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Ankylosing spondylitis (AS) is a chronic inflammatory disease of unknown etiology, though it is considered an autoimmune disease.
HLA-B27 is the risk factor most often associated with AS, and although the mechanism of involvement is unclear, the subtypes and
other features of the relationship between HLA-B27 and AS have been studied for years. Additionally, the key role of IL-17 andTh17
cells in autoimmunity and inflammation suggests that the latter and the cytokines involved in their generation could play a role
in the pathogenesis of this disease. Recent studies have described the sources of IL-17 and IL-23, as well as the characterization of
Th17 cells in autoimmune diseases. Other cells, such as NK and regulatory T cells, have been implicated in autoimmunity and have
been evaluated to ascertain their possible role in AS. Moreover, several polymorphisms, mutations and deletions in the regulatory
proteins, protein-coding regions, and promoter regions of different genes involved in immune responses have been discovered and
evaluated for possible genetic linkages to AS. In this review, we analyze the features of HLA-B27 and the suggested mechanisms of
its involvement in AS while also focusing on the characterization of the immune response and the identification of genes associated
with AS.

1. Introduction

The spondyloarthropathies (SpA), now better denominated
as spondyloarthritides (SpAs), are a diverse group of inter-
related inflammatory arthritides that share multiple clinical
features and common genetic predisposing factors. This
group includes not only the prototypical disease, ankylosing
spondylitis (AS), but also reactive arthritis (ReA), psoriatic
arthritis (PsA), Crohn’s disease, undifferentiated SpA, and
juvenile-onset spondyloarthritis [1].

The clinical features of AS include inflammatory back
pain, asymmetrical peripheral oligoarthritis, enthesitis, and
specific organ involvement, such as anterior uveitis, psoria-
sis, and chronic inflammatory bowel disease [2]. Its major
clinical features include sacroilitis, loss of spinal mobility, and
spinal inflammation. Chronic inflammation leads to fibrosis
and ossification, where bridging spurs of bone known as
syndesmophytes form, especially at the edges of the inter-
vertebral discs, producing the ankylosing [3].

AS affects men more often than women, at a ratio of 2 : 1
[4]. The prevalence of the disease is between 0.1 and 1.4%
of general populations [2]. Studies conducted in different
countries have shown that the incidence of AS varies from
0.5 to 14 per 100,000 people per year [2]. Diagnoses of
AS are based more on clinical features than on laboratory
tests; currently, diagnoses are made in accordance with the
modified New York criteria (Table 1) [5].

AS is of unknown etiology but is considered an autoim-
mune disease that involves environmental and genetic fac-
tors. It is known to be highly heritable, as >90% of the risk
of developing the disease has been shown to be genetically
determined [6]. As in the case of most common heritable
diseases, progress in identifying candidate genes associated
with the disease, and their possible role in pathogenesis, is one
of the challenges that must be confronted in the near future.

This review discusses recent advances in HLA-B27
studies, characterization of immune responses, and the iden-
tification of some genes associated with AS.
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Table 1: Modified New York criteria 1984 for ankylosing spondylitis
[5].

Clinical criteria
(i) Low back pain and stiffness for longer than 3 months, which
improve with exercise but are not relieved by rest.
(ii) Limitation of motion of the lumbar spine in both the sagittal
and frontal planes.
(iii) Limitation of chest expansion relative to normal values
correlated for age and sex.
Radiological criterion
Sacroilitis grade ≥ 2 bilateral, or grade 3-4 unilateral.
For definite ankylosing spondylitis the radiological criterion and at least one
clinical criterion must be satisfied.

2. HLA-B27

Human leukocyte antigen (HLA)-B27 is a Major Histocom-
patibility Complex (MHC) Class I molecule that is encoded
on chromosome 6p. It is ubiquitous among cell types and
is highly expressed on antigen-presenting cells. After trans-
lation and tertiary folding, HLA-B27 heavy chains form
heterotrimeric complexes with 𝛽2-microglobulin (𝛽2m) and
intracellular peptides derived from self-proteins, viruses, and
bacteria. The association of HLA-B27 with AS was first
described forHLA alleles and inflammatory diseases in 1973,
and this association remains one of the best examples of a
disease association with a hereditary marker [7, 8]; however,
it does not explain the cause of the disease. Reports indicate
that the risk of developing AS is approximately 5% in HLA-
B27-positive subjects, but substantially higher for HLA-B27-
positive relatives [9]. More than 90% of Caucasians with
AS are HLA-B27-positive; however, most HLA-B27-positive
individuals remain healthy, suggesting that other genes,
both inside and outside the MHC, are involved in disease
susceptibility [10–12]. Thus, HLA-B27 may only account for
perhaps 20 to 50% of overall genetic susceptibility to AS
[13, 14].

Though there is no question that HLA-B27 is the major
susceptibility gene for AS, its mechanism of action remains
unknown. There is strong evidence that different subtypes of
HLA-B27 have distinct strengths of association with AS in
specific populations. Some 100 HLA-B27 subtypes have been
reported to date (http://hla.alleles.org/proteins/class1.html),
but the number is increasing rapidly.Most of themdiffer from
each other by only a few amino acids, but these changes are
sufficient to alter the molecule’s peptide-binding properties.
HLA-B∗2705 is present in all populations and appears to
be the original or “parent” HLA-B27 molecule. Most of the
other subtypes appear to have evolved along three pathways,
defined by the pattern of amino acid substitutions in the
first (𝛼1) and second (𝛼2) domains and through geographic
patterns [15, 16]. The most common subtypes reported in
association with AS are HLA-B∗2705, B∗2702, B∗2704, and
B∗2707 [17–19]; whereasHLA-B∗2706 and B∗2709, which are
common in Southeast Asia and Sardinia, have no association
with AS, possibly due to amino acid differences in the B
pocket of the HLA antigen-binding cleft that could modify

the composition of the peptides that these HLA-B27 subtypes
present [15, 20]. HLA-B∗2706 and B∗2709 differ from the
AS-associated subtypes at residue 116 in the second domain.
HLA-B∗2706 differs from HLA-B∗2704, which is highly
disease-associated among the Chinese, in only two amino
acid positions (H114D, D116Y), both of which reside on
the floor of the F pocket of the peptide-binding groove.
HLA-B∗2709, meanwhile, differs from B∗2705 by a single
amino acid substitution at position 116 (D116H) [21, 22].
This position is a relevant polymorphism that gives rise to
different repertoires of bound peptides and cytotoxic CD8+
T cells (CTL). As an example, pVIPR, a self-peptide derived
from type I receptor of vasoactive intestinal peptide evokes
autoreactive CTL responses in HLA-B∗2705 individuals,
mostly patients with AS, but not in HLA-B∗2709 healthy
individuals [23].

Several theories have been proposed to explain the
molecular pathogenic role of HLA-B27 in AS, including the
presentation of arthritogenic peptides, the aberrant folding
of surface heavy chains, HLA-B27 misfolding, and enhanced
intracellular microbial survival (Figure 1).

The dominant paradigm (arthritogenic peptide hypoth-
esis) has been that self-peptides displayed by folded HLA-
B27 become the target of autoreactive CD8+ T cells because
they resemble microbial peptides, which does not occur with
other HLA molecules. These T cells then cause cytotoxicity
resulting in chronic inflammation. This hypothesis invokes
the unique peptide-binding specificity of HLA-B27 as the
problem. In support of this concept, HLA-B27-restricted
CD8+ T-cell clones with specificity for bacteria or possi-
bly self-peptides have been detected in both synovial fluid
and peripheral blood of patients with ReA and AS [24].
Additionally, the finding of a self-peptide derived from the
vasoactive intestinal peptide receptor (VIPR) that shows high
sequence homology to an Epstein-Barr virus derived epitope
of latentmembrane protein 2 (pLMP2) peptide were reported
in patients with AS. Although the VIPR peptide was chosen
as a potential target that exhibitHLA-B27 subtype-dependent
molecular mimicry with the EBV epitope, there was little
cross-reactivity betweenVIPR and EBV-specific CD8+ T cells
[25], but as yet there is no proof of the involvement of these
peptides in the pathogenesis of AS.

The cell surface HLA-B27 homodimers hypothesis sug-
gests that HLA-B27 heavy chain homodimers are produced
on the cell surface during endosomal recycling [26]. The
formation of disulphide bonds between the cysteine residue
at position 67 (C

67
) in the B pockets of the peptide binding

groove of two separate heavy chainmolecules creates homod-
imers with no participation by 𝛽2m. HLA-B27 homodimers
bind to specific receptors expressed on NK cells, T lympho-
cytes, and myelomonocytic cells; therefore, they could play
a role in the pathogenesis of autoimmune disorders [27–29].
In support of this theory, it was found that HLA-B27 positive
patients showed an increased number of NK cells and CD4+
T cells expressing KIR3DL2, a killer immunoglobulin-like
receptor (KIR) that recognizes homodimers of HLA-B27 but
not its heterodimers [29]. However, residue C

67
, which is

critical for the formation of homodimers, exists in bothHLA-
B27 subtypes those that are related to AS and those that are

http://hla.alleles.org/proteins/class1.html
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Figure 1: Proposed theories to explain the molecular pathogenic role of HLA-B27 in AS.

not [30]. As counter arguments, no association has yet been
reported between free heavy chains of HLA-B27 molecules
and predisposition to AS [31], and the HLA-B2706 subtype,
which is not related to AS, also forms homodimers [32].

The HLA-B27 misfolding hypothesis proposes that AS
results from an accumulation of aberrantly-folded HLA-
B27 in the endoplasmic reticulum (ER), that produces an
inflammatory response [33]. ER stress resulting from the
accumulation of misfolded heavy chains then activates the
unfolded protein response (UPR), triggering a series of
signaling pathways that culminate in the induction of ER-
resident chaperones (BiP), which may induce cytokine pro-
duction by macrophages, thereby promoting inflammation
[34, 35]. Another pathway that can activate ER stress is the
ER-overload response (EOR) to excessive membrane protein
trafficking within the ER, which involves activation of the
transcription of nuclear factor kappa B (NF-𝜅B) that can
stimulate the synthesis of proinflammatory cytokines such as
TNF-𝛼, IL-1 and IL-6 in certain cell types [36].

The enhanced intracellular microbial survival hypothesis
may also play a role in the pathogenesis of AS. This mecha-
nism is based on the inability of HLA-B27-positive individ-
uals to eliminate certain intracellular pathogens. Abnormal
immune system activation or modulation can occur due to
ineffective peptide loading intoHLA-B27, leading to excessive
viral or intracellular bacterial proliferation and delayed anti-
genic peptide clearance. Carriers of HLA-B27 are defective
in the killing of intracellular bacterial species of the genera
Yersinia, Salmonella, Shigella, and Chlamydia [37, 38], all of
which—as iswell documented—are involved in the triggering
of reactive arthritis [39]; however, an infectious trigger for AS
has yet to be demonstrated.

It is highly likely that all of these mechanisms play some
part in predisposing an individual to AS. Unfortunately, the
precise role of HLA-B27 in pathogenesis remains unclear, but
features that distinguish it from other genes and differences
among its many subtypes have provided the basis for several

putative explanations as to how it might predispose individ-
uals to AS and mediate the disease.

3. Cells and AS

3.1. Th17 Cells. Interleukin 17 (IL-17) is a proinflammatory
cytokine that contributes to the pathogenesis of several
inflammatory diseases. One major source of IL-17 is a lineage
of T cells known as T helper 17 cells (Th17 cells), but T cells,
natural killer (NK) cells, mast cells, and neutrophils may
also be involved [40]. It is well established that IL-17 activity
contributes to various aspects of acute inflammation, because
it mediates the release of IL-6 and IL-8 (Figure 2). The role of
IL-17 in rheumatic diseases has been ascertained on the basis
of findings that indicate that IL-17 promotes cartilage damage
in a murine model [40].

It is also well known that IL-23 is able to induce IL-
17 production and, therefore, is a crucial factor in the Th17
response [41]. In this regard, recent studies suggest that IL-
23R could be one of the major genetic factors involved in
susceptibility to AS [42]. Moreover, Th17 cells have been
implicated in many experimental autoimmune diseases [41],
and in the pathogenesis of several inflammatory diseases,
including rheumatoid arthritis (RA) [43], psoriasis [44], and
inflammatory bowel disease [45]. They also stimulate the
formation of osteoclasts and, consequently, bone resorption
and the recruitment of neutrophils and monocytes [46].

Several studies have been carried out in efforts to deter-
mine the role of different immune cells in the pathogenesis
of AS, as well as CD4+ T cells producing IL-17 that have
been associated with autoimmune diseases [47], particularly
with inflammatory autoimmune diseases [48]. Mast cells
infiltrated into synovial joints in SpAs have increased the
expression of IL-17, which supports the notion that they
could be a source of Th17 generation [49]. Moreover, Th17
cells have been shown to be involved in promoting the
inflammatory process in AS [43]. Significantly elevated levels
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Figure 2: Possible role of Th17 in AS: dendritic cells (DC) could present an arthritogenic peptide derived from microbial pathogens or self-
antigens toTH0 cells.Thedifferentiation of these T cells could be influenced by IL-17 secreted byNKcells that recognizeHLA-B27 homodimers
and mast cells to induce the differentiation to TH17 cells that are involved in inflammation by molecules secreted, such as IL-6 and IL-8.

of Th17 cells have been reported in the peripheral blood
of patients with AS [46, 50–52], suggesting that they could
have a role in inflammation. Moreover, IL-17 and IL-23 have
been found to be high as well in the serum of AS patients
[42, 53, 54]. The role of Th17 cells in inflammation, and
in AS, is supported by studies that have demonstrated that
anti-TNF-𝛼 therapy reduces levels of IL-17 [51] and Th17
cells in patients with AS [46]. Though it is assumed that
inflammation stimulates new bone formation, no concrete
correlation between inflammation and osteoproliferation has
yet been demonstrated [55]; moreover, inflammation and
new bone formation can occur at distinct locations [56] and,
apparently, anti-TNF-𝛼 therapy does not affect new bone
formation in AS [57, 58]. Despite the fact that the relationship
between inflammation and new bone formation remains
controversial, there is a clear relationship between AS, Th17
cell levels, and the latter’s cytokine secretion, which suggests
an important role in the inflammatory process observed in
AS (Figure 2).

3.2. Regulatory T Cells. Regulatory T cells (Tregs) mediate
peripheral tolerance by actively suppressing effector T cells
and inhibiting immune-mediated tissue damage. Tregs were
first identified by the expression of CD25, but now they
are characterized by the expression of the intracellular tran-
scription factor, FoxP3 [59]. Tregs function by maintaining
immune tolerance and preventing inflammatory diseases.
In addition, they have been implicated in the regulation of
almost every adaptive immune response and, therefore, also
in inflammatory responses, by using appropriated mecha-
nisms that inhibit targeted cell populations [60].

In the case of AS, few studies have been carried out to
analyze the levels of Tregs in the peripheral blood of patients;
however, low percentages of Treg cells have been reported in
the peripheral blood [46, 51, 69, 70], and in the synovial fluid
[71] of patients with AS, suggesting an imbalance between

Tregs and the adaptive immune response. Moreover, AS
patients treated with anti-TNF therapy showed similar levels
of Treg cells to those observed in healthy subjects [46]. These
data suggest a possible role of Tregs in AS, and Th17/Tregs
imbalance has been proposed as playing a novel role in AS
[69].

3.3. NK Cells. The recognition that both the adaptive and
innate immune responses play key roles in AS led us to focus
on NK cells as a target for improving our understanding
of the pathogenesis of AS. NK cells are major components
of innate immunity and provide surveillance during early
defense against virus, intracellular bacteria, and cancer cells
[72], but they have also been associated with autoimmunity.
NK cells can be identified by the expression of CD56 and
the lack of the CD3 complex [73]. Decreased numbers and
impaired function of peripheral blood NK cells in patients
with autoimmune diseases such as systemic lupus erythe-
matosus (SLE), multiple sclerosis, diabetes, RA, and psoriasis
have been reported [74–78]. However, the frequencies of
circulating CD3−CD56+ NK cells have been reported to
be higher in AS patients [73, 79], as have those of the
CD56dimCD16+ subsets, but not CD56brightCD16+ [80]. The
role of NK cells in AS has been supported by the finding
that the HLA-B27 protein is specifically recognized by the
NK-inhibitory receptor KIR3DL1 [73]. The killing activity
of NK cells is balanced by the signals transduced by both
inhibitory and activating receptors [73]. Surface receptors of
NK cells have been evaluated in several studies, and NKp44+
and NKp46+ receptors have been evaluated in patients with
AS, while NKp44 expression has been found to be elevated
in the ileum of patients with AS. Also, these cells secreted
increased amounts of IL-22 [73, 81]. Indeed, healthy HLA-
B27-positive subjects have similar NK cell levels to those in
AS patients. Increasing evidence points to a role of the KIRs
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Table 2: Association studies between CTLA4 +49-A/G and PD1 polymorphisms with ankylosing spondylitis.

Gene Population Year Study type SNP Association Reference

CTLA4
Iranian 2010 Case control

+49-A/G
(rs2317754)

NS [61]
European 2001 Case control NS [62]
Taiwanese 2010 Case control NS [63]

PD1

Han
Chinese 2009 Case control

PD1.3,
PD1.5,
PD1.9

NS
NS
Risk

[64]

Iranian 2011 Case control PD1.3,
PD1.9

NS
NS [65]

Taiwanese 2011 Case control PD1.1 Risk [66]

Korean 2006 Case control PD1.5,
PD1.9

NS
Risk [67]

Chinese 2011 Case control PD1.9 Risk [68]
PD1.1 (rs36084323), PD1.3 (rs11568821), PD1.5 (rs2227981), and PD1.9 (rs2227982).
NS: not significant.

in the development of autoimmune diseases. In particular, a
positive association of KIR3DS1 (an activating receptor) and
a negative association of KIR3DL1 (an inhibitory receptor)
with AS have been reported [82]. Additionally, it is known
that KIR3DL2 binds to free H chain forms of HLA-B27 [83].
Genetic polymorphisms of KIRs genes have been studied
by some groups, finding that KIR2DL1, KIR2DL5, KIR2DS5,
KIR3DS1, and KIR3DL1 are all associated with AS, though
in different populations [82, 84–91]. These data suggest that
NK cells could play a relevant pathogenic role in AS via the
expression of KIRs [92].

4. Molecules, Their Genes and AS

4.1. CCR6. The chemokine (C-C motif) receptor 6 (CCR6)
is expressed on B cells, a fraction of T cells, and immature
DCs, and studies have shown that it is a specific marker
for Th17 cells that distinguishes them from other helper T
cells. Moreover, CCR6 has been shown to be important for
B-lineage maturation and antigen-driven B-cell differenti-
ation and may regulate the migration and recruitment of
dendritic cells (DCs) and T cells during inflammatory and
immunological responses. CCR6+ human memory T cells
have a low stimulation threshold for IL-10 production and,
consequently, secrete IL-10 after suboptimal stimulation by
autologous DCs [93].

CCR6 is considered an important receptor that guides
effector T cells into inflamed tissue, thus favoring the Th17
phenotype and downregulating the Tregs. Thus, CCR6+ T
cells play a central role in balancing regulatory and inflamma-
tory processes during homeostasis and inflammation [94]. It
has also been reported thatCCR6− deficientmice have altered
CD4+ T-cell responses, including reduced hypersensitivity
and enhanced delayed type hypersensitivity responses [95],
all of which supports the role of CCR6 in homeostasis.

CCR6 are also involved in several autoimmune diseases,
including psoriasis and RA [96–98]; however, CCR6 poly-
morphisms have not been associated with AS in the few
populations that have been analyzed [98, 99], despite the fact

that some studies have demonstrated that it is expressed on
theTh17 cells of AS patients [100, 101] and that these patients
have a higher proportion of these cells [43].

4.2. Negative Costimulatory Molecules: CTLA-4 and PD-1.
Cytotoxic T-lymphocyte antigen 4 (CTLA-4, CD154) is a
costimulatory molecule that is expressed by activated T cells
and interacts with the B7molecules on the surface of antigen-
presenting cells to induce downregulation of T-cell activation.
CTLA-4, which is encoded by the CTLA4 gene located
on chromosome 2p33, is a structural homologue of CD28
[61]. Engagement of CTLA-4 appears to regulate ongoing T-
cell responses and induce peripheral T-cell tolerance, while
the absence of this function appears to be involved in
autoimmunity [102]. In addition, CTLA-4 is highly expressed
by regulatory T cells and could play an important role in their
functioning [103]. Theoretically, polymorphisms of CTLA4
that reduce CTLA-4 expression may cause autoimmune T-
cell clonal proliferation, thus contributing to the pathogenesis
of autoimmune diseases [61]. The CTLA4 gene has many
single nucleotide polymorphisms (SNP), some of which are
present in regulatory positions, while others appear in 3
UTR, but the most important one is the leader sequence
(+49 A/G; rs231775) [62, 104, 105]. The +49-A/G is located
at position +49 of the first exon of the CTLA4 gene, where
it provokes a threonine-to-alanine change in amino acid 17
of the leader peptide [103]. It has been reported that +49
A/G polymorphism in CTLA4 gene alters the intracellular
distribution of CTLA-4, IL-2 production, and T-cell prolifer-
ation [103, 106], suggesting their possible role in autoimmune
diseases. This SNP have been analyzed in patients with
AS in different populations (Table 2), but so far results are
negative [61–63], though higher levels of circulating CTLA-
4 in SpAs [107] and association of the +49-GG genotype with
circulatory C-reactive protein in patients with AS [63] have
been found, indicating a possible role in the pathogenesis of
AS.

The programmed cell death-1 (PDCD1, also known as
PD1) gene is one of the costimulatory genes located on
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chromosome 2q37.3. It encodes the surface receptor PD-1, an
inhibitory immunoreceptor expressed on activated T cells,
B cells, and myeloid cells belonging to the immunoglobulin
superfamily B7-CD28 [108]. PD-1 is expressed in a variety
of hematopoietic cells on the periphery after stimulation by
antigen receptor signaling and cytokine receptors. Two PD-1
ligands have been described (PD-L1 and PD-L2), and their
expression is regulated by the inflammatory environment,
cytokines such as TNF-𝛼, type 1 and 2 interferons, IL-2, IL-
7, and IL-15 [59].

The co-stimulatory pathways consisting of the PD-1
receptor and its ligands deliver inhibitory signals that reg-
ulate the balance among T-cell activation, tolerance, and
immune-mediated tissue damage [59]. Various SNPs in the
PD1 gene have been identified, such as PD1.1 (rs36084323),
PD1.3 (rs11568821),PD1.5 (rs2227981), andPD1.9 (rs2227982).
Among these, PD1.3, PD1.5, and PD1.9 have been associated
with autoimmune disorders in different ethnic groups [134].
In the case of AS, despite controversies among studies of the
polymorphism associated with the disease, it appears that
PD1.3, PD1.5, and PD1.9 are all candidates for association
(Table 2) [64–68]. However, it is necessary to study these
polymorphisms or conduct meta-analysis in additional pop-
ulations, before these associations can be confirmed.

4.3. Endoplasmic Reticulum Aminopeptidase 1 (ERAP1).
ERAP1 is the term currently accepted by the human genome
organization (HUGO) nomenclature committee (HGNC),
though in the past it was known by such names as endo-
plasmic reticulum aminopeptidase associated with antigen
processing (ERAAP), adipocyte-derived leucine aminopepti-
dase (A-LAP), and aminopeptidase regulating tumor necro-
sis factor receptor I (TNFRI) shedding (ARTS-1). ERAP1
is a zinc aminopeptidase belonging to the M1 family of
the metallopeptidases that share the consensus GAMEN
and HEXXH(X)18E zinc-binding motifs [135]. Two major
ERAP1 protein isoforms are generated: the longer isoform,
a (ERAP1-a) and the shorter isoform, b (ERAP1-b). It has
been reported that the isoform ERAP1-b is more abundant
than ERAP1-a [136]. Because ERAP1 is highly polymorphic
multiple splice variants with potential effects on biologi-
cal functions have been described, for example, rs2287987
(M349V) located on the active site, rs17482078 (R725Q),
and rs27044 (Q730E), which are exposed on the inner
surface of the C-terminal cavity and could affect the substrate
sequence or length specificity. Other polymorphisms, such as
rs26653 (R127P), rs30187 (K528R), and rs10050860 (D575N),
localized at domain junctions, reduce either specificity or
aminopeptidase activity toward a synthetic peptide substrate
by altering the conformational change between open and
closed conformations [137].

The association of ERAP1 SNPs with AS can be explained
from a functional perspective. The protein ERAP1 has three
known biological functions. First, in the endoplasmic retic-
ulum, ERAP1 acts as a molecular ruler, trimming peptide
antigens to optimal length for binding to MHC class I
molecules [138]. Complex proteins are initially degraded in
the cytosol by the proteasome complex to generate peptide

fragments up to 25 amino acids in length [139]. These anti-
genic peptides, and their N-terminal extended precursors,
are subsequently transported into the ER by the transporter
associated with antigen processing (TAP) that preferentially
transports peptides of 8–16 residues in length [140–142].
Nascent MHC class I molecules typically bind short peptide
fragments 8-9 residues long and transport them to the cell
surface for presentation to T cells. ERAP1 is expressed in
the lumen of the ER, where peptide loading to MHC class I
molecules takes place. Here, ERAP1 preferentially trims sub-
strates 10–16 residues in length; whereas peptides 8-9 residues
in length are optimal for binding MHC class I molecules
[143, 144]. Second, the cleavage of cell surface receptors
by proinflammatory cytokines such as TNFR1 [145], IL-1R2
[146], and IL-6R𝛼 [147] results in the downregulation of their
intracellular signaling. For this reason, the malfunctioning of
ERAP1 would lead to either an increase or decrease in the
number of cell surface receptors available for these cytokines,
thus propitiating proinflammatory effects and, finally, raising
disease susceptibility to AS, though some polymorphisms
of ERAP1 associated with AS do not influence the cytokine
receptor levels in patients with this disease [148]. Third,
ERAP1 is involved in the activation of macrophages induced
by lipopolysaccharide (LPS) and interferon (IFN)-𝛾 [149].

The first confirmed association of ERAP1 with AS was
reported by the Wellcome Trust Case-Control Consortium
and Australo-Anglo-American Spondyloarthritis Consor-
tium (WTCCC/TASC) in 2007.They used 14,500 nonsynony-
mous SNPs to discover the ERAP1 association in AS.This was
the first non-MHC gene for which a definitive AS-association
was observed [109]. In that study, the minor allele frequency
of the ERAP1 SNP rs30187 and rs27044 in AS patients was
considerably higher than in controls, and those variants
have been repeatedly confirmed by nearly all population
studies as conferring strong susceptibility to this disease. At
the same time, this study indicates that in the MHC locus
HLA-B27 confers the greatest risk of AS susceptibility, with
an attributable risk of 50%; ERAP1 is the second strongest
association, with an attributable risk of 26% [109]. Recent
genome-wide association studies (GWAS) have revealed
numerous ERAP1 polymorphisms that are associated with AS
and strongly related to the HLA-B27 MHC I allele [110, 150].
One GWAS study found that the polymorphisms of ERAP1
only affect AS risk in HLA-B27-positive individuals [111].
The association of AS with ERAP1 has been replicated in
multiple cohorts and ethnicities, including a family-based
association study [112], case-control studies [113–123], and
meta-analyses [124, 125] of Canadian, British, Portuguese,
Chinese, Hungarian, Korean, Spanish, and Iranian popula-
tions. Those studies were able to replicate the association
of the rs30187 and rs27044 SNP in all the aforementioned
populations, with the sole exception of Pazar’s study, where
the SNP rs30187 failed to show any significant connection
withAS susceptibility [117]. It is important tomention that the
North American Spondylitis Consortium (NASC) studied
multiplex AS families, finding and reporting, for the first
time, a novel haplotype ERAP2 associated with AS [112].
In several disease models, the association of ERAP1 with
AS in HLA-B27-positive cases is consistent. There, aberrant
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trimming of peptides or the presentation of ERAP1 andHLA-
B27 are involved in the pathogenesis of HLA-B27-associated
AS. These findings suggest that ERAP1 participates in AS
pathogenesis with associated alleles that reduce the risk of
disease through a mechanism that involves altered peptide
presentation byMHCclass I, though a great deal of additional
experimental research is necessary to validate this. In Table 3,
studies of association of ERAP1 and AS are summarized.

4.4. Receptor for the Fc Fragment of IgG (Fc𝛾R). Recep-
tors for the Fc fragment of IgG (Fc𝛾R) form a group of
type I transmembrane glycoproteins belonging to the Ig
superfamily and expressed mostly on leucocytes, providing
a critical link between the humoral and cellular arms of
the immune response. Fc𝛾R has three major functions: (1)
positive and negative regulation of cell activation; (2) Ig
transport and regulation of Ig homeostasis; and (3) uptake of
the immune complex (IC) for the degradation and promotion
of antigenic peptides for antigen presentation [151, 152] that
can trigger effectormechanisms, such as antibody-dependent
cellular cytotoxicity (ADCC), phagocytosis, degranulation,
and cytokine production via immune tyrosine activating
or inhibitory motifs (ITAM or ITIM). Three classes of
leukocyte Fc𝛾R are currently distinguished: Fc𝛾RI (CD64),
Fc𝛾RII (CD32), and Fc𝛾RIII (CD16). Fc𝛾RI is a high-affinity
receptor that binds both monomeric IgG and immune com-
plexes; whereas the affinity of IgG is low for Fc𝛾RII and
intermediate for Fc𝛾RIII [153]. Fc𝛾RIa, Fc𝛾RIIa, Fc𝛾RIIc,
and Fc𝛾RIIIa are activating receptors characterized by the
presence of an immunoreceptor tyrosine-based activation
motif (ITAM); Fc𝛾RIIIb is unique, as it is anchored by a gly-
cosylphosphatidylinositol (GPI) anchor. In contrast, Fc𝛾RIIb
is an inhibitory receptor that contains an immunoreceptor
tyrosine-based inhibitory motif (ITIM) in its cytoplasmic
domain. The inhibitory receptor Fc𝛾RIIb plays a major role
in controlling the antibody and immune response and the
development of autoimmune diseases [154–156]. Fc𝛾RIIB
includes two isoforms, Fc𝛾RIIB1 and Fc𝛾RIIB2, which trans-
duce inhibitory signals that downregulate immune functions
triggered by activating receptors. For instance, Fc𝛾RIIB
engagement triggers the blockade of BCR-induced B-cell
activation, once it joins with BCR [157]. The opposed signal-
ing pathways of activating and inhibitory Fc𝛾R act in concert
to determine the magnitude of the effector cell responses in
immune-complex inflammation and autoimmune disease. In
noninflamed tissues, the ratio of activating to inhibitory Fc𝛾R
is low, but it increases markedly in an inflamed environment.
Therefore, activating Fc𝛾R promotes disease development,
while inhibitory Fc𝛾R contributes to protection in two dif-
ferent ways: first, through the downregulation of effector cell
responses and, second, by maintaining peripheral tolerance
[158].

Some studies have found promotermutations that induce
lower Fc𝛾RIIB expression levels in individuals that are sus-
ceptible to autoimmune diseases [159, 160]. Likewise, it has
been reported that Fc𝛾Rs may play a role in the pathogenesis
of RA and SLE. Recently, based on specific locus genetic
loci studies, Fc𝛾RIIB was reported to be associated with

AS development in a case-control study in Han Chinese.
That study indicated that rs10917661 may be a novel SNP
involved in AS genetic predisposition [161]. In a previous
study, we reported the association of rs1801274 (H131R) of
Fc𝛾RIIA and rs396991 (V158F) of Fc𝛾RIIIA with AS in a
small group of patients, having found that the Fc𝛾RIIA-
HH and Fc𝛾RIIIA-VV variants are associated with AS [162].
We therefore suggested that these polymorphisms could
be related to the IgG3 immune response against bacterial
antigens, as previously reported [163], and to human and
bacterial HSP60 [164]. Moreover, a relation between the
Fc𝛾RIIIA-VV genotype and the response to infliximab has
also been found [165]. These discoveries are important for
our understanding of the association between FcR𝛾 and the
pathogenesis of AS, butmore research is required in this field,
including replication of the association of Fc𝛾RIIB, Fc𝛾RIIA,
and Fc𝛾RIIIA with AS in multiple cohorts and ethnicities, to
ascertain whether these SNPs are linked with predisposition
to AS.

4.5. Tumor Necrosis Factor-Alpha (TNF-𝛼). Tumor necrosis
factor-alpha is a highly potent proinflammatorymolecule and
a key signaling component of the immune system that is
strongly induced after infection or tissue injury [166]. This
cytokine is known to be present at higher concentrations
in patients with AS, RA, and PsA. The important role of
TNF in these diseases has been proven by their successful
treatment with anti-TNF drugs [166–168], particularly AS
patients respond well to TNF-𝛼 antagonist therapy [169].

Indeed, anti-TNF-𝛼 therapy has become the standard of
care for AS patients over the last decade. Several studies have
shown that TNF-𝛼 blocking agents, such as infliximab, etan-
ercept, and adalimumab are highly efficacious in controlling
inflammation and improving the clinical assessment of AS
patients [167, 170–172].

A prospective study showed that three years of TNF-𝛼
blocking therapy result in a significant increase in the bone
formation marker after three months, a result that continued
at a higher level up to three years, leading to a bone turnover
balance that favors bone formation, in combination with
continuous improvements in bone mineral density (BMD)
in the lumbar spine [173]. Furthermore, bisphosphonates in
conjunction with anti-TNF agents have a synergistic effect
that provides additional increases in the BMD of AS patients
[174].This suggests that TNF-𝛼 blockades may even reinforce
extensive bone formation by suppressing the inflammatory
component of AS.

The TNFA gene contains several SNPs [175], the most
widely studied of which is −308 A/G SNP (rs1800629),
and −238 A/G (rs361525) in the promoter region. It has
been found to be involved in many diseases due to its
ability to modify cytokine levels and clinical outcomes [176,
177]. The −308 A/G and −238 A/G transition seems to
be associated with susceptibility to autoimmune diseases,
although other SNP at −1031 (rs1799964), −863 (rs1800630),
−857 (rs1799724), and−238 (rs361525) in the promoter region
of TNFA have been evaluated in AS (Table 4).

However, there are contradictory results, because some
studies did not found association between the −238 and
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Table 3: Association studies for ERAP1 and ankylosing spondylitis.

Population Year Study type SNP Association Reference

UK 2007 GWAS

rs30187
rs27044

rs17482078
rs10050860
rs2287987

Risk
Risk
NS
NS
NS

[109]

Australian, British, US1 2010 GWAS rs27434
rs27037

Risk
Risk [110]

UK, Australian, Canadian 2011 GWAS rs30187 Risk [111]

Canadian 2010 GWAS
rs30187
rs27044

rs10050860

Risk
No association
No association

[112]

Portuguese 2009 Case control

rs27044,
rs17482078
rs10050860
rs30187

rs2287987

Risk
NS
NS
Risk
NS

[113]

UK1 2009 Case control

rs28366066
rs26653
rs2287987
rs27434
rs30187

rs10050860
rs469783
rs17482078
rs1065407
rs13167972

Protection
Risk

Protection
Risk
Risk

Protection
Risk

Protection
Protection
Protection

[114]

Canadian 2009 Case control

rs27044
rs10050860
rs30187
rs26618
rs26653
rs3734016

NS
Protection

Risk
NS
Risk
NS

[115]

Han Chinese1 2009 Case control
rs27037
rs27980
rs27433
rs27038

Risk
Protection

Risk
Risk

[116]

Hungarian 2010 Case control

rs27044
rs17482078
rs10050860
rs30187

rs2287987

Risk
NS

Protection
NS

Protection

[117]

Korean 2010 Case control

rs27044
rs30187

rs17482078
rs10050860
rs2287987

Risk
Risk

No association
No association
No association

[118]

Han Chinese 2011 Case control rs27038
rs27037

Risk
Risk [119]

Han Chinese 2011 Case control rs27044 NS [120]

Spanish 2011 Case control

rs17481856
rs17482078
rs30187

rs2287987
rs27895
rs27044
rs26653

rs10050860

NS
Risk
Risk
Risk
NS
NS
Risk
Risk

[121]
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Table 3: Continued.

Population Year Study type SNP Association Reference

Han Chinese 2011 Case control rs27434,
rs27529

Risk
Risk [122]

Iranian 2012 Case control
rs30187
rs27434
rs469876
rs13167972

Risk
Risk
NS
NS

[123]

European, Asian 2011 Meta-analysis rs27044
rs30187

Risk
Risk [124]

European 2011 Meta-analysis
rs17482078,
rs10050860
rs2287987

Protection
Protection
Protection

All cases 2012 Meta-analysis

rs27044
rs17482078
rs10050860
rs30187

rs2287987
rs27037

Risk
Risk

Protection
Risk

Protection
Risk

[125]

GWAS: genome-wide association study.
1Only the SNPs associated with AS were included.
NS: not significant.

Table 4: Association studies of TNFA polymorphisms with ankylosing spondylitis.

Population Year Study type SNP Association Reference

Greek 2009 Case control
rs1799724
rs1800629
rs361525

Risk
NS

Not H-W∗
equilibrium

[126]

Various 2011 Meta-analysis rs361525
rs1800629

NS
NS [127]

Various 2010 Meta-analysis rs1800629
rs361525

NS
NS [128]

German 2011 Case control rs1800629
rs361525

NS
NS [129]

Colombian 2012 Case control rs1800629 NS [130]

Mexican 2006 Case control rs1800629
rs361525

NS
NS [131]

Iranian 2009 Case control rs1800629
rs361525

NS
Risk/Protection (allele

A/G)
[132]

Taiwanese 2007 Case control rs1800629
rs361525

NS
protection [133]

∗H-W: Hardy-Weinberg.
NS: not significant.

−308 polymorphisms of TNFA with AS [126–131], although
the A allele and the AA genotype of TNFA (−308 and
−238) have been associated with AS, and with a higher
production of TNF-𝛼 in two populations, which could leads
to a state of latent inflammation and subsequent tissue
damage, confirming the participation of elevated levels of
this cytokine in establishing the inflammatory process in
this disease [132, 133]. In this regard, a Swedish group has
reported that patients with AS, AR, and PsA who carry the
GG genotype exclusively showed a good response to anti-
TNF-𝛼 therapy, whereas a moderate response was associated

with the −308 A/G genotype and unresponsiveness with the
AA genotype [178]. These results emphasize the importance
of TNFA polymorphism as a predictor of responses to TNF-𝛼
blocking agents.

In contrast, a meta-analysis conducted by Lee and Song
(2009) failed to demonstrate any association of the TNFA
−308 polymorphisms with AS in Europeans [127], leaving
several open questions as to the importance of the role of
TNFA polymorphisms in AS.

TNF-𝛼 is synthesized and expressed on the cell surface as
a transmembrane protein (tmTNF-𝛼) that can be processed
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by the TNF-𝛼 converting enzyme to generate a soluble form
(sTNF-𝛼) [179]. Both the soluble and transmembrane forms
of TNF-𝛼 are biologically active in their trimeric forms [180,
181] and act by binding two different receptors, TNFR1, which
is activated by both sTNF-𝛼 and tmTNF-𝛼, and TNFR2,
which is activated mainly by tmTNF-𝛼 [167, 182].

TNFR-1 is the primary signaling receptor on most cell
types and accounts for the majority of the proinflammatory,
cytotoxic, and apoptotic effects classically attributed to TNF-
𝛼 [183, 184]. In contrast, TNFR2 predominantly mediates
signals promoting lymphocyte activation and proliferation
[181]. Therefore, at least in the inflammatory environment,
the TNF-𝛼/TNFR2 pathway is critical for stabilizing the Treg-
cell pool that is required to restrain themagnitude and length
of an inflammatory immune response and prevent damage
to self-tissues [185, 186]. Moreover, several polymorphisms
of the TNFRs may contribute to the development of an
abnormal immune response in AS.

In the Mexican population, the work group of Corona-
Sanchez et al. found a high frequency of the AA genotype
of the −383 TNFR1 polymorphism in patients with AS. In
addition, the A allele is significantly associated with a higher
risk of AS [187].

4.6. Concluding Remarks. Ankylosing spondylitis is a mul-
tifactorial disease. HLA-B27 has been associated with AS
since 1973; however, different pathways have been described
to explain this association. These pathways include the KIRs
receptors that could interact with HLA-B27. These receptors
are expressed by NK cells, but the involvement of NK cells in
AS takes place not only through recognition of HLA-B27, but
also through the secretion of proinflammatory cytokines and
their effect on Tregs. New participants in the inflammatory
process are Th17 cells that induce the secretion of cytokines,
such as TNF-𝛼, which is clearly involved in the pathogenesis
of AS.

The genetic factor has been analyzed in studies of several
of the genes involved in the immune response, and particu-
larly in inflammatory responses. The SNPs included suggest
that these variations could play a role in AS because of their
functional effect on the expression of the genes. Describing
the cells and genes associated with this disease is the first
step towards the eventual detection of possible therapeutic
targets that could be used to improve current treatments and
patients’ quality of life. However, it is necessary to analyze the
functional role of these genes and cells in the pathogenesis
of the disease in order to reach an understanding of the
mechanisms of these cells and genes in the pathogenesis of
AS.
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[30] M. Marcilla and J. A. López de Castro, “Peptides: the corner-
stone of HLA-B27 biology and pathogenetic role in spondy-
loarthritis,” Tissue Antigens, vol. 71, no. 6, pp. 495–506, 2008.
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