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The cardiorenal syndrome refers to the coexistence of kidney and cardiovascular disease, where cardiovascular events are the
most common cause of death in patients with chronic kidney disease. Both, cardiovascular as well as kidney diseases have been
extensively analyzed on a molecular level, resulting in molecular features and associated processes indicating a cross-talk of the two
disease etiologies on a pathophysiological level. In order to gain a comprehensive picture of molecular factors contributing to the
bidirectional interplay between kidney and cardiovascular system, we mined the scientific literature for molecular features reported
as associated with the cardiorenal syndrome, resulting in 280 unique genes/proteins. These features were then analyzed on the level
of molecular processes and pathways utilizing various types of protein interaction networks. Next to well established molecular
features associated with the renin-angiotensin system numerous proteins involved in signal transduction and cell communication
were found, involving specific molecular functions covering receptor binding with natriuretic peptide receptor and ligands as well
known example. An integrated analysis of identified features pinpointed a protein interaction network involving mediators of
hemodynamic change and an accumulation of features associated with the endothelin and VEGF signaling pathway. Some of these
features may function as novel therapeutic targets.

1. Introduction

The risk of developing cardiovascular disease (CVD) is dra-
matically increased in patients with chronic kidney diseases
(CKDs). Mortality as a consequence of cardiovascular events
is 10 to 30 times higher in patients on dialysis treatment than
in the general population [1]. Due to this recognition of CVD
as the leading cause of morbidity and mortality in patients
with reduced kidney function, a growing body of literature
has become available regarding this link of CKD and CVD,
termed as cardiorenal syndrome (CRS).

CRS can be classified into five subtypes depending on
the origin of damage (either the cardiovascular system or the
kidney) and the course of disease (either acute or chronic) [2,
3]. Major mechanisms leading to CRS1 and CRS2 (acute and

chronic cardiorenal syndrome) include hemodynamically
mediated damage, hormonal factors, immune-mediated
damage, low cardiac output, endothelial dysfunction, and
chronic hypoperfusion. Hallmarks of kidney dysfunction
leading to CRS3 and CRS4 (acute and chronic renocardiac
syndrome) on the other hand are volume expansion, drop
of the glomerular filtration rate, humoral signaling, anemia,
uremic toxins, and inflammation. The fifth subtype of the
cardiorenal syndrome (CRS5) describes the secondary car-
diorenal syndrome which refers to systemic diseases such as
diabetes that ultimately lead to simultaneous cardiovascular
and kidney dysfunction.

The multitude of cardiac risk factors in patients with
chronic kidney disease is complex and increases with age,
the stage of kidney disease, and the level of proteinuria.
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Another powerful risk factor is hypertension which goes
along with sodium retention, and activation of the renin-
angiotensin system. Atherosclerosis results from an impair-
ment of endothelial function which, in turn, is associated
with albuminuria. Changes in blood-lipid composition and
oxidative stress as a consequence of inflammation due to
renal dysfunction also contribute to endothelial dysfunction
and subsequent CVD [4].

Management and therapy of the CRS is challenging since
drugs in use for the treatment of cardiovascular diseases
may go along with impairment of kidney function and vice
versa. Examples include diuretics, ionotropes, angiotensin-
converting enzyme inhibitors, angiotensin receptor blockers,
or natriuretic peptides but treatment decision must be based
on a combination of individual patient information and
understanding of individual treatment options [5].

Biomarkers of relevance in the context of the CRS
mainly hold proteins known either in the field of nephrol-
ogy or cardiology, for the latter including, for exam-
ple, the family of natriuretic peptides and troponins,
whereas frequently reported renal-specific markers include
neutrophil gelatinase-associated lipocalin (NGAL), kidney
injury molecule 1 (KIM1), Cystatin C, interleukin 18 (IL18),
and N-acetyl-β-D-glucosaminidase [6]. Levels of circulating
fibroblast growth factor 23 (FGF-23) for example have been
shown to be independently associated with left ventricular
mass index and left ventricular hypertrophy in patients with
CKD [7]. Chung and colleagues described the relationship
between activation of matrix metalloproteinase 2 (MMP2)
and elastic fiber degeneration, stiffening, medial calcifica-
tion, and vasomotor dysfunction in macroarterial vascula-
ture of dialyzed CKD patients [8]. Next to these proteins,
a multitude of other molecular features is mentioned in
the literature in the context of the cardiorenal syndrome.
Perco et al. reported a list of 31 CVD biomarkers that were
extracted from the literature and characterized with respect
to biological function, gene expression in CKD, and known
protein-protein interactions [9].

Literature mining approaches have the potential to reveal
such biomarkers, thus providing a more global picture on
genes, proteins, and metabolites associated with a specific
disease. The biomedical literature can be seen as the
condensed result of the combined effort of the scientific
community, and as such represents the primary resource
upon which further investigations may be based on. As such,
it represents the primary resource upon which further inves-
tigations may be based on. PubMed, for instance, presently
holds close to 20 million abstracts. Thus, computational
literature mining tools assisting researchers in keeping pace
with this ever-growing amount of fast changing information
became indispensable [10, 11].

In the context of drug discovery, the most prevailing
approach is based on concept cooccurrence [12, 13]. Here,
a disease profile consisting of the concepts (e.g., drugs,
genes, etc.) which are frequently mentioned together with
the disease under analysis can be derived via text mining.
Likewise, literature-based profiles for drugs or genes can be
generated. Next to conveniently reaching an overview on
biomarkers this information base may additionally be used

to gain hints about yet undiscovered dependencies between
diseases, drugs, and potential drug targets.

To further enhance text mining efforts, several “con-
trolled vocabularies” (“ontologies”) have been developed to
allow a precise definition of the employed concepts [14].
The most popular ones are maintained by the U.S. Library
of Medicine, namely, the Unified Medical Language System
(UMLS) and the Medical Subject Headings (MeSH). Given
that the majority of PubMed articles are indexed with MeSH,
a fast and accurate extraction of biomedical concepts has
become feasible [13, 15]. With the advent of literature min-
ing approaches also in combination with high-throughput
Omics experiments, a number of bioinformatics tools and
ontologies have been developed for the analysis of resulting
large sets of genes or proteins. Analyzing extended sets of
biomarker candidates on the level of molecular pathways
and processes, represented as protein interaction networks,
adds another layer of information for the interpretation of
molecular feature (biomarker) sets.

A recent review by Lusis and colleagues summarized
studies dealing with network analyses in cardiovascular
disease [16]. Networks based on prior knowledge, such as
existing pathway sources, literature cocitations, or other
correlation measures as coexpression and sequence similarity
were outlined by Ashley et al. [17], who mapped genes being
differentially regulated between patients suffering from de-
novo atherosclerosis and in-stent restenosis on a cocitation
network obtained by literature mining of Medline abstracts.
Similar concepts can be followed by utilizing networks
derived from physical protein interactions, or networks
generated from measuring the response to experimental
perturbations. Further approaches include system genetics
and detailed analyses at the level of dynamic systems such
as flux balance analyses which are often used to characterize
enzymatic reactions in dynamic models of metabolism.
Some of these approaches, especially highly abstracted
network models on the level of phenotypes, managed to
predict comorbidity patterns for myocardial infarction using
a “human disease network” thus closing the gap to clinical
applications [18].

Diez et al. presented another application of the network
paradigm to reveal the mechanisms of cardiovascular disease,
identifying a set of differentially expressed genes separating
asymptomatic from symptomatic carotid stenosis patients
[19]. Based on these transcriptomics data, a correlation net-
work was generated. Furthermore, an association network
of the differentially regulated genes was derived by mining
the literature for gene associations thus resulting in an
interaction network combining Omics data and associated
features extracted from the literature. Subnetworks were
identified, characterized by enriched lipid-, immune-, and
atherogenesis-related pathways and gene ontology terms.
On this level of representation, the interplay of APOC1
(a gene that is linked to coronary heart disease) became
evident. Weiss et al. investigated networks on cardiovascular
metabolism pointing out aspects of network structure,
namely, differences between designed networks in engi-
neering and networks having undergone an evolutionary
process [20]. Based on the level of abstraction, three types of
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Figure 1: Overview scheme on the analysis workflow: Literature
mining was applied for identifying unique proteins associated with
CRS. Bioinformatics included feature characterization as well as
network analysis.

network on cardiovascular metabolism were proposed: first,
on the very abstract level of nodes and edges, metabolite
networks described by using topological characteristics [21,
22], second physical, spatially compartmentalized networks
including the description of energy fluxes in the network
[23, 24], and on a third level dynamic networks [25–
27].

The present knowledge regarding mechanisms leading
to the formation of the CRS suggests a critical role for
hemodynamic changes, originating either from the kidney or
the cardiovascular system. In the following analysis, we used
a literature mining approach to extract genes and proteins
reported in the context of the cardiorenal syndrome, and
analyzed these features on the level of protein interaction
networks. Specific focus was laid on secreted proteins being
specifically expressed in either renal or vascular tissue
with the aim to identify molecular mediators potentially
contributing to the cross-talk between the kidney and the
cardiovascular system for allowing identification of novel
therapeutic targets addressing both systems.

2. Materials and Methods

The general analysis strategy applied in this work is outlined
in Figure 1. Major components include feature extraction via
literature mining, followed by a range of bioinformatics anal-
ysis procedures for deciphering characteristics of individual
features as well as joint interpretation on the level of protein
interaction networks.

2.1. Literature Mining. The strength but also the challenge of
biomedical text mining relies on the fact that the scientific
literature embraces a variety of concepts (genes, drugs,
diseases, etc.) which in turn are interrelated in a variety
of ways. Thus, carefully designed text mining methods are

needed to extract “meaningful” information and reduce the
amount of noise present in the final results.

In general, text mining consists of two steps: Information
Retrieval (IR) and Information Extraction (IE) [10]. The
first consists in identifying documents which are of relevance
for a certain research objective (e.g., a PubMed query for
“cardiorenal”), whereas the later is used to extract facts from
these documents. Named Entity Recognition (NER) can be
seen as the most prevalent type of IE used in real world
applications, aiming at the identification of biological entities
like genes, cell types, or drugs.

Even though the concept of NER might appear almost
trivial at a first glance, it actually represents a challenging
computational problem as the existence of over fifty available
tools demonstrates [28]. The key obstacle that needs to be
addressed when extracting genes or proteins from free text
relies in the term ambiguity present at multiple levels. Some
genes are spelled like normal English words (e.g., “WAS” with
the NCBI GeneID: 7454) and even a gene with the official
Gene Symbol “T” exists (NCBI GeneID: 6862). The same
gene may additionally be referred to in various ways due to
different naming conventions.

Ultimately, this ambiguities lead to two different types
of errors which all methods are confronted with: erratically
assuming that a certain gene was mentioned in a paper (false
positive) or erratically assuming that it was not mentioned,
even though it actually was given (false negative) [29]. Based
on the trade-off between these two types of errors, the
precision of a method (i.e., how much of the predicted genes
were actually mentioned in the document) and its recall
(i.e., how much of all actually mentioned genes were also
identified as such) are determined.

We chose a method favoring precision over recall for
mining genes/proteins in Medline/PubMed abstracts. The
Fast Automated Biomedical Literature Extraction (FABLE)
tool available at http://fable.chop.edu/ was used in order
to fulfill this task. The algorithm basically consists of
two steps: first, a statistical classifier was used to train a
probabilistic model, which served as basis for gene tagging,
that is, to identify possible occurrences of a gene, taking the
textual context into account. Given that such an occurrence
exhibits a sufficient likelihood of actually representing a
gene, this occurrence was normalized in a second step
to the official Gene Symbol. This normalization step was
based on gene synonym lists, which were compared to the
predicted occurrence using both exact and relaxed pattern
matching procedures. It has been shown that this approach
is competitive to alternative methods such as standard
information extraction techniques and direct pattern match-
ing both in terms of precision and recall [30, 31]. We
applied this procedures for all papers retrieved from PubMed
associated with “cardiorenal” (PubMed status as of March
2010).

2.2. Functional Annotation of Identified Genes/Proteins. The
list of genes and proteins identified on the basis of the
literature mining approach was in a first step annotated
using the Stanford Source tool [32]. The set of genes was
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assigned to biological processes, pathways, and molecular
functions using the PANTHER (Protein Analysis through
Evolutionary Relationships) Classification System [33, 34].
Significantly enriched categories were identified using the
whole human genome as a reference dataset. Biological
processes, pathways, and molecular functions showing P-
values below .0001 were considered as statistically significant
in terms of feature enrichment.

The subcellular location of proteins was determined
using experimental data provided by SwissProt [35]. For
proteins not covered in SwissProt, in-silico predictions using
WoLF PSORT were done [36]. WoLF PSORT computes
probabilities based on the protein sequence of a given protein
for ten subcellular locations. Subcellular location tags from
SwissProt were mapped to the ten locations defined by
WoLF PSORT. Only assignments that were either reported
in SwissProt or showed a probability value of 1 according
to WoLF PSORT were considered for subcellular location
enrichment analysis. Based on a reference dataset of 45,008
proteins assigned to one of the WoLF PSORT categories, the
significance of enrichment was calculated using the Fisher’s
exact test. P-values below .01 were considered as statistically
significant.

Information on tissue-specific expression patterns was
extracted from NCBI UniGene EST profiles. EST counts of in
total 45 tissues were extracted for each gene. Tissue-specific
expression patterns for each single tissue for each single
gene were calculated based on the normalized transcripts per
million counts as provided by UniGene [37].

2.3. Network Analysis Framework. For network analysis,
we used an extended version of the protein dependency
network “omicsNET” as described in Bernthaler et al. [38].
The network is comprised of information from protein-
protein interactions, tissue-specific reference coexpression,
shared pathway information, gene ontology distance, and
subcellular colocalization, and was extended by networks
generated from shared transcription factor binding sites and
shared miRNA target sites. In omicsNET, these sources were
consolidated into a single human protein reference interac-
tion network, where edges represent pairwise dependencies
between proteins.

Protein-protein dependencies were calculated between
proteins in the list resulting from the literature mining
approach. Furthermore, highly connected subgraphs were
identified and functionally annotated. We only considered
dependencies with high confidence in the network construc-
tion process and focused on genes reported at least twice
in the scientific literature in the context of the cardiorenal
syndrome in order to reduce the number of false positive
assignments.

2.4. Identification of Drug Targets. Drug targets were iden-
tified in our set of 280 literature-derived proteins using
information from DrugBank [39, 40]. DrugBank combines
information on drugs and their molecular targets and
currently contains around 4800 drug entities with more than

1350 FDA-approved small molecule drugs and more than
2500 protein drug targets.

3. Results and Discussion

3.1. Literature Mining. 825 papers associated with the term
“cardiorenal” were identified in PubMed. In this set of 825
papers, 280 genes could be extracted utilizing FABLE, with
132 genes being reported at least twice. The top ranked
gene, mentioned in 156 articles, was the aspartyl protease
renin (REN), followed by the natriuretic peptide precurser
A (NPPA), and angiotensinogen (AGT), with 122 and 64
reports, respectively.

The list of 54 genes mentioned in at least 5 articles along
with the term cardiorenal is provided in Table 1 (see supple-
mentary Table 1 for the total list of 280 genes in Supplemen-
tary Material available online at doi:10.4061/2011/809378).
Next to the number of articles, the relative expression
levels in the four tissues blood, heart, vascular, and kidney
are provided based on data from the UniGene expressed
sequence tag counts.

The top ranked feature in the list of 280 literature
derived genes is renin (REN) which is secreted by cells
of the juxtaglomerular apparatus of the kidney and plays
a key role in the blood pressure and water balance-
regulating renin-angiotensin system (RAS). The connection
between CRS and an increased activity of this hormone
system was first reported in 1971 [41] and its consequences
like renal hypoxia, vasoconstriction, intraglomerular hyper-
tension, glomerulosclerosis, tubulointerstitial fibrosis, and
proteinuria continue to be demonstrated in clinical prac-
tice. Conservative therapy for blocking the RAS activity
is the administration of angiotensin-converting enzyme
inhibitors and angiotensin receptor blockers, but recent
studies demonstrate the benefit of a combination with direct
renin inhibitors [42].

Further genes frequently reported in association with
CRS are the components of the natriuretic peptide system
(NPS) NPPA and NPPB, as well as their receptors NPR1,
NPR2, and NPR3. Functions of the NPS include the counter-
regulation of RAS, and it is suggested that its activation
provides organ protection in cardiorenal disease, especially
in diabetic patients [43].

3.2. Functional Annotation. According to the PANTHER
Classification System, the biological processes of “signal
transduction” and “cell communication” were identified as
most significantly enriched, with 135 and 136 genes assigned
to these categories, respectively. In total, 28 processes showed
a P-value > .0001 in terms of enrichment, including “blood
circulation”, “regulation of vasoconstriction”, and “angiogen-
esis”. The most significantly enriched molecular functions are
“receptor binding” and “protein binding” (Table 2).

The two enriched categories “receptor binding” and
“receptor activity” indicate that numerous receptors and
ligands are involved in the cardiorenal syndrome. These
receptors form the first line of molecules in a number
of signaling cascades, which as such is another category
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Table 1: List of identified genes/proteins, number of articles identified for cardiorenal, and relative expression levels based on UniGene EST
counts for blood, heart, vascular, and kidney, and tissue showing maximum expression of a specific feature.

Symbol Articles
Expression in

blood (%)
Expression in

heart (%)
Expression in
vascular (%)

Expression in
kidney (%)

Max. expression (%)

REN 156 0 0 0 19,27 39,58 intestine

NPPA 122 88,04 0 0 0 88,04 heart

AGT 64 1,79 18,54 0 5,71 29,74 liver

ADM 55 0,95 1,38 1,09 3,11 15,3 adipose tissue

ACE 39 0,86 2,37 4,09 4,53 15,63 parathyroid

EDN1 39 0 4,12 15,82 2,77 32,68 umbilical cord

NPPB 31 85,93 0 0 1,2 85,93 heart

RAPGEF5 28 0 0 0 0,76 76,62 parathyroid

NOS3 27 3,92 2,69 2,33 2,2 20,32 spleen

EPO 22 0 0 0 0 58,82 prostate

CNP 21 0,85 1,74 3,58 5,4 18,03 brain

TGFB1 20 8,67 0,99 0 1,79 17,67 salivary gland

MME 19 0,26 3,59 0 11,63 12,06 lymph node

PTGS2 19 16,39 0 29,1 0,59 29,1 vascular

INS 18 0 0 0 0 100 pancreas

NPR1 17 0 1,32 2,29 2,83 23,69 mammary gland

NOS2 13 4,23 0 0 0 25,4 pharynx

DDR1 13 0 0,94 0 0,46 20,12 trachea

KNG1 10 0 0 0 33,18 57,18 liver

PLEK 10 11,02 0,34 1,77 0,87 16,81 lymph

NCF1 10 10,88 0 0 0,76 32,38 lymph node

HESX1 10 0 0 0 0 43,18 ovary

FOS 9 19,04 2,09 4,31 0,77 19,04 blood

CALCA 9 0 0 0 0 100 prostate

S100A6 9 1,2 0,87 5,16 1,18 20,08 umbilical cord

NOS1 8 0 0 0 1,68 65,97 muscle

AVP 8 0 0 0 80 80 kidney

RHOA 7 2,5 1,57 2,02 1,72 5,28 cervix

CYBB 7 19,44 0 2,55 3,15 27,68 lymph node

MAPK1 7 1,84 1,35 2,36 1,44 10,94 mouth

AKT1 7 1,14 1,57 0,45 1,51 13,52 salivary gland

ICAM1 7 3,19 0,55 2,39 1,62 15,19 spleen

CALCRL 7 0 2,55 14,85 1,39 25,06 trachea

SERPINE1 7 0,17 0,12 14,5 0,69 27,77 umbilical cord

EDNRA 7 0 6,4 2,21 1,63 10,94 uterus

SHBG 7 0 0 0 0 36,84 eye

RAMP2 7 5,09 0 0 1,85 28,7 thyroid

UTS2 7 0 0 0 3,88 35,92 spleen

OLR1 6 1,23 0 0 2,15 81,05 esophagus

AGTR1 6 0 5,19 0 3,3 19,1 larynx

NFKB1 6 4,69 0,76 0,66 1,62 8,69 nerve

UTS2R 6 0 0 0 0 100 ovary

NR3C2 6 0 0 6,41 7,08 20,74 stomach

EPHB2 6 6,73 0 0 2,85 14,78 umbilical cord
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Table 1: Continued.

Symbol Articles
Expression in

blood (%)
Expression in

heart (%)
Expression in
vascular (%)

Expression in
kidney (%)

Max. expression (%)

ISYNA1 6 1,49 0,43 0,52 3,31 17,72 umbilical cord

GPR182 5 0 0 0 0 38,67 adrenal gland

COX8A 5 0,77 11,02 1,48 0,98 11,02 heart

CPOX 5 9,24 3,63 0 5,28 11,06 liver

EGFR 5 0 2,2 1,69 2,49 14,89 mouth

COX5A 5 0 0 0 0 100 muscle

CCL2 5 0 0 0 0 100 placenta

PPARG 5 0 1,46 2,52 3,72 12,08 placenta

CYBA 5 2,25 6,82 1,67 3,43 15,46 tonsil

RAMP3 5 7,76 0 0 2,54 21,44 adipose tissue

Table 2: List of enriched biological processes and molecular functions. Given are the total number of genes assigned to a process/function, the
number of genes assigned as derived from literature mining, the number of genes expected from a statistical perspective, and the significance
level of enrichment.

Biological process No. genes total No. genes CRS No. genes CRS expected P-value

Signal transduction 4191 135 57,67 4.55E-25

Cell communication 4365 136 60,07 6.84E-24

Cell surface receptor linked signal transduction 2235 91 30,76 3.80E-22

Immune system process 2628 97 36,16 9.70E-21

Blood circulation 210 28 2,89 5.11E-19

Regulation of biological process 59 18 0,81 1.01E-18

Regulation of vasoconstriction 59 18 0,81 1.01E-18

Molecular function No. genes total No. genes CRS No. genes CRS expected P-value

Receptor binding 1233 64 16,97 2.46E-20

Protein binding 3157 103 43,44 2.71E-18

Catalytic activity 5336 128 73,43 1.44E-12

Oxidoreductase activity 703 33 9,67 1.21E-09

Binding 6751 140 92,9 3.65E-09

Kinase activity 695 28 9,56 5.18E-07

enriched in genes associated with the cardiorenal syndrome.
We therefore took a closer look at receptor-ligand interac-
tions. We searched for receptors mainly expressed in the
cardiovascular system having ligands predominantly secreted
by the renal tissue, and vice versa.

The natriuretic peptide receptor NPR3 showed high
expression in kidney tissue, whereas the ligands NPPA and
NPPB were found to be almost exclusively expressed in the
heart. Thus, a deregulation of blood pressure maintenance
and extracellular fluid volume by heart-derived ligands of the
natriuretic peptide system directly affect the kidney and may
contribute to the formation of CRS.

Enrichment of the process “regulation of vasoconstric-
tion” reflects the consequences of impaired heart function
including a decreased cardiac output, and thus the hypoper-
fusion of organs. Since glomerular filtration is controlled by
blood pressure, hypoperfusion of the kidney leads to the acti-
vation of the RAS and subsequent vasoconstriction, which,
in turn, causes systemic hypertension and an increased heart
preload [2].

22 PANTHER pathways could be identified as signifi-
cantly enriched in the list of 280 literature-derived genes.
28 genes could be assigned to “angiogenesis”, 21 genes to
“endothelin mediated signaling”, and 15 genes to the “VEGF
signaling pathway” (Table 3).

The connection between angiogenic processes and car-
diovascular disorders is well understood, since decreased
cardiac output goes along with decreased organ perfusion,
and vascularization is the natural response to diminution of
blood supply. Apart from negative effects on organ function
due to hypoperfusion, microvascularization is extensively
performed at sites of inflammation which explains the role
of angiogenesis in diseased kidney tissue. On the other
hand, decreased vascularization and loss of capillaries lead
to kidney fibrosis. However, deregulation of angiogenesis
seems to be crucial for kidney function and a key reg-
ulatory mechanism of angiogenic processes is the VEGF
signaling pathway [44–46]. A third enriched pathway is the
“endothelin signaling pathway” which is known to regulate
the renin-angiotensin system thus being a further player in
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Table 3: List of enriched biological pathways. Given are the total number of genes assigned to a process/function, the number of genes
assigned as derived from literature mining for CRS, the number of genes expected from a statistical perspective, and the significance level of
enrichment.

Pathway No. genes total No. genes CRS No. genes CRS expected P-value

Angiogenesis 191 28 2,63 4.51E-20

Endothelin signaling pathway 91 21 1,25 3.33E-19

VEGF signaling pathway 75 15 1,03 3.33E-13

Inflammation mediated by chemokine
and cytokine signaling pathway

283 24 3,89 2.76E-12

PDGF signaling pathway 159 18 2,19 1.68E-11

T cell activation 102 14 1,4 2.72E-10

Apoptosis signaling pathway 123 15 1,69 3.10E-10

the hemodynamic cross-talk between the kidney and the
cardiovascular system.

Following the rationale that features secreted from
kidney cells may lead to damage in vessels and vice versa,
literature-derived proteins were classified in terms of subcel-
lular location. The most significantly enriched compartment
was “extracellular, including cell wall” with 81 genes being
assigned to this category, whereas “nuclear” was significantly
depleted with 48 genes as indicated in Figure 2 .

The list of 81 secreted genes included components of
the renin-angiotensin system (REN, AGT, ACE) and the
natriuretic peptide system (NPPA, NPPB), as well as some
other regulators of vasoconstriction. Kininogen 1 (KNG1)
for example is essential for the assembly of the blood pressure
regulating kallikrein-kinin system. Another molecule serving
as a vasodilator is the peptide hormone calcitonin-related
polypeptide alpha (CALCA).

3.3. Network Analysis. A subset of 40 proteins out of the
list of 132 proteins mentioned in at least two publications
in the context of the cardiorenal syndrome formed a
highly connected protein interaction network as given in
Figure 3 . The main components of this protein network
are mediators of hemodynamic change. An accumulation of
features involved in previously described signaling pathways
like the endothelin signaling pathway or the VEGF signaling
pathway is evident. Next to these two pathways, a number
of members of the blood pressure regulating kallikrein-kinin
system and the renin-angiotensin system are part of this
network.

Another highly connected cluster holds genes associated
with leukocyte transendothelial migration. The process of
leukocyte migration from blood into tissues is vital for
inflammation, and it is known that inflammation is an
important cardiorenal connector and a hallmark of kidney
and heart diseases [5].

3.4. Identification of Drug Targets. 116 out of the 280 proteins
associated with the CRS were listed as drug target for at
least one drug in DrugBank (see supplementary Table 1).
The proteins with the most number of drugs were PTGS1,
PTGS2, and NOS3 with 49, 43, and 41 drugs associated. The

drug with the most drug targets in our list of 280 proteins
was NADH.

Standard therapeutic regimes in the context of cardio-
vascular and kidney disease included aliskiren, irbesartan, or
ramipril. Another drug candidate is nesiritide, a recombinant
B-type natriuretic peptide that counter-regulates the RAS,
as used in the treatment of acute decompensated heart
failure (ADHF). However, on the basis of a prospective, ran-
domized, double-blinded, placebo-controlled clinical trial,
Witteles et al. concluded that nesiritide therapy does not
impact renal function in patients with ADHF and pre-
existing renal dysfunction [47].

It is known that reducing blood pressure has beneficial
effects on renal function and there is a multitude of
antihypertensive agents acting on the RAS. Administra-
tion of angiotensin receptor antagonists in combination
with angiotensin-converting enzyme inhibitors showed a
significant reduction of urine albumin creatinine ratio in
patients with hypertension and microalbuminuria and thus,
a reduction of the risk for myocardial infarction [48].

Further potential targets for regulation of hemodynamics
are members of the endothelin signaling pathway. Endothe-
lin receptor antagonists are used in the treatment of a variety
of cardiovascular conditions but less is known about the
effects on combined kidney dysfunction. Ding et al. showed
in animal models that chronic endothelin receptor blockade
with endothelin receptor antagonists is beneficial in the treat-
ment of progressive renal dysfunction and sodium retention
associated with chronic heart failure [49]. Studies in humans
are required to fully elucidate the effects and risks of endothe-
lin receptor antagonist treatment in patients with CRS.

4. Conclusions

In this work, we provide a comprehensive list of
genes/proteins associated with the cardiorenal syndrome
identified on the basis of a literature mining approach.
On the basis of 825 articles identified in the context of
CRS, 280 unique genes could be identified and were
further characterized with respect to molecular function,
biological processes, cellular pathways, subcellular location,
tissue-specific expression, as well as on the level of protein
interaction networks.
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The most frequently reported genes are involved in
blood pressure regulating systems, particularly in the renin-
angiotensin system (REN, AGT, ACE), as well as in the
antagonistic natriuretic peptide system (NPPA, NPPB).
Enriched molecular functions include “receptor binding”
and “receptor activity”. Of special note in this context are
again players of the natriuretic peptide system, namely, the
two ligands NPPA and NPPB and its receptor NPR3. Tissue-
specific expression patterns of these molecules showed that
NPPA and NPPB are mainly expressed in the heart, whereas
their receptor NPR3 is highly expressed in kidney tissue,
suggesting that this regulatory system is part of the cross-talk
between the kidney and the cardiovascular system.

Therapy of the CRS is largely focused on natriuretic
peptides or the renin-angiotensin system with a number of
other molecular targets like the endothelin signaling pathway
holding promise for future therapeutic strategies.

Altogether, the results of the present study strongly
indicate the critical role of hemodynamic changes, blood
pressure regulating hormone systems, and inflammatory
processes in the formation of the CRS. Our analyses led
to a comprehensive picture of molecular features involved
in the functional interplay between the kidney and the
cardiovascular system. One limitation of this automated lit-
erature mining approach is that we do not have experimental
data on the expression levels of the reported molecules in
the process of disease development. An obvious next step
would therefore be to integrate the findings of this work
with Omics datasets on kidney disease as well as vascular
diseases. Such a combined approach has the potential to
identify deregulated features for potentially identifying novel
players for diagnostic or therapeutic approaches in the field
of kidney and cardiovascular diseases.
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[24] M. Vendelin, N. Béraud, K. Guerrero et al., “Mitochondrial
regular arrangement in muscle cells: a “crystal-like” pattern,”
American Journal of Physiology, vol. 288, no. 3, pp. C757–C767,
2005.

[25] L. H. Hartwell, J. J. Hopfield, S. Leibler, and A. W. Murray,
“From molecular to modular cell biology,” Nature, vol. 402,
no. 6761, pp. C47–C52, 1999.

[26] B. O’Rourke, B. M. Ramza, and E. Marban, “Oscillations
of membrane current and excitability driven by metabolic
oscillations in heart cells,” Science, vol. 265, no. 5174, pp. 962–
966, 1994.

[27] M. A. Aon, S. Cortassa, and B. O’Rourke, “Percolation and
criticality in a mitochondrial network,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 101, no. 13, pp. 4447–4452, 2004.

[28] M. Krallinger and A. Valencia, “Text-mining and information-
retrieval services for molecular biology,” Genome Biology, vol.
6, no. 7, article 224, 2005.

[29] Y. Hu, L. M. Hines, H. Weng et al., “Analysis of genomic and
proteomic data using advanced literature mining,” Journal of
Proteome Research, vol. 2, no. 4, pp. 405–412, 2003.

[30] J. Crim, R. McDonald, and F. Pereira, “Automatically annotat-
ing documents with normalized gene lists,” BMC Bioinformat-
ics, vol. 6, no. 1, article S13, 2005.

[31] R. McDonald and F. Pereira, “Identifying gene and protein
mentions in text using conditional random fields,” BMC
Bioinformatics, vol. 6, no. 1, article S6, 2005.

[32] M. Diehn, G. Sherlock, G. Binkley et al., “SOURCE: a unified
genomic resource of functional annotations, ontologies, and
gene expression data,” Nucleic Acids Research, vol. 31, no. 1,
pp. 219–223, 2003.

[33] P. D. Thomas, M. J. Campbell, A. Kejariwal et al., “PANTHER:
a library of protein families and subfamilies indexed by
function,” Genome Research, vol. 13, no. 9, pp. 2129–2141,
2003.

[34] P. D. Thomas, A. Kejariwal, N. Guo et al., “Applications
for protein sequence-function evolution data: mRNA/protein
expression analysis and coding SNP scoring tools,” Nucleic
Acids Research, vol. 34, supplement 2, pp. W645–W650, 2006.

[35] R. Apweiler, A. Bairoch, C. H. Wu et al., “UniProt: the
universal protein knowledgebase,” Nucleic Acids Research, vol.
32, supplement 1, pp. D115–D119, 2004.

[36] P. Horton, K. J. Park, T. Obayashi et al., “WoLF PSORT:
protein localization predictor,” Nucleic Acids Research, vol. 35,
supplement 2, pp. W585–W587, 2007.

[37] G. D. Sehuler, “Pieces of use puzzle: expressed sequence
tags and the catalog of human genes,” Journal of Molecular
Medicine, vol. 75, no. 10, pp. 694–698, 1997.
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