described47–50. All NMR spectra were processed using NMRPipe software51 and 
assigned using the SpinAssign program on the PRIMe website52,53.

Data processing. The series of 1H-NMR spectra data (0–10 ppm) obtained was binned with 0.04-ppm 
(urine) and 0.02-ppm (feces) intervals to result in datasets of 250 (urine) and 500 (feces) variables. The 
region of the peak of DSS (urine: 0–0.277 ppm, feces: 0–0.48 ppm) was eliminated. For urine spectra, the 
region from 4.5 ppm to 6.25 ppm was excluded to eliminate the signals from both water and urea. Each 
spectrum was normalized to a total intensity.

Data analysis. The MCR-ALS method was used to resolve multiple component responses in unknown 
mixtures54,55. The dataset (D) is expressed as a combination of concentration profiles (C) and spectral 
profiles (S) using the following equation:

= +D CS Et

where E is a residual. Matrices C and S are estimated by an optimization algorithm based on a bilinear 
model with constraints of non-negativity. For analysis of MCR-ALS, the R package ALS was installed. 
Before MCR-ALS was performed, PCA was performed for estimation of the initial concentration matrix. 
PCA was performed using the prcomp R function. The PCA score (value “x” of the result of prcomp) was 
used for the initial concentration matrix. For the initial spectral matrix, all values were set to 1.

For cluster-aided MCR-ALS, the calculation for MCR-ALS was repeated, changing the number of 
components from one, sequentially, to the maximum number of components. Because the PCA score 
was used for the initial matrix, the maximum number of components was the same as the number 
of samples. Estimated concentration profiles were combined into one dataset (called “CList-data”) and 
applied to the clustering process. The R package pvclust was used for clustering31. Pvclust calculates 
P-values for the uncertainty of each cluster using bootstrap resampling. Pvclust was applied using the 
average method and a correlation-based distance matrix. The bootstrap sample number was set to 1,000. 
The package “snow” was used for parallel computing for high speed performance of the pvclust function. 
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The clusters that had high AU P-values (> 0.95) were picked using the “pvpick” function. If some of the 
clusters had inclusion relationships, only the largest cluster was selected (max.only =  TRUE) to avoid 
overlap.

To determine the threshold size of the cluster, a randomly shuffled dataset, randomized-CList-data, 
was constructed. Because randomized-CList-data lacks biological information, clusters are formed by 
chance. The randomly shuffled dataset was constructed by the “sample” function of R, and pvclust and 
pvpick (AU > 0.95) were performed. The randomized data clustering was performed 10 times for each 
urinary and fecal dataset. The maximum size of the cluster was used as the threshold cluster size.

Sometimes a cluster contains unrelated elements that show little similarity with other elements. To 
confirm the similarity among elements in the cluster, a correlation coefficient matrix was estimated. If the 
minimum value of the correlation coefficient was less than 0.6, this cluster was clustered again to divide 
it into smaller clusters, and then the correlation coefficient matrix was estimated again. This process was 
repeated until the minimum correlation coefficient was greater than 0.6 or the size of the cluster was 
below the threshold value determined by randomized data analysis. Selected clusters were considered 
“reliable clusters.”

Clusters were constructed solely from the information from concentration profiles. To incorporate the 
information from spectral profiles, the vector product of C and corresponding St was calculated for each 
component (C ×  St; Supplementary Figure S3). The mean, standard deviation, and CV of the components 
in the cluster were calculated. Typical concentration and spectral profiles were selected in the average 
cluster showing the maximum value in the matrix (Supplementary Figure S3).

To perform conventional MCR-ALS for comparison with cluster-aided MCR-ALS, the number of 
components was estimated using eight different methods (Supplementary Table S1). (1) The Kaiser cri-
terion is a simple method: factors with an eigenvalue greater than 1.0 are retained. The eigenvalue is 
calculated by PCA. (2) The scree test is a graphical strategy for determining the number of components. 
Eigenvalues and their component numbers are plotted. The number of components is the point reached 
before leveling-off of the plot. (3) Parallel analysis is a method based on the generation of random var-
iables to determine the number of factors to retain. The function “nScree” in the R package “nFactors” 
was used. (4) CNG test is based on the comparison between the slope of the first three eigenvalues and 
the slope of the next three eigenvalues. Then the process is repeated. This test was performed using 
the “nCng” function in the nFactors package. (5) The multiple regression procedure is an extended 
CNG test. A series of two regression lines, one for the important components and the other component 
not necessary the scree test, are compared. The “nMreg” function in the nFactors package is used to 
perform the calculation. (6, 7) Cross-validation is a method for determining the number of compo-
nents, performed by the “estim_ncp” function in the R package “FactoMineR.” Two methods, “general 
cross-validation” and “smoothing method,” are available in the estim_ncp function. (8) The contribution 
rate-based method is a method in which the number of components is determined when the PCA 
cumulative contribution rate > 90%.
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