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Abstract: Bimatoprost is the only representative of a novel class of prostaglandin ethanolamide 

(prostamide) compounds used therapeutically as an efficacious treatment for glaucoma. The 

pathways through which bimatoprost works to improve uveoscleral outflow to relieve elevated 

intraocular pressure are similar to those of the conventional prostaglandins used in glaucoma 

therapy, with some evidence of a preferential action at the trabecular meshwork. The pharma-

cology of bimatoprost is however, unclear. Pharmacological evidence supports a specific and 

distinct receptor-mediated agonist activity of bimatoprost at ‘prostamide’ receptors, which is 

selective to the prostamides as a class. However, other studies have reported either activity of 

bimatoprost at additional prostanoid and nonprostanoid receptors, or a conversion of bimatoprost 

to metabolites with agonist activity at prostaglandin FP receptors in the human eye. The forma-

tion of endogenous prostamides has been demonstrated in vivo, by a novel pathway involving 

the cyclooxygenase-2-mediated conversion of endogenous cannabinoid (endocannabinoid) sub-

strates. Irrespective of the pharmacology of bimatoprost and the prostamides in general, further 

studies are needed to determine the biological role and biochemical pathology of prostamides 

in the human eye, particularly in glaucoma. Such studies may improve our understanding of 

uveoscleral flow and may offer new treatments for controlling intraocular pressure.
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Glaucoma is a chronic disease of the optic nerve, caused at least in part by a sus-

tained, elevated intraocular pressure. Mechanisms of optic deterioration include 

direct axonal damage, structural failure, and altered microvascular supply.1 Intra-

ocular pressure is normally maintained at a steady state and in health eyes assumes 

a relatively narrow range. The intraocular pressure in any given eye is determined 

by the rate of fluid (aqueous) production within the eye by the ciliary body and the 

drainage of aqueous humor from the eye through the trabecular meshwork, aqueous 

flow, and uveoscleral outflow. In glaucomatous eyes, the increased resistance to 

aqueous humor outflow is due in part to an increase in extracellular matrix deposited 

in the trabecular meshwork, but also in other outflow structures such as Schlemm’s 

canal,2 with the amount of extracellular matrix correlated with the loss of axons 

in the optic nerve.3 One study found that inflammatory genes were upregulated in 

trabecular meshwork from primary open-angle glaucomatous eyes under conditions 
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of explant culture, compared to nonglaucomatous eyes.4 

However, many genes in the trabecular meshwork under-

went altered expression under culture conditions, so the 

pathological relevance of these changes is unclear. While 

a host of other cellular and interstitial changes also occur 

in the outflow facility during glaucoma that lead to the loss 

of normal drainage via this tissue,5 the pathogenic factors 

underlying glaucoma are still uncertain. This is partly a 

consequence of the complex physiological determinants of 

resistance within the outflow facility.6 In addition, there are 

difficulties in mimicking primary angle open glaucoma in 

animal models, and the limited translational value of in vitro 

approaches such as whole organ, anterior segment and cell 

culture studies (such as studies in trabecular meshwork 

cells), ensures that the pathogenesis of glaucoma to date 

remains enigmatic.4,7

In order to decrease intraocular pressure, most glaucoma 

drug treatments alter either the rate of aqueous humor 

production (eg, beta blockers, carbonic anhydrase inhibitors) 

or the outflow pathway (eg, prostanoids).8 This review will 

limit itself to a focus on the pharmacology and biochemi-

cal pathways of prostanoid-based therapies, in particular 

the prototypical therapeutic prostaglandin ethanolamide, 

bimatoprost. Irrespective of the antiglaucoma drug class, 

many patients on intraocular pressure-lowering drugs experi-

ence limitations in either efficacy or compliance, or display 

adverse side effects with long term use.9 Some patients 

will continue to progress to blindness.10

Prostanoids, cannabinoids, 
and prostamide pharmacology 
in the eye
Many clinically useful intraocular pressure-lowering 

agents act at prostaglandin FP receptors, responsive to 

the endogenous prostaglandin, prostaglandin F
2α (PGF

2α). 

These include such drugs as latanoprost and travoprost. 

Prostanoids play an important role in the control of 

intraocular pressure, primarily by increasing uveoscleral 

outflow via remodeling of the ciliary body.11 Therapy with 

prostaglandin analogues has been shown to effectively lower 

intraocular pressure over the long term,12 is often superior 

to other glaucoma therapies and shows fewer side effects.13 

While the prostanoid-based treatments have been found to 

possess similar profiles of efficacy of surveyed drugs within 

this class,14 other studies have demonstrated that bimatoprost 

is more efficacious.15,16 While other prostaglandin analogues 

acting at TP, EP, and DP receptors have been investigated 

in animal models of raised intraocular pressure, none have 

advanced clinically so far.17

An increase in trabecular meshwork outflow with 

prostanoid therapy has also been reported.17 The shape and 

area of the intertrabecular spaces of the trabecular meshwork 

normally determines the rate of aqueous outflow through this 

tissue (and hence intraocular pressure). Traditionally, the size 

of the pores within the trabecular meshwork was thought 

to be influenced by the tone of the adjacent ciliary muscle 

(CM), a smooth muscle component of the ciliary body with 

tendinous connections to the trabecular meshwork. However, 

studies have shown that trabecular meshwork has in itself 

contractile properties similar to smooth muscle.18–20 It has 

been suggested that this allows the trabecular meshwork to 

actively change the intertrabecular spaces by an autoregula-

tory mechanism.21 It is believed that trabecular meshwork 

contraction decreases aqueous outflow, while relaxation 

increases outflow.20 The relative contribution of the mesh-

work component to the overall reduction in intraocular pres-

sure with prostanoid treatments is not known, although the 

weak FP receptor agonist docosanoid unoprostone has been 

demonstrated to have a preferential action on the trabecular 

meshwork,17 as is also suggested for bimatoprost.22 Unopro-

stone may affect outflow indirectly or directly via additional 

cellular mechanisms, including the alteration of ion channel 

activation in the trabecular meshwork.23,24

Within this class of prostanoid-based drugs is bima-

toprost, which is structurally and chemically similar to 

the PGF
2α analogues used in the treatment of glaucoma 

(Figure 1a). However, replacement of the carboxylate moiety 

with an ethanolamide functional group appears to confer to 

bimatoprost a substantially different pharmacology from the 

other representative PGF
2α agonists.25 It is the first drug of 

its chemical class, termed the prostaglandin ethanolamides 

(prostamides), to have a therapeutic application.

Bimatoprost has demonstrated efficacy comparable to 

other prostanoids in the reduction of intraocular pressure.25,26 

While bimatoprost elicits a similar and clinically significant 

increase in uveoscleral outflow and possibly an increase 

in trabecular outflow facility as for the prostaglandins,17,22 

whether the mechanism(s) of its intraocular pressure-

lowering action are distinctive from that of the prostaglandins 

is still not known with certainty. It has been suggested that 

bimatoprost acts solely at the trabecular meshwork to increase 

aqueous outflow.27 Certainly, long-term changes in vascular-

ization, inflammatory cell infiltrate, and trabecular meshwork 

morphology are noted both with prostaglandin agonists 

and bimatoprost.28,29 Bimatoprost therapy is also associated 
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with similar changes to extracellular matrix markers as with 

conventional prostaglandin treatments,24 indicating that 

longer term structural changes follow a similar pathway 

to the prostaglandins. Studies comparing bimatoprost with 

latanoprost found that the greater efficacy of intraocular 

pressure reductions with bimatoprost was offset by a higher 

incidence of conjunctival hyperemia,15,30 although replacing 

existing latanoprost therapy with bimatoprost was associated 

with lower rates of hyperemia.31,32 The reasons for enhanced 

conjunctival hyperemia with bimatoprost therapy are not 

known, but it is believed that part of the effect of bimatoprost 

is manifest as vasodilatation occurring independently of 

inflammation, generated through endothelial-derived nitric 

oxide formation.33 Hyperemia with long term prostanoid use 

has been attributed, either wholly or in part, to the benzal-

konium preservative in topical prostanoid ophthalmologic 

preparations.34,35 However, this most likely does not account 

for the hyperemia associated with bimatoprost formulations, 

where the comparative benzalkonium concentrations are 

relatively low.

Other changes noted with prostanoid therapy generally 

include elongation and darkening of eyelashes, induced 

iris darkening, and periocular skin pigmentation, which are 

mostly similarly evidenced with bimatoprost treatment.36 

Topical ocular prostanoids evoke increased immune marker 

expression in the eye, which infers that the prostanoids can 

evoke a mild inflammatory reaction.37 This altered immune 

marker expression is a feature that was also shared with 

bimatoprost therapy.37

Bimatoprost is a stable chemical entity representative of 

the endogenous prostamides, which themselves are only rela-

tively recent discoveries. Evidence has demonstrated that a 

major pathway for the production of endogenous prostamides 

is via the conversion of endogenous cannabinoid molecules, 

such as anandamide, via the action of cyclooxygenase-2 

(COX-2)38 (Figure 1b). Prostamides were subsequently 

shown to be produced in vivo utilizing knock-out mice for 

the normal endocannabinoid metabolising enzyme, fatty acid 

amide hydrolase (FAAH).39 Another major endocannabinoid 

molecule, 2-arachidonoyl glycerol is also a substrate for 

COX-2, producing prostaglandin glycerol esters. A recent 

study also suggested other pathways for prostamide produc-

tion exist and are yet to be fully characterized.40 While the 

constitutive COX-1 does not display an affinity for the endo-

cannabinoids as an enzyme substrate, it is also recognized 

that the endocannabinoids are substrates for other oxidation 

pathways aside from COX-2, such as via lipoxygenases and 

cytochrome P450 enzymes.41

The prostamides have been shown to influence intraocular 

pressure in a similar fashion to conventional prostaglandin 

PGF
2α agonists.42 However, they are believed to act at recep-

tors distinct from conventional prostaglandins, namely via a 

separate class of ‘prostamide’ receptors.26,43 Indeed, bimato-

prost is believed to act at distinct ‘prostamide’ receptors to 

mediate intraocular pressure reductions in glaucoma.43,44 The 

precise biological role of the prostamides compared to pros-

taglandins generally is not known, either in ocular physiology 

or in other systems.45 Certainly there appear to be functional 

pharmacological differences between the two prostanoid 

classes. Studies utilizing in vitro bioassays such as trabecular 

meshwork, ciliary and iridial muscle preparations, and cell 

culture expression systems ostensibly preclude a conventional 

FP receptor component to bimatoprost’s activity.25,44,46

The pharmacological selectivity of the endogenous 

prostamides has been well characterized. Prostamides 

D
2
, E

2
, and F

2α are only weakly active at human prosta-

glandin DP, EP, FP, IP, or TP receptors.47 The distinctive 

pharmacology of the prostamides is supported by the recent 

development of prostamide-selective antagonists.48 These 

have been demonstrated to block contractile responses in 

feline iris to prostamides (including bimatoprost), but not 

the corresponding prostaglandins.48 Prostamide metabolites 

were generally not believed to be responsible for activity 

as assessed in vitro using either recombinant cell lines or 

functional bioassays.47 However, another in vitro study in 

human eye tissues showed that bimatoprost was rapidly 

hydrolyzed in cornea, iris, sclera, and ciliary muscle to its 

corresponding 17-phenyl-PGF
2α metabolite, known to be 

active at FP receptors.49

Other studies that question the unique pharmacological 

selectivity of bimatoprost include one demonstrating an activ-

ity at cannabinoid receptors in ciliary muscle,50 which con-

trasts to another study that demonstrated a negligible activity 

of prostamides at cannabinoid receptors.42 Cannabinoid 

receptor agonists lower intraocular pressure,51 potentially 

via an increased outflow facility through an action at the 

trabecular meshwork.52 An action of the cannabinoid CB
1
 

receptor antagonist SR141716A at ‘prostamide-sensitive’ 

receptors should be excluded to possibly clarify these 

anomalous findings.

The contractile effect of bimatoprost was also partly 

attributed to an agonist activity at the FP receptor, as attested 

to by the sensitivity of bimatoprost’s actions to the FP 

receptor antagonist AL8810.50 More recently, prostaglandin 

FP receptor variants forming heterodimers in cell expres-

sion systems accounted for the selectivity of bimatoprost, 
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Figure 1 A) Chemical structure of bimatoprost B) Pathway for the production of prostaglandin ethanolamides (prostamides) via COX-2 mediated conversion of the major 
endocannabinoid, anandamide. Only Prostamide F2α is shown for brevity. Comparison is made alongside conventional prostaglandin production via COX enzymes, showing 
PGF2α as an example.
Abbreviation: FAAH, fatty acid amide hydrolase.
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which was reversible with prostamide-selective antagonists 

such as AGN211335.53 The molecular identification of the 

prostamide receptor(s) remains elusive, but speculation of 

an FP receptor splice variant accounting for the pharmaco-

logical variation has been proposed.25 The selectivity based 

purely on pharmacological actions will continue to raise an 

ambiguity as to the mechanism of bimatoprost’s actions.

It should also be reiterated that the major endocannabinoid 

molecules act at cannabinoid receptors expressed in the 

human eye, mainly in the retina54 but also in the trabecular 

meshwork.55 Exogenous cannabinoids and endocannabinoids 

exert functional influences in the eye, including the modu-

lation of aqueous humor production and outflow. ∆9-THC, 

the active psychotropic component of Cannabis Sativa, has 

been shown to increase aqueous outflow.56 2-Arachidonoyl 

glycerol infusion in anterior eye segments increases aqueous 

humor outflow and alters actin deposition, possibly via an 

action at the trabecular meshwork.57 Anandamide infusion 

has also been shown to increase the aqueous humor outflow 

facility.58 That both endocannabinoid molecules and their 

COX-2 metabolites, the prostamides, can alter aqueous and 

uveoscleral outflow independently makes the contribution of 

their interaction to intraocular pressure difficult to discern 

in vivo. That both systems are expressed in the eye may be 

important in eye pathologies, such as glaucoma, where the 

expression of each system may be altered, with a subse-

quent modulation of both endocannabinoid and prostamide 

expression. The functional sequelae of such changes would 

be intriguing, but has yet to be extensively investigated.

Biochemical pathology in relation 
to prostamides
There are only a limited number of studies that have 

separately investigated the expression of the endocannabinoid 

system and COX-2 in glaucoma, either in animal models or 

in human glaucoma. None have yet attempted to directly 

measure prostamide levels in the eye at either normal or 

elevated intraocular pressure, so potential changes in pros-

tamide generation here are inferred from altered systems 

involved in their formation.

It is well established that COX-2 expression is inducible 

under inflammatory conditions; therefore it is attractive to 

consider that at the tissue level, marked changes in COX-2 

activity could dramatically alter the local fate of endocan-

nabinoids. Under such conditions, endocannabinoids may be 

diverted into the production or prostamides and prostaglandin 

glycerol esters, which may possess a diverse suite of biologi-

cal effects that are as yet to be defined.

Elements of both the tissue endocannabinoid system and 

COX-2 are expressed in the human eye, and perturbations in 

both endocannabinoid and COX-2 expression seem to follow 

similar patterns in human glaucoma. Endocannabinoids such 

as 2-AG are expressed in the human uveoscleral region in 

reduced levels in human glaucomatous eyes.59 While there is 

a degree of constitutive COX-2 expression in the human eye, 

COX-2 expression is significantly reduced in human primary 

open angle glaucoma.60 Thus, a possible scenario in glaucoma 

is one of a combination of both reduced COX-2 expres-

sion and reduced endocannabinoid substrates for COX-2, 

impinging upon a potentially important regulatory process 

for controlling aqueous outflow. The interaction between 

COX-2 and the cannabinoids is strengthened by evidence 

that methanandamide, a stable mimic of the endogenous 

cannabinoid anandamide, directly stimulates COX-2 

expression in human nonpigmented ciliary epithelial cells,61 

in addition to independently lowering intraocular pressure 

through an effect on outflow via conventional cannabinioid 

receptors. The induction of COX-2 in ciliary epithelial cells 

is a feature also shared by exposure to prostaglandins such 

as prostaglandin E
2
 (PGE

2
).62

In animal studies of the ocular endocannabinoid system, 

the focus has been on changes in retinal tissue markers as 

opposed to outflow structures. Nonetheless, as a result of 

acute elevations in intraocular pressure, rat retina shows 

enhanced fatty acid amide hydrolase (FAAH) expression 

and reduced anandamide levels, together with reduced 

cannabinoid CB1 receptor expression.63 Implications for 

retinal protection were discussed by Nucci and colleagues.63 

However, reduced expression or greater turnover of prosta-

mide substrates in outflow structures as a consequence of 

such changes in endocannabinoid markers could exacerbate 

intraocular pressure increases, by impinging on aqueous 

outflow.

Although ocular COX-2 expression is enhanced in animal 

models of glaucoma,64 focused studies on humans showing 

reduced expression of ocular COX-2 in primary open-angle 

glaucoma and steroid-induced glaucoma60 lend support to a 

more reliable clinical picture of changes in COX-2 versus 

animal models. Contrary to the view that COX-2 is proin-

flammatory, COX-2 expression may be reparative, producing 

enhanced levels of prostaglandins and prostamides in an 

effort to restore normal aqueous outflow in acute models of 

elevated intraocular pressure. The production of prostamides 

versus prostaglandins in this setting is also an interesting 

question, where COX-2 expression and activity is altered. 

Under conditions of cytokine incubation, explants and cell 
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cultures can produce significant proportions of prostamides 

compared to prostaglandins.65 In some studies of glaucoma, 

where aqueous humor shows significantly reduced PGE
2
 

levels compared to control,60 there may be a differential 

reduction in prostamides or prostaglandin concentrations 

that cannot be distinguished using commercial prostaglandin 

immunoassays, due to the complete immune cross reactivity 

between the two classes of prostanoid.65 The implication 

of such a differential change occurring in the eye is not 

known, given that both prostamides and prostaglandins 

mediate increases in uveoscleral outflow and reductions in 

intraocular pressure. It is interesting to note that prostanoids 

such as latanoprost directly stimulate COX-2 production in 

human nonpigmented ciliary epithelial cells and that this 

is a requirement for matrix metalloproteinase expression.66 

Taken together with evidence that human aqueous humor 

shows significantly reduced PGE
2
 levels in glaucoma,60 

it is conceivable that prostanoids permit the restitution of 

ocular COX-2 expression, which in turn restores the normal 

structural and functional components of the outflow facility. 

As this feature is also shared with endocannabinoid ana-

logues, it will be important to determine if a similar property 

of the prostaglandins is shared with prostamide therapy.

Studies investigating the effects of long-term use of 

COX-2 inhibitors (‘coxibs’) with intraocular pressure 

changes would also be of interest, especially given the 

reports of ocular side effects associated with their use.67 

Nonselective, nonsteroidal anti-inflammatory drugs are 

used in a variety of ophthalmologic conditions, and coxibs 

have a demonstrated development potential as new treat-

ments for corneal angiogenesis and diabetic retinopathy.68 

Interestingly, administration of the COX-2 selective inhibitor 

nimesulide was found to enhance the intraocular pressure-

lowering effect of latanoprost in patients with primary 

open-angle glaucoma.69 This likely suggests that the overall 

COX-2 mediated production of a suite of prostanoids, with 

sometimes contrasting effects, needs to be considered, 

rather than just focusing on the role of prostamides in the 

control of intraocular pressure. Monitoring of intraocular 

pressure may, in any event, be warranted where COX-2 

inhibitors are to be used topically in such settings over an 

extended period.

The role of endocannabinoid system in glaucoma may 

thus be of importance, not only because of the direct positive 

effects on outflow of the endocannabinoid molecules, but 

also for the provision of substrates for prostamide produc-

tion, in addition to a potential neuroprotective contribution 

to the optic nerve.70 The reduced endocannabinoid levels 

demonstrated in outflow pathways in human glaucomatous 

eyes59 may exert a marked effect on outflow, both directly 

through reduced cannabinoid-induced outflow and indirectly, 

via reduced prostamide production. Irrespective of the final 

mediator (endocannabinoid or prostamide), there is a poten-

tial to investigate the inhibition of endogenous cannabinoid 

metabolism as a potential antiglaucoma therapy. Anandamide 

and 2-AG are broken down by the FAAH enzyme. Inhibitors 

of FAAH or FAAH gene knockouts increase tissue endo-

cannabinoid concentrations,39 including in the trabecular 

meshwork of the eye.57 Studies will firstly need to directly 

measure the formation of prostamides to verify their place 

in the control of intraocular pressure and altered expression 

in the setting of glaucoma.
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