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Abstract: 5-Hydroxymethyl-2-furfurylamine (5-HMFA) as an important 5-HMF derivative has
been widely utilized in the manufacture of diuretics, antihypertensive drugs, preservatives and
curing agents. In this work, an efficient chemoenzymatic route was constructed for producing
5-(hydroxymethyl)furfurylamine (5-HMFA) from biobased D-fructose in deep eutectic solvent
Betaine:Glycerol–water. The introduction of Betaine:Glycerol could greatly promote the dehydration
of D-fructose to 5-HMF and inhibit the secondary decomposition reactions of 5-HMF, compared with
a single aqueous phase. D-Fructose (200 mM) could be catalyzed to 5-HMF (183.4 mM) at 91.7% yield
by SG(SiO2) (3 wt%) after 90 min in Betaine:Glycerol (20 wt%), and at 150 ◦C. E. coli AT exhibited
excellent bio-transamination activity to aminate 5-HMF into 5-HMFA at 35 ◦C and pH 7.5. After 24 h,
D-fructose-derived 5-HMF (165.4 mM) was converted to 5-HMFA (155.7 mM) in 94.1% yield with
D-Ala (D-Ala-to-5-HMF molar ratio 15:1) in Betaine:Glycerol (20 wt%) without removal of SG(SiO2),
achieving a productivity of 0.61 g 5-HMFA/(g substrate D-fructose). Chemoenzymatic valorization
of D-fructose with SG(SiO2) and E. coli AT was established for sustainable production of 5-HMFA,
which has potential application.

Keywords: D-fructose; 5-Hydroxymethylfural; 5-(Hydroxymethyl)furfurylamine

1. Introduction

With the continuous growth in population and the high dependence on non-renewable
resources, it is a vital step to switch to alternative clean and renewable energies [1]. Among
varied renewable resources, lignocellulosic biomass (LCB) continues to attract much at-
tention as an inexpensive and renewable alternative to fossil fuel to manufacture biofuel
molecules and biobased compounds [2]. Biomass has been widely used as feedstock to
produce a series of valuable compounds, such as biofuels, biopolymers, energy-rich chem-
icals, and bioactive molecules [3]. Consequently, there has been a growing interest in
the cost-effective valorization of mono- and poly-saccharides into value-added platform
compounds in biorefinery processes [4].

5-Hydroxymethylfural (5-HMF), which can be prepared via the dehydration of biomass-
derived monosaccharide (e.g., D-fructose), is one of the foremost promising platform chem-
icals [5]. Generally, a number of homogeneous and heterogeneous acid catalysts widely
catalyze dehydration of carbohydrates to generate 5-HMF [6]. Recently, the preparation
of 5-HMF from carbohydrates has mostly employed corrosive inorganic acids (e.g., HCl,
H2SO4, etc.), preparation of complicated and expensive solid acids, and non-environment
friendly metal catalysts [7]. Hence, it is urgent to explore new sustainable catalysts that are
in line with the concept of green chemistry to manufacture 5-HMF from carbohydrates [8].

5-HMF has strong reactivity, due to the presence of three functional groups (a furan
ring, hydroxy group and an aldehyde group), which can be further valorized into a series
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of value-added furans [9,10]. 5-(Hydroxymethyl)furfurylamine (5-HMFA), as an important
5-HMF derivative, is utilized for manufacturing drugs, but can also be used as a curing
agent for epoxy resins [11]. Typically, 5-HMFA has been mainly synthesized by means
of a chemo-catalysis route [5], which usually employs inexpensive, or unfriendly, metal
catalysts. In addition, chemo-catalysis can suffer from energetic consumption issues under
the harsh performance conditions (e.g., high pressure, high temperature, etc.) [12]. Very
recently, bio-catalysis has gained great interest to prepare 5-HMFA, due to the mild reaction
conditions, good catalytic activity, excellent selectivity, and eco-friendliness [13].

The strategy for bridging nonenzymatic and enzymatic catalysis has been well estab-
lished for the production of value-added building-blocks [14,15]. Chemoenzymatic cascade
catalysis enables two or more steps in a one-pot manner, which can ignore the separation of
intermediates and, thus, reduce performance time and performance cost [16]. In chemoen-
zymatic conversion, the reaction medium has a vital role in influencing catalytic efficiency.
Water is known to be a typical green solvent for preparing 5-HMF and its derivatives [17].
As a polar protic solvent, water can easily cause the occurrence of side-reactions and low
productivity of 5-HMF [18]. The past decade has witnessed the expeditious development
of deep eutectic solvents (DESs) and their wide applications in chemo-catalysis and bio-
catalysis reactions [19,20]. DESs have many advantages, such as extremely low toxicity,
good biodegradability, and biocompatibility with enzymes [21,22]. Combining biomass
pretreatment and whole cell catalysis for preparation of 5-HMFA in a DES–water medium
is a promising strategy for sustainable production of biobased compounds from biomass.

Herein, a hybrid synthetic route for producing 5-HMFA from biobased D-fructose
was constructed in a tandem reaction with SG(SiO2) chemo-catalyst and ω-transaminase
biocatalyst in a betaine-based DES–water medium (Figure 1). The effect of medium com-
position, dehydration temperature and duration, catalyst SG(SiO2) dose, and D-fructose
dosage were examined in terms of the dehydration of D-fructose into 5-HMF with SG(SiO2)
chemo-catalyst. Subsequently, recombinant E. coli AT containing ω-transaminase [23]
was employed to aminate D-fructose-derived 5-HMF into HMFA in a DES–water system.
Finally, a hybrid reaction with SG(SiO2) chemo-catalyst and E. coli AT biocatalyst was
conducted for sustainable preparation of 5-HMFA from biobased D-fructose in eco-friendly
DES–water.
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2. Results and Discussion
2.1. Investigation of B:Gly–Water Composition on the 5-HMF Formation

The yield of chemical and biological reactions is largely dependent on the reaction
medium [24]. Figure 2a showed the results of SG(SiO2) solid acid catalyzing D-fructose
dehydration to form 5-HMF at 150 ◦C in various B:Gly–water media. In the aqueous system
without DES, the high yield of 5-HMF was only 1.7%. In a certain range of B:Gly–water
ratio, the 5-HMF yield was augmented when the B:Gly-to–water mass ratio became higher.
After dehydration for 1 h, the 5-HMF yield reached 69.7% [in B:Gly (5 wt%)], 74.0% [in
B:Gly (10 wt%)], 76.4% [in B:Gly (15 wt%)], 76.8% [in B:Gly (20 wt%)], and 82.6% [in B:Gly
(25 wt%)], implying that the addition of an appropriate amount of B:Gly was favorable
for 5-HMF formation. The reason might be that B:Gly might confine the degradation of
5-HMF. During the D-fructose dehydration, the yield of 5-HMF showed different trends
when the B:Gly–water ratios were different. In the presence of 25 wt% B:Gly, the 5-HMF
yield continued to decrease with the increase of dehydration time. At other ratios of B:Gly
to water (5:95, 10:90, 15:85, and 20:80; wt:wt), the 5-HMF yield increased first but, then,
gradually decreased, reaching the maximum yield of 78.3%, 81.5%, 85.3%, and 91.7%,
respectively. D-Fructose was dehydrated into 5-HMF in a yield of 78% by Amberlyst
15 chemo-catalyst in ChCl:GA at 60 ◦C for 4 h [25], and other catalysts and reaction solvents
were used to synthesize 5-HMF. WCl6 catalyst converted D-fructose into 5-HMF in a 72%
yield in THF–[Bmim]Cl medium at 50 ◦C for 4 h [6]. [C3SO3Hmim][HSO4] could dehydrate
D-fructose to 5-HMF with a yield of 73% in MIBK–H2O, respectively [4]. 5-HMF yield
reached 35% by co-catalysis with malic acid and Betaine/HCl at 140 ◦C for 11 min in
H2O–ethyl acetate [7]. NbPO dehydrated D-fructose to 5-HMF with a yield of 70% [8]. In
this work, the maximum yield of 5-HMF was only 1.7% in the aqueous system containing
SG(SiO2) (Table S1, in Supplementary Materials). In the B:Gly–water system without
SG(SiO2), the highest yield of 5-HMF was 48.7%. In B:Gly–water (B:Gly, 20 wt%) containing
SG(SiO2) solid acid catalyst, the 5-HMF yield reached a maximum of 91.7% at 150 ◦C for
1.5 h. The main reason was that the medium containing B:Gly affected the hydrogen-bond
network, and co-catalysis with B:Gly and SG(SiO2) could efficiently catalyze the 5-HMF
formation from D-fructose. Another reason was that many side-reactions would happen in
single water system, while 5-HMF was more stable in B:Gly–water.

2.2. Effects of Dehydration Temperature and Duration on the 5-HMF Formation

The effect of reaction temperature and duration on the generation of 5-HMF is pre-
sented in Figure 2b. After dehydration for 1–2.5 h, the conversions were 100%. The yield of
5-HMF was only 44.5% at 140 ◦C after this dehydration reaction proceeded for 1 h, whereas
the 5-HMF yield jumped up to 77.1% after catalyzing D-fructose reacted for 2.5 h. When the
dehydration temperature was increased further, the yield of 5-HMF clearly rose to over 80%
in a short period of dehydration time. The highest 5-HMF yield at increasing temperatures
could reach 81.4% (160 ◦C, 0.5 h) and 91.7% (150 ◦C, 1.5 h). These results indicated that the
reaction temperature had considerable effects on the generation of 5-HMF and that high
temperatures could shorten the time required for the 5-HMF yield to reach its maximum [1].
Although the higher dehydration temperature shortened the duration for the D-fructose
dehydration to 5-HMF, the secondary reaction against 5-HMF also caused a decrease in
5-HMF yield [26]. Consequently, the optimal dehydration condition for D-fructose de-
hydration to 5-HMF with SG(SiO2) catalyst was carried out in B:Gly–water after 1.5 h at
150 ◦C.
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150 ◦C, 1–2.5 h] (a); Effect of reaction duration (0.25–3 h) and reaction temperature (140–160 ◦C) on
the 5-HMF formation [B:Gly 20 wt%, SG(SiO2) 3 wt%] (b).

2.3. Investigation of SG(SiO2) Dose on the 5-HMF Formation

Figure 3 depicts the effect of catalyst dosage on the 5-HMF yields after the D-fructose
dehydration reacted at 150 ◦C for 90 min in B:Gly–water (B:Gly, 20 wt%) system. It had
been reported that DESs could convert D-fructose to produce 5-HMF as chemo-catalysts
and reaction solvents [27]. Without the addition of SG(SiO2) to B:Gly–water (B:Gly, 20 wt%)
for 90 min at 150 ◦C, the formed HMF reached a yield of 48.7%. In the presence of a low
dose of SG(SiO2) catalyst (2 wt%), the productivity of 5-HMF was obviously enhanced,
and the yield of 5-HMF reached 71.2%. This might be the role of SG(SiO2) solid acid and
B:Gly together in catalyzing the generation of 5-HMF from D-fructose. As the catalyst
SG(SiO2) dosage rose from 0 wt% to 3 wt%, the 5-HMF yield obviously increased. Upon
raising the dosage of SG(SiO2) from 3 wt% to 5 wt%, the 5-HMF yield dropped. The highest
5-HMF yield of 91.7% was achieved using 3 wt% of SG(SiO2) as catalyst. D-Fructose was
transformed to 5-HMF in a dehydration reaction system of DESs (ChCl-phenol)–water with
SACS catalyst at 110 ◦C, achieving a 67% yield of 5-HMF in 4 h [28]. The combination of
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ChCl:GA (DES) and Amberlyst 15 (catalyst) could dehydrate D-fructose to 5-HMF (78%
yield) in an aqueous solvent [25]. The above results illustrated that the combination of
SG(SiO2) solid acid catalyst and B:Gly–water solvent system offered a broad perspective for
the economical large-scale production of 5-HMF from D-fructose via a dehydration reaction.
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Figure 3. Effect of solid acid dose (SG(SiO2) 0–5 wt%) on the 5-HMF formation [B:Gly 20 wt%, 150 ◦C,
1.5 h].

2.4. Investigation of D-Fructose Dosage on the 5-HMF Formation

From a practical application point of view, the initial concentration of D-fructose is
an important aspect to the industrial production of, and economic benefits of, 5-HMF [29].
Hence, different D-fructose dosages were applied to the synthesis of 5-HMF (Figure 4).
It was clearly ascertained that different initial doses of D-fructose had perceptible effects
on the 5-HMF yield. When the amount of D-fructose increased from 0.2 M to 2 M, the
corresponding 5-HMF yield decreased from 91.7% to 45.9%, indicating that D-fructose
dosage could affect the 5-HMF formation. The reason for this phenomenon might be that
the degradation products of D-fructose further contributed to the degradation of 5-HMF
during the whole reaction [29].
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2.5. The Recyclability of the Catalytic System

The regeneration and reuse of the catalytic system can decrease economic burden and
reduce environmental pollution, which is the key to the industrial production of 5-HMF,
and has high application potential [30,31]. As presented in Figure 5, the catalytic system
was recycled six times in order to test the recyclability of the catalytic system to catalyze
the synthesis of 5-HMF from D-fructose. 5-HMF was extracted from 5-HMF liquor four
times using ethyl acetate by mixing in equal volume. The B:Gly–water medium containing
solid acid SG(SiO2) was reused for further production of 5-HMF. After the first round,
the 5-HMF yield in the catalytic system was 91.7%, and once the three rounds of reaction
were over, the 5-HMF yield in the catalytic system decreased slightly to 83.1%. When
D-fructose was catalyzed from 3rd to 6th batch, 5-HMF yields decreased from 83.1% to
72.4%. The inevitable accumulation of humic substances, could be why the yield of 5-HMF
began to decline. In the 6th batch, the catalytic system also efficiently catalyzed D-fructose
into 5-HMF. When the CrCl3-[N2222]Cl/EG catalytic system was reused from 1st to 4th
batch, the 5-HMF yield dropped from 42% to 38% [32]. These results indicated that the
SG(SiO2) catalyst with B:Gly–water could be efficiently recycled for D-fructose dehydration
to produce 5-HMF.
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2.6. Proposed Catalytic Mechanism for Dehydration of D-Fructose

A proposed mechanism for SG(SiO2)-catalyzed dehydration of D-fructose to 5-HMF
in a B:Gly–water medium is presented in Figure 6. When fructofuranoses were formed
in the reaction medium, the hydroxyl groups on the saturated carbon were rapidly proto-
nated [33]. Due to the presence of H+, Cl− and silanol groups, the reaction for removal
of the first water molecule would be more effective, which allowed good formation of
the enediol intermediates. Upon the action of hydrogen-bonding on C-H and C-O bonds
and/or electrostatic forces, the intermediates could facilitate the removal of two water
molecules to generate 5-HMF. Electrostatic effects and hydrogen bonding on the polar
silanol-rich surface of silica [34], would weaken the stability of C-H bonds and hydroxyl
groups in D-fructose [35]. This effect might promote the D-fructose dehydration by using
B:Gly with strong electron-withdrawing ability as the reaction medium. The presence of
B:Gly might be beneficial for accepting and donating electrons to improve dehydration of
D-fructose. Significantly, B:Gly had a great promoting effect on the D-fructose dehydra-
tion catalyzed with SG(SiO2). This effect of hydrogen bonding within the DESs system
ultimately improved the D-fructose dehydration to 5-HMF.
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2.7. Biotransformation of 5-HMF into 5-HMFA

Bio-catalysis is used to produce high-value chemicals, due to its gentle reaction condi-
tions, few side-reactions and high efficiency of production [36]. Alanine has been considered
the most widely used amine donor. In this study, D-Ala was used as amine donors dur-
ing the bio-amination of 5-HMF into 5-HMFA with E. coli AT whole cells. Increase of
the amine donor dose in the reaction process could be used to alter the reaction balance
to generate the product of interest [37]. Figure 7a shows the effect of D-Ala dosages on
bio-transamination. By increasing the D-Ala to 5-HMF molar ratio from 2:1 to 15:1 at
35 ◦C and pH 7.5 in B:Gly–water (B:Gly, 20 wt%), bio-transamination activity and 5-HMFA
selectivity were increased. D-Ala and 5-HMF molar ratio of 15:1 was found to provide
the optimal reaction conditions. Further increasing the dosages of D-Ala in the reaction
led to a slight decrease in the bio-catalytic activity and 5-HMFA selectivity, indicating that
potential inhibition occurred when the molar ratio of D-Ala-to-5-HMF exceeded 15:1 in the
bio-transamination reaction.

The tolerance of enzymes to high substrate concentrations is a major process parameter
in synthetic biology for the development of efficient biocatalysts [38]. Hence, the substrate
tolerance of recombinant E. coli AT was investigated under seven different dose of 5-HMF
in B:Gly–water (Figure 7b). Interestingly, the selectivity of the product 5-HMFA was low
when the substrate 5-HMF dose was low. With the continuous increase of the 5-HMF dose,
the selectivity of 5-HMFA also increased. E. coli AT could still catalyze the generation of
5-HMFA with high efficiency as the 5-HMF dosage was further increased to 200 mM. By
raising the concentration of 5-HMF from 50 mM to 200 mM, the yield of 5-HMFA increased
gradually. When the concentration of 5-HMF increased from 200 mM to 500 mM, the yield
of 5-HMFA dropped from 98.3% to 52.0%, while the selectivity of bio-amination remained
at a high level. Raney Ni was used to chemically catalyze 5-HMF into 5-HMFA (80.7%,
yield) under harsh reaction conditions (0.35 MPa NH3, 120 ◦C, and 1 MPa H2) [5]. To sum
up, E. coli AT was able to aminate 5-HMF (200 mM) with D-Ala (D-Ala-to-5-HMF molar
ratio of 15:1) into 5-HMFA with a yield of 98.3% in B:Gly–water (B:Gly 20 wt%, 35 ◦C, and
pH 7.5). Distinct from chemo-catalysis, bio-catalytic synthesis of 5-HMFA from 5-HMF had
milder performance conditions, higher yield and easier operation, which was a green and
sustainable synthetic route.
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2.8. Chemoenzymatic Catalysis of D-Fructose to 5-HMFA in B:Gly–Water

Chemoenzymatic cascade catalysis, which combines the unique advantages of both
non-enzymatic and bio-catalytic reactions, namely the reactivity of chemical catalysts and
the high selectivity of enzymes, has become an emerging strategy of interest [38,39]. As
illustrated in Figure 8, a combination of chemo-catalysis, using SG(SiO2) solid acid, and
bio-catalysis, using E. coli AT, was used to tandemly convert D-fructose into 5-HMFA. An
amount of 50 mL B:Gly–water (B:Gly, 20 wt%) containing SG(SiO2) (3 wt%) catalyzed
200 mM D-fructose at 150 ◦C to give 183.4 mM 5-HMF after 90 min. The formed 5-HMF
liquor was adjusted to pH 7.5 and, then, E. coli AT (0.050 g/mL) and D-Ala (D-Ala-to-5-
HMF molar ratio 15:1) were supplemented for the amination of 5-HMF to generate 5-HMFA.
Bio-transamination at 35 ◦C for 24 h, resulted in 165.4 mM of 5-HMF being transformed
into 5-HMFA (155.7 mM) in a yield of 94.1%. 5-HMFA 1H NMR (CD3OD, 400 MHz): δ 1.89
(s, 2H, NH2), 3.94 (s, 2H, CH2NH2), 4.50 (s, 2H, CH2OH), 6.27–6.28 (d, J = 4.0 Hz, 1H, furan
H), 6.32–6.33 (d, J = 4.0 Hz, 1H, furan H). Overall, 200 mM D-fructose could be converted
to 155.7 mM 5-HMFA via a chemoenzymatic approach.
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A mass balance was calculated from D-fructose to 5-HMFA in a B:Gly–water system
(Figure 9). D-fructose (1.8 kg) was dehydrated with SG(SiO2) (1.5 kg) and DESs B:Gly
(10 kg) under a temperature of 150 ◦C for 90 min. The resulting 5-HMF liquid containing
1.16 kg of 5-HMF was adjusted to pH 7.5 and then added to E. coli AT (2.77 kg) and
D-Ala (12.25 kg) for biological amination at 35 ◦C, achieving the productivity of 0.61 kg
5-HMFA/kg substrate D-fructose at pH 7.5 in 1 d. Coupling of a biocompatible non-
enzymatic catalyst and a highly selective enzymatic catalyst to carry out the dehydration
of D-fructose into 5-HMFA in B:Gly–water was feasible, which would diminish equipment
input, and avoid the separation of intermediates.
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Chemo-catalysis and bio-catalysis approaches have been used in the synthesis of
5-HMFA [5,40]. 5-HMFA formed in a 4.3% yield from furfurylamine with HCl (6 M) in a
formaldehyde solution (35 wt%) at 30 ◦C after 15 min [40]. Furfurylamine was aminated
to 5-HMFA (15% yield) by Amberlyst-15 and formalin at 40 ◦C after 1 h [41]. Ru/C,
Pd/C and Pt/C could catalyze 5-HMF into 5-HMFA with yields of 40.5%, 57.5% and
81.2% under high pressure, respectively [5]. The production of 5-HMFA by the chemo-
catalysis technique suffered from several drawbacks, such as unfriendliness, low yield,
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poor selectivity and harsh performance conditions. In contrast, bio-catalysis has many
advantages, such as mild reaction conditions, eco-friendliness and excellent selectivity. The
valorization of monosaccharides into 5-HMFA, using chemoenzymatic cascade catalysis,
bridges chemical and biological catalysis. In this work, an efficient conversion of biobased
D-fructose to produce 5-HMF was carried out using SG(SiO2) solid acid catalyst in B:Gly–
water. During the process of preparing 5-HMF, the reaction medium B:Gly–water played a
pivotal role. Relative to the aqueous phase, the addition of DESs could greatly promote the
5-HMF yield. Sequentially, E. coli AT cell harboringω-transaminase was able to aminate
D-fructose-derived 5-HMF to produce 5-HMFA by using D-Ala as amine donor under
ambient conditions, accompanied with the formation of pyruvate (Figure 10). To synthesize
5-HMFA, one-pot catalysis of D-fructose was carried out by tandem conversion with
SG(SiO2) and E. coli AT cell in B:Gly–water, achieving a remarkable 5-HMFA yield of 86.3%
(based on D-fructose). Substantially improved productivity was achieved, compared to
previous work (5-HMFA yield 64.2%, based on D-fructose) [1]. A sustainable strategy for
synthesis of 5-HMFA from biobased D-fructose was developed in a one-pot manner, which
avoided the separation of intermediates and diminished equipment input.

Molecules 2022, 27, x FOR PEER REVIEW 11 of 15 
 

 

selectivity and harsh performance conditions. In contrast, bio-catalysis has many 
advantages, such as mild reaction conditions, eco-friendliness and excellent selectivity. 
The valorization of monosaccharides into 5-HMFA, using chemoenzymatic cascade 
catalysis, bridges chemical and biological catalysis. In this work, an efficient conversion 
of biobased D-fructose to produce 5-HMF was carried out using SG(SiO2) solid acid 
catalyst in B:Gly–water. During the process of preparing 5-HMF, the reaction medium 
B:Gly–water played a pivotal role. Relative to the aqueous phase, the addition of DESs 
could greatly promote the 5-HMF yield. Sequentially, E. coli AT cell harboring ω-
transaminase was able to aminate D-fructose-derived 5-HMF to produce 5-HMFA by 
using D-Ala as amine donor under ambient conditions, accompanied with the formation 
of pyruvate (Figure 10). To synthesize 5-HMFA, one-pot catalysis of D-fructose was 
carried out by tandem conversion with SG(SiO2) and E. coli AT cell in B:Gly–water, 
achieving a remarkable 5-HMFA yield of 86.3% (based on D-fructose). Substantially 
improved productivity was achieved, compared to previous work (5-HMFA yield 64.2%, 
based on D-fructose) [1]. A sustainable strategy for synthesis of 5-HMFA from biobased 
D-fructose was developed in a one-pot manner, which avoided the separation of 
intermediates and diminished equipment input. 

 
Figure 10. Bioamination of 5-HMF to 5-HMFA. 

3. Materials and Methods 
3.1. Enzymes, Chemical and Materials 

Betaine (B), glycerol (Gly), D-fructose, tetraethyl orthosilicate, 5-
hydroxymethylfurfural (5-HMF), 5-(hydroxymethyl)furfurylamine (5-HMFA), D-alanine 
(D-Ala) and other reagents were obtained from Changzhou Runyou Chemicals Co. 
(Changzhou, China). 

3.2. Synthesis of DES B:Gly and Solid Acid SG(SiO2) 
DES B:Gly was synthesized by heating. Hydrogen-bond-donor glycerol (Gly) and 

hydrogen-bond-acceptor betaine (B) were well blended in a designed molar ratio (1:2, 
mol:mol) in an oil bath. After being incubated at 353.15 K by stirring (300 rpm) for 3 h, the 
formed homogeneous DES solution (betaine:glycerol, B:Gly) was collected. Solid acid 
catalyst SG(SiO2) was prepared as reported previously [20]. 

3.3. Procedure for Conversion of D-Fructose 
D-Fructose (0.2–2.0 M) and 50 mL B:Gly–water solvent (B:Gly, 0–25 wt%) were 

blended into a stainless-steel autoclave (100-mL) with SG(SiO2) (0–5 wt %) catalysts under 
agitation (500 rpm) at 140–160 °C after 0.25–3.0 h. Prior to HPLC analysis, the obtained 5-
HMF samples were diluted and filtered by means of a 0.22 μm syringe filter. 

3.4. Recombinant E. coli AT and Its Biotransamination Conditions 
Recombinant E. coli AT was employed to aminate 5-HMF into 5-HMFA. Cell culture 

and harvest were carried out as previously reported [23]. 

Figure 10. Bioamination of 5-HMF to 5-HMFA.

3. Materials and Methods
3.1. Enzymes, Chemical and Materials

Betaine (B), glycerol (Gly), D-fructose, tetraethyl orthosilicate, 5-hydroxymethylfurfural
(5-HMF), 5-(hydroxymethyl)furfurylamine (5-HMFA), D-alanine (D-Ala) and other reagents
were obtained from Changzhou Runyou Chemicals Co. (Changzhou, China).

3.2. Synthesis of DES B:Gly and Solid Acid SG(SiO2)

DES B:Gly was synthesized by heating. Hydrogen-bond-donor glycerol (Gly) and
hydrogen-bond-acceptor betaine (B) were well blended in a designed molar ratio (1:2,
mol:mol) in an oil bath. After being incubated at 353.15 K by stirring (300 rpm) for 3 h,
the formed homogeneous DES solution (betaine:glycerol, B:Gly) was collected. Solid acid
catalyst SG(SiO2) was prepared as reported previously [20].

3.3. Procedure for Conversion of D-Fructose

D-Fructose (0.2–2.0 M) and 50 mL B:Gly–water solvent (B:Gly, 0–25 wt%) were blended
into a stainless-steel autoclave (100-mL) with SG(SiO2) (0–5 wt%) catalysts under agitation
(500 rpm) at 140–160 ◦C after 0.25–3.0 h. Prior to HPLC analysis, the obtained 5-HMF
samples were diluted and filtered by means of a 0.22 µm syringe filter.

3.4. Recombinant E. coli AT and Its Biotransamination Conditions

Recombinant E. coli AT was employed to aminate 5-HMF into 5-HMFA. Cell culture
and harvest were carried out as previously reported [23].

To test amine donor on the the influence of 5-HMF bio-transamination, various molar
ratio of D-Ala-to-5-HMF (2:1–20:1) were loaded in 50 mL reaction medium (100 mM
K2HPO4–KH2PO4 buffer, pH 7.5) containing B:Gly (20 wt%), 5-HMF (200 mM), and AT cells
(0.050 g/mL, wet weight) at 35 ◦C for 24 h. In order to test the substrate 5-HMF tolerance of
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AT cells in B:Gly–water medium, 50–500 mM commercial 5-HMF was separately blended
with AT cells (0.050 g/mL, wet weight) and D-Ala (D-Ala-to-5-HMF molar ratio 15:1)
in 50 mL reaction medium (100 mM K2HPO4–KH2PO4 buffer, pH 7.5) containing B:Gly
(20 wt%) at 35 ◦C for 24 h.

3.5. A Hybrid Conversion of D-Fructose from 5-HMFA

Amounts of 200 mM D-fructose and 50 mL B:Gly–water solvent (B:Gly, 20 wt%) were
blended into a stainless-steel autoclave (100 mL) with SG(SiO2) (3 wt%) catalysts by stirring
(500 rmp) at 150 ◦C for 1.5 h. The resulting 5-HMF liquid was adjusted to pH 7.5 and, then,
E. coli AT (0.050 g/mL, wet weight) and D-Ala (D-Ala-to-5-HMF molar ratio 15:1) were
added to the bio-transamination system to generate 5-HMFA at 35 ◦C for 24 h.

3.6. Analytical Methods

Prior to HPLC analysis, the sample solution was passed through a 0.22-µm milli-
pore filter. 5-HMF, 5-HMFA, and BHMF were analyzed on SHIMADZU LC-2030C HPLC
system equipped with a Discovery® C18 (4.6 mm × 250 mm, 5 µm) column (Figure S1, in
Supplementary Materials). Mixtures containing 20 v% methanol and 80 v% H2O containing
0.1% trifluoroacetic acid were utilized as the mobile phase. Column temperature was kept
at 35 ◦C, and the flow rate of the mobile phase was maintained at 0.8 mL/min. 5-HMFA
and BHMF were monitored at 210 nm. 5-HMF was monitored at 254 nm.

The 5-HMF yield, 5-HMFA yield, BHMF yield and 5-HMFA selectivity were calculated
as follows:

Yield of 5 − HMFA =
5 − HMFA produced (mM)

Initial 5 − HMF (mM)
×100% (1)

Yield of 5 − HMF =
5 − HMF produced (mM)

Initial D − fructose (mM)
×100% (2)

Yield of BHMF =
BHMF produced (mM)

Initial 5 − HMF (mM)
×100% (3)

Selectivity of 5 − HMFA =
5 − HMFA produced (mM)

(5 − HMFA + BHMF) produced (mM)
×100% (4)

4. Conclusions

As an important 5-HMF derivative, 5-HMFA is widely used in the production of
diuretics, antihypertensive drugs, preservatives and curing agents. In this work, SG(SiO2),
as a chemo-catalyst, was employed to catalyze D-fructose into 5-HMF at 150 ◦C within
90 min in a B:Gly–water system, achieving the maximum 5-HMF yield (91.7%, based on
D-fructose). E. coli AT catalyzed 5-HMF into 5-HMFA at 35 ◦C, reaching a remarkable
5-HMFA yield of 94.1% (based on 5-HMF). This was the first example of the efficiently
chemoenzymatic synthesis of 5-HMFA from biobased D-fructose by a hybrid catalysis with
SG(SiO2) chemo-catalyst and E. coli AT cell bio-catalyst in B:Gly–water, indicating that this
strategy has great potential for the manufacturing of 5-HMFA from D-fructose under green
mild reaction conditions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27185748/s1, Figure S1: HPLC image of 5-HMF (a), BHMF
(b), 5-HMFA (c); Table S1: Preparation of 5-HMF from D-fructose under different catalytic systems.
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