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ABSTRACT Protein toxins secreted by prokaryotes have been found to affect the patho-
genicity of pathogens or directly mediate antagonistic interactions between prokaryotes.
PAAR proteins are important carriers of toxic effectors and are located at the forefront of
either the type VI secretion system (T6SS) or the extracellular contractile injection system
(eCIS). This study systematically investigated PAAR homologues and related toxic effectors.
We found that PAAR homologues were divided into 8 types and 16 subtypes and distrib-
uted in 23.1% of bacterial genomes and 7.8% of archaeal genomes. PAAR proteins of all
types fold into a highly similar conical structure, even from relatively diverse underlying
sequences. PAAR homologues associated with different secretion systems display a mixed
phylogenetic relationship, indicating that PAAR proteins from such a subtype can be
assembled on either a T6SS or an eCIS. More than 1,300 PAAR-related toxic effector genes
were identified; one PAAR subtype can be associated with toxins of over 40 families, and
toxins from one family can be associated with more than 10 PAAR subtypes. A large-scale
comparison of Earth Microbiome Project data and prokaryotic genomes revealed that pro-
karyotes encoding PAAR genes are widely present in diverse environments worldwide,
and taxa encoding multiple PAAR gene copies exhibit a wider distribution in environ-
ments than other taxa. Overall, our studies highlighted that PAAR proteins are versatile
clips loaded with antimicrobial toxin bullets for secretion weapons (T6SS and eCIS), greatly
enriching the weapon arsenal of prokaryotes, which, often together with VgrG, help pro-
karyotes fight for survival advantages in crowded environments.

IMPORTANCE Infectious diseases caused by microbial pathogens are severe threats to
human health and economic development. To respond to these threats, it is necessary
to understand how microorganisms survive in and adapt to complex environments.
Microorganic toxins, which are widely distributed in nature, are the key weapons in life
domain interactions. PAAR proteins are important carriers of prokaryotic toxic effectors.
We reveal the versatility of PAAR proteins between secretory systems and the massive
diversity of toxic effectors carried by PAAR proteins, which helps prokaryotes enrich
their arsenal and expand their ability to attack their neighbors. A large number of PAAR
homologues and related toxic effectors enhance the survival competitiveness of prokary-
otic populations. In conclusion, our work provides an example for large-scale analysis of
the global distribution and ecological functions of prokaryotic functional genes.

KEYWORDS PAAR protein, toxic effector, contractile injection system, CIS, prokaryotic
genomes, Earth Microbiome Project, EMP

Bacterial contractile injection systems (CISs) are macromolecular machines that share
homology with the bacteriophage contractile tail for the transfer of cytoplasmic proteins

either out of the cell into the surrounding milieu or directly into the cytoplasm of eukaryotic
and prokaryotic cells, mediating intercellular communication and antagonism (1–4). Bacterial
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type VI secretion systems (T6SSs), are a class of CISs, since they inject toxic effectors into
adjacent target cells, and their structural components anchor to the inner membrane (5).
Unlike the action mode of T6SSs, extracellular CISs (eCISs), such as Photorhabdus virulence
cassette devices, resemble headless phages to release themselves into the surroundings to
bind to and inject into target host cells (1). PAAR proteins, as important structural compo-
nents of CISs, are located at the top of the central spike mounted on the entire secretory
structure. PAAR proteins, which are orthologues of the protein gp5.4 of T4 phage, sharpen
the tip of the spike complex and are responsible for the initial event of creating an open-
ing in the target cell envelope while also acting as the site of effector recruitment (6–8).
Considering the observed crucial function of PAAR proteins in CISs, it is necessary and urgent
to analyze and describe the diversity of PAAR proteins in detail.

Few toxic effectors associated with PAAR proteins have been reported thus far. These tox-
ins have been found to affect the pathogenicity of pathogens or directly mediate interactions
among bacteria, and the ways in which they interact with PAAR proteins can be roughly di-
vided into two types: one class of toxins is directly fused as the C-terminal extended domain
of the PAAR protein, for example, Tse6 and Tse7 of Pseudomonas aeruginosa, Rhs-CT1 to CT10
of Escherichia coli, Tne2 of Pseudomonas protegens, and Rhs1 and Rhs2 of Serratia marcescens,
all of which possess an N-terminal PAAR domain but a C-terminal extension containing various
toxin domains (9–16); the other class of toxins form complexes with PAAR proteins (maybe
through chaperone assistance), such as IglF of Francisella tularensis, TseT of P. aeruginosa, and
TseTBg of Burkholderia gladioli (8, 17, 18).

Here, we comprehensively analyzed the sequenced prokaryotic genomes, with the
identified PAAR genes as a starting point, and exploited novel toxins and immunity pro-
teins through large-scale bioinformatics analysis, which revealed a tremendous diversity of
toxic effectors probably carried by PAAR proteins. We further explored the distributions of
the PAAR genes in prokaryotes and compared them with Earth Microbiome Project (EMP)
data. Our results highlight that PAAR proteins and associated toxins promote the environ-
mental adaptation of prokaryotic strains.

RESULTS
PAAR genes are widely found in the genomes of prokaryotes. We searched for

all known proteins containing the PAAR domain in the NCBI nonredundant reference
sequence (RefSeq) database. PAAR domains are defined based on the PAAR-like superfamily
(cl21497, containing DUF4150) and DUF4280 superfamily (cl16620) (6, 19, 20). Under the
condition that the RPS-BLAST E value was #0.01, we identified a total of 47,625 proteins
containing the PAAR domain, of which 99.35% were from bacteria, 0.36% were from viruses,
0.21% were from eukaryotes, and only 0.08% were from archaea.

NCBI sets at least one reference or representative genome for each sequenced species,
and these genomes usually have high assembly quality. We analyzed the distribution of
PAAR protein-encoding genes in 5,808 reference or representative prokaryotic genomes
and identified a total of 3,022 PAAR genes (see Data Set S1 in the supplemental material).
At least one PAAR gene is encoded in 23.1% of the bacterial genomes and 7.8% of the
archaeal genomes. At the phylum level, 39.3% of 2,072 Proteobacteria genomes, 32.1% of
602 Fibrobacteres, Chlorobi, and Bacteroidetes (FCB) group genomes, 8.9% of 2605 Terrabacteria
group genomes and 8.7% of 231 Euryarchaeota genomes encode PAAR genes (see Table S1).
Among the major classes of prokaryotes (with at least 100 genomes), the proportions of
Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and the delta/epsilon subdi-
vision genomes of Proteobacteria encoding PAAR genes are 26.8, 46.7, 49.9, and 33.0%,
respectively; the proportion for the Bacteroidetes/Chlorobi group of the FCB group is 32.0%;
and the proportions for Firmicutes and Actinobacteria of the Terrabacteria group are 7.0 and
9.6%. However, there are no PAAR genes encoded in Tenericutes of the Terrabacteria group.

We also counted instances of multiple copies of the PAAR gene in the reference or
representative prokaryotic genomes. No instances of multiple copies of the PAAR gene
were found in archaeal genomes, while 45.4% of the bacterial genomes encoding PAAR had
multiple copies of the PAAR gene. The maximum copy number of the PAAR gene in a single
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genome was 35, which was observed in Chondromyces apiculatus DSM 436 of Myxococcales
of Proteobacteria. Fifty percent of the Proteobacteria encoding the PAAR gene encode mul-
tiple copies, and the values are 53.9% for the FCB group and 25.3% for the Terrabacteria
group. At the class level, 30.6, 67.4, 54.4, and 46.5% of the genomes of Alphaproteobacteria,
Betaproteobacteria, Gammaproteobacteria, and delta/epsilon subdivisions of Proteobacteria
encoding PAAR encode multiple copies, respectively; the values are 54.5% for the
Bacteroidetes/Chlorobi group of the FCB group and 38.2 and 17.8% for Firmicutes
and Actinobacteria of the Terrabacteria group, respectively. In short, the PAAR gene widely
exists in prokaryotic genomes, and multiple copies are often present.

PAAR homologues can be segregated into 8 types.We constructed a phylogenetic
tree of the PAAR proteins based on the maximum-likelihood method by using the sequence
of the PAAR domain, eliminating a few proteins with incomplete sequences (Fig. 1). The

FIG 1 Phylogenetic relationship of PAAR homologues constructed based on the maximum-likelihood
method. The phylogenetic relationship was constructed using only the sequences of the PAAR domain.
PAAR homologues were divided into 8 types and 16 subtypes, which shared a certain correspondence with
the CDD subfamily. Outer strips are color coded by the 8 PAAR types, and the inner background is colored
according to the 16 subtypes. PAAR homologues related to T6SSs and eCISs are highlighted with red and
blue branches, respectively.
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results showed that the PAAR proteins encoded by the reference or representative prokary-
otic genomes can be classified into eight main phylogenetic clades, which are defined as
eight PAAR types, and these eight types are further subdivided into 16 subtypes (PAAR_A1
to PAAR_H3). PAAR_A showed the closest phylogenetic relationship with PAAR_B, PAAR_C,
and PAAR_D, followed by PAAR_E and PAAR_F and then by PAAR_G, whereas the PAAR_H
(DUF4280) type was divergent from the other 7 types.

There is a certain correspondence between the PAAR subtypes and the PAAR subfami-
lies defined in the Conserved Domain Database (CDD), but the two are not completely
consistent (Fig. 1). For example, the members of PAAR_A mostly have the PAAR_1 domain
(cd14737, PAAR_A1) or PAAR_RHS domain (cd14742, PAAR_A2), while the members of
PAAR_D include the PAAR_2 (cd14738, PAAR_D1), PAAR_3 (cd14739, PAAR_D2), PAAR_5
(cd14741, PAAR_D3) or PAAR_4 domain (cd14740, PAAR_D4). In particular, the PAAR_4
domain is present in three PAAR subtypes: PAAR_C, PAAR_D4, and PAAR_F. The members
of PAAR_B, PAAR_E, PAAR_G, and PAAR_H basically correspond to PAAR_CT1 (cd14743),
DUF4150 (pfam13665), PAAR_CT_2 (cd14744), and DUF4280 (pfam14107), respectively.

In terms of quantity, the most abundant subtype PAAR_G accounts for 23.2% of all PAAR
homologues, and the proportions of both PAAR_D1 and PAAR_H2 exceeds 10%, while the
proportion of PAAR_C, PAAR_D3, PAAR_D4, or PAAR_H3 is only 1.3 to 1.5%. Regarding the
source, Proteobacteria encode almost all the PAAR subtypes, except PAAR_H2, and the sub-
types of PAAR_A, PAAR_B, PAAR_E, and PAAR_G are almost all encoded by Proteobacteria
(Fig. 2A). The FCB group encode mainly PAAR_D, PAAR_F, and PAAR_H, the Gram-positive
Terrabacteria group encode mainly PAAR_C, PAAR_D, and PAAR_H, and archaea encode only
PAAR_D3. Regarding protein size, the average protein lengths of most of the PAAR subtypes
do not exceed 150 amino acids (aa), which is close to the size of the PAAR domains. The
results indicated that the members of these subtypes are mainly single PAAR domains
(Fig. 2B). The average lengths of all proteins of the PAAR_B, PAAR_E2, PAAR_E3, and PAAR_H2
subtypes are between 250 and 400 aa, indicating that many of their members are multido-
main proteins. The average protein lengths of PAAR_A2 and PAAR_F are more than 1,000 aa.

Structural differences in PAAR subtypes. Among the 16 PAAR subtypes, the struc-
tural characteristics of only the PAAR_A1 subtype were identified (Fig. 3A). The structures

FIG 2 Species distributions and protein length comparison of the 16 PAAR subtypes. (A) Distributions of each PAAR
subtype in prokaryotic genomes. (B) Comparison of the average length of each PAAR subtype, including the lengths of
the PAAR domain and the whole protein.
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of representative proteins of the 15 other PAAR subtypes were modeled using the AlphaFold
algorithm (see Table S2). This technology achieves accuracy competitive with that of experi-
ments (21, 22). The results showed that the structural folding patterns of various PAAR
subtypes were highly similar (Fig. 3B). Although the sequence identities between the mod-
eled structures of the 15 PAAR subtypes and the crystal structures of the PAAR_A1 subtype
are only 9 to 40%, the structural differences between them are small, with RMSD values not
exceeding 3.3 Å and TM scores of not less than 0.6.

The PAAR protein is conical, and three conserved PAAR motifs form the structural
center for stable folding (Fig. 3A). Hydrophobic interactions and buried main chain hydrogen
bonds mediate the interactions of the three PAAR motifs (6). The fold of the PAAR protein is
stabilized by a Zn atom positioned close to the cone’s vertex, and the Zn-binding site consists
of three histidines and one cysteine. Although the vertexes of these modeled structures are
different due to the lack of metal atom binding, their structural centers are formed by the
three regions of the polypeptide chain (PAAR motifs) (Fig. 3B). The sequences of the three
PAAR motifs that constitute the center of the structure are most conserved in the four closely
related types, namely, PAAR_A to PAAR_D, and a few sites can be replaced by amino acids
with similar properties. In other types, typical conserved PAAR motifs are rarely observed, and
only a few sites in the structural center were conserved.

Based on structural information and multiple sequence alignments, we determined the
lengths of the various subtypes of PAAR domains (Fig. 2B). We found that the average
length of the smallest PAAR subtype, PAAR_G, is 85.5 aa, while the average length of the
largest PAAR subtype, PAAR_A2, is 167.9 aa. The three PAAR motifs that form the structural
center (or the corresponding sites that form the structural center) are distant from each
other in the sequence and separate the PAAR protein into three parts. The structural differ-
ences among PAAR subtypes manifest mainly as differences in the lengths of these three
parts (Fig. 3C). For the smaller subtypes PAAR_B and PAAR_G, the lengths of Part_1, Part_2,
and Part_3 are close to but not more than 30 aa. For the larger types PAAR_A2, PAAR_C,
PAAR_E, and PAAR_F, the lengths of Part_1 and Part_2 increase simultaneously, while

FIG 3 Structural characteristics of the 16 PAAR subtypes. (A) Crystal structure of the PAAR_A1 subtype (PDB 4JIVd) with three conserved PAAR motifs
constituting the structural center. (B) Modeled structures and conserved motifs of different PAAR subtypes. (C) Comparison of the three parts of various
PAAR subtypes.
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PAAR_D3 and PAAR_H have a large Part_2 of greater than 50 aa. Notably, the particularly
long Part_1 (average length up to 87.5 aa) exists in PAAR_A2 and is been specialized to
form hydrophobic helices in many proteins (see Fig. S1). The specialized hydrophobic
helices contribute to translocating the toxin domain across the inner membrane to the
target cell (15, 16).

Delivery modes of PAAR proteins. PAAR proteins perform their functions by binding
to VgrG proteins to form spike complexes (6). We found that the copy numbers of the
PAAR genes encoded by the prokaryotic genomes are highly positively correlated with the
copy numbers of the vgrG genes encoded by the prokaryotic genomes (Pearson’s r = 0.81,
P , 0.01). For example, the strain Chondromyces apiculatus DSM 436, which encodes the
highest number of PAAR gene copies in a single genome (35 copies), also encodes the highest
number of vgrG gene copies (54 copies). In prokaryotic genomes, 45.6% of the PAAR genes
have a vgrG gene within five upstream genes, 16.7% are directly adjacent to an upstream
vgrG gene, and only 4.5% are adjacent to a downstream vgrG gene (Fig. 4A). With increasing
distance from the PAAR gene, the occurrence rates of the vgrG genes decrease rapidly. In addi-
tion, 62.3% of the total PAAR genes have vgrG genes within 20 genes upstream or down-
stream, while the percentage is clearly different among the subtypes (Fig. 4B). For example,
almost all genes encoding PAAR_D2 and PAAR_H3 are adjacent to vgrG genes, while only
36.2% of PAAR_B genes are adjacent to vgrG genes. It is worth noting that this proportion can
differ considerably within the same type, such as 89.1% for PAAR_E1 and 53.2% for PAAR_E2.

Afp1/5 (Phage_T4_gp19), Afp2/3/4 (Phage_sheath_1), Afp11 (Baseplate_J), and Afp16
(DUF4255) are functionally critical to eCISs (3). The conserved components of T6SSs,
namely, TssJ (T6SS-SciN), TssL (DotU), TssM (VI_IcmF), and ClpV (VI_ClpV1), do not exist in
eCISs (23, 24). Therefore, we used the presence of genes encoding these conserved compo-
nents upstream and downstream of a PAAR gene as the criterion for judging whether the
PAAR gene was related to T6SSs or eCISs. Upon screening by the criteria, we found that at
least 16.3% of the PAAR genes are associated with eCISs and 20.7% of the PAAR genes are
associated with T6SSs, with no overlap between the two. Interestingly, some PAAR subtypes
are associated with both eCISs and T6SSs (Fig. 4C). For example, the proportion of members
related to eCISs or T6SSs exceeds 15% in each of the PAAR_D1, PAAR_D3, PAAR_D4, and
PAAR_H1 subtypes. From the phylogenetic tree, we also noticed that many PAAR homo-
logues that were related to eCISs or T6SSs had very close relationships (Fig. 1). For example,
the two PAAR genes belonging to PAAR_D1 encoded by Desulfobacter curvatus DSM 3379
share an amino acid sequence identity as high as 63%, but one is related to an eCIS,
while the other is related to a T6SS; the two PAAR genes belonging to PAAR_H1 encoded
by Caballeronia glathei DSM 50014 exhibit 60% amino acid sequence identity and are
also associated with an eCIS and a T6SS, respectively (see Fig. S2). These results indicated
that one PAAR subtype can function with both eCISs and T6SSs. As components of eCISs or
T6SSs, PAAR proteins exhibit no obvious differences in sequence and structural characteristics.

In the CDD, VgrG homologues are classified into five superfamilies based on sequence
differences, namely, Phage_GPD (cl15796), VgrG (cl34624), vgr_GE (cl36942), VI_Rhs_Vgr
(cl37255), and VgrG_rel (cl41471). Because PAAR proteins and VgrG proteins are closely
related in function, and their genes have a high cooccurrence within 20 genes upstream or
downstream of the PAAR genes (Fig. 4B), we also analyzed the correspondence between
PAAR subtypes and VgrG types (see Fig. S3). We found that there are 12 PAAR subtypes
whose VgrG neighbors in the genome are mainly from single superfamilies (more than
70%). Furthermore, PAAR_D1 and PAAR_D4 are mainly related to VgrG homologues from
two superfamilies, PAAR_G and PAAR_H2 are mainly related to VgrG homologues from
three superfamilies. This result indicated that PAAR genes have a conserved evolutionary
relationship with adjacent vgrG genes, but there are obviously some exceptions. Interestingly,
in both PAAR_D1 and PAAR_D4, members related to T6SSs are all adjacent to VI_Rhs_Vgr
(cl37255) in the genome, while members related to eCISs are all adjacent to vgr_GE (cl36942).
In addition, homologues from Phage_GPD (cl15796) are mainly adjacent to PAAR_H2 mem-
bers in the Gram-positive Firmicutes genomes, and conserved genes of eCISs or T6SSs are not
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present upstream and downstream. It is speculated that Gram-positive bacteria may possess
an unknown phage-like translocation system.

In addition to the eCIS or T6SS component genes, the neighbors surrounding the
PAAR genes also include some other associated genes. For example, the proportions of
members related to eCISs in PAAR_C, PAAR_D2, and PAAR_H3 all exceed 80%, and the
surrounding genes also have a high probability (more than 50%) of encoding DUF4157
in addition to encoding eCIS gene clusters. PAAR_A1, PAAR_B, PAAR_E, and PAAR_G are

FIG 4 Potential delivery modes for PAAR proteins. (A) Proportions of 20 upstream or downstream genes of the PAAR genes encoding
vgrG genes. The position of the PAAR gene was taken as 0, the position of the upstream gene of the PAAR gene is labeled with a negative
value, and the position of the downstream gene is labeled with a positive value. (B) Proportions of each PAAR subtype adjacent to vgrG genes.
(C) Proportions of each PAAR subtype adjacent to an eCIS (blue) and a T6SS (red).
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related mainly to T6SSs; the genes surrounding PAAR_E have a high probability of
encoding DUF2169 (more than 75%), and some of the genes surrounding PAAR_A1 and
PAAR_B encode DUF4123. Furthermore, members of PAAR_A2 and PAAR_F are rich in
rearrangement hot spot (RHS) repeats. RHS proteins are a class of giant proteins repre-
senting a major group of secreted polymorphic toxins, and these proteins can be
secreted through different routes, including T6SSs, to exert toxicity against target cells (9,
14, 25, 26). The genes surrounding more than 90% of PAAR_A2 members encode DcrB
(DUF1795). T6SS adaptors/chaperones, including DUF4123-, DUF1795-, and potentially
DUF2169-containing proteins, are required for loading specific effectors onto the cog-
nate VgrG for delivering and stabilizing the effectors (27, 28). Finally, 70.8% of the
PAAR_H2 genes are adjacent to vgrG genes, but we have not found that their surround-
ing genes encode eCIS or T6SS components. It is worth noting that some of the VgrG
proteins related to PAAR_H2 contain the DUF2345 domain. DUF2345 is a conserved do-
main of uncharacterized proteins and is present in many VgrG proteins; this domain can
be considered an extension of the spike region (29).

PAAR proteins carry various toxins. PAAR proteins play an important role in toxic
effector delivery by the CIS system, but only a few of the associated toxins have been
identified. A large-scale scan of the PAAR genes and their surrounding genes encoding
toxins in the reference or representative prokaryotic genomes identified .1,300 toxin
genes (see Data Set S2). Of these toxins, 40.3% are encoded by PAAR genes as the C-
terminal extension domain of the PAAR protein, and the rest are encoded by genes
surrounding the PAAR genes (Fig. 5A). The toxin encoding probability of the genes of
downstream PAAR is three times as high as that of upstream genes. Ten percent of the
toxins are encoded by closely adjacent genes downstream of the PAAR gene, and as
the distance from the PAAR genes increases, the probability of occurrence of toxin
genes gradually decreases.

PAAR-related toxins from more than 80 protein families were identified, of which 59
families contained at least three toxin homologues (see Data Set S2). Most of these tox-
ins are predicted to have enzymatic activity, and two-thirds of these enzymes are func-
tionally related to nucleases. In particular, of the 29 toxin families that accounted for
more than 1% of the total identified toxin proteins, 23 are functionally related to nucle-
ases (Fig. 5B). The most common PAAR-related toxin is AHH nuclease, which accounts
for 11.5% of the total toxins. We recently demonstrated its enzymatic activity and tox-
icity experimentally (20). In addition to nucleases, the activities of toxins include pepti-
dase (such as M35_like), amidase (such as Tae4), and protein-modifying toxin (such as
Tox-ART-HYD1) activities and a few unknown toxin activities (such as DUF3289). Most
families of PAAR-related toxins can either be present as the C-terminal extension
domains of PAAR proteins or are encoded by genes surrounding the PAAR gene. Only
a few toxin families are nearly exclusively present as the C-terminal extension domains
of PAAR proteins, such as Tox-GHH2 and halocin_C8_dom, or are encoded only by sur-
rounding genes, such as Tae4 and Tox-REase-5.

At least 10% of the members of different PAAR subtypes have PAAR-related toxins,
but there is a great difference among subtypes (Fig. 5C). At least 80% of the members
of PAAR_A2, PAAR_E3, and PAAR_F have PAAR-related toxins, and almost all of these
toxins are located at the C terminus of the PAAR proteins. Totally, at least one-third of
the PAAR genes themselves or the surrounding genes encode toxins, and 7.4% of the
PAAR genes are associated with at least two toxins. Each PAAR subtype includes vari-
ous toxins (see Data Set S2); for example, the toxin proteins of 45 families are associ-
ated with PAAR_H2, and the toxins of more than 30 families are associated with
PAAR_A2, PAAR_D1, and PAAR_G. Similarly, most types of toxins also correspond to
multiple PAAR subtypes, such as HNHc, NUC, AHH, and Tox-HNH-EHHH, which are
associated with more than 10 PAAR subtypes. Only a few toxins are related to a single
PAAR subtype. For example, toxin-JAB2 corresponds mainly to PAAR_A2, Tox-REase-5
corresponds to PAAR_G, toxin-deaminase corresponds to PAAR_H2, and Tox-URI2 cor-
responds to PAAR_F.
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FIG 5 PAAR proteins carry a variety of toxins. (A) Proportions of genes within 20 genes upstream or downstream of
the PAAR genes encoding toxins. The position of the PAAR gene was taken as 0, the position of the upstream gene of

(Continued on next page)
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PAAR genes promote environmental adaptation of strains. Our recent studies have
shown that the genetic information of most prokaryotic biomes has been revealed to a
high degree (30). The EMP samples the Earth’s microbial communities at an unprecedented
scale to evaluate how prokaryotes are distributed in the global environment (31). We com-
pared the genomic information of 5808 reference or representative prokaryotes with the
sequence data of 10,000 EMP samples and determined the environmental distribution of
these representative species based on 16S rRNA identity greater than 97%. As a result, 19,506
operational taxonomic units (OTUs) were identified. Although they accounted for only 7.4% of
the total OTUs, the sequence abundance reached 50% of the total abundance.

We analyzed the environmental distribution of prokaryotes encoding PAAR genes based
on the corresponding relationship between the reference or representative genomes and
OTUs. Among 19,506 OTUs, 26.3% correspond to the genomes encoding PAAR genes (from
10 phyla and 20 classes), and 3.2% encode at least five copies (see Data Set S3). Furthermore,
the EMP divides samples from different environments into 17 environmental labels (31). We
found that the proportions of OTUs encoding PAAR genes in all the environmental types were
not less than 20%, and the highest proportion was 33.0% in the plant rhizosphere (see
Fig. S4A). Except for the hypersaline environment (for which only 13 samples were available),
the proportions of OTUs encoding at least five copies of the PAAR genes in all the environ-
mental types are 2.3 to 5.5%. These results indicated that prokaryotes encoding PAAR genes
are widely distributed in various environments worldwide.

The difference in the number of genes encoding PAARs between OTUs with the highest
sequence abundance (top 25%), i.e., generalists, and OTUs with the lowest sequence abun-
dance (bottom 25%), i.e., specialists, in each environment was compared. The results showed
that in the plant rhizosphere, with the highest proportion of OTUs encoding PAAR genes,
38.5% of generalists encode PAAR genes, while only 28.2% of specialists encode PAAR genes
(Fig. 6A). The soil (nonsaline), sediment (nonsaline), sediment (saline), water (nonsaline), water
(saline), and other free-living biomes also exhibit similar phenomena, indicating that the taxa
encoding PAAR genes in these environments have relatively high abundance and are better
adapted to the different environments. In contrast, in the animal proximal gut and animal dis-
tal gut, the proportion of generalists encoding PAAR genes is lower than that of specialists. In
particular, in the animal proximal gut, only 15.7% of generalists encode PAAR genes, while
24.1% of specialists encode PAAR genes. The above phenomenon is more obvious for OTUs
encoding at least 5 PAAR genes (Fig. 6B). In the plant rhizosphere, 8.4% of generalists encode
at least 5 PAAR genes, while only 3.5% of specialists encode at least 5 PAAR genes, repre-
senting a difference of more than 2-fold. Therefore, encoding PAAR genes, especially encoding
multiple copies of PAAR genes, allowed prokaryotic taxa in free-living biomes to strive for sur-
vival advantages.

The larger the sample number of OTU distributions is or the greater the number of
types of environments in which an OTU can survive is, the stronger the ability of the OTU to
adapt to different environments (32). We found that among the OTUs that appeared in only
a single sample, the proportion of OTUs encoding at least five copies of PAAR genes is 2.7%
(Fig. 6C). For OTUs present in 2 to 100 samples, this proportion rises to 3.2%; for OTUs pres-
ent in 101 to 1,000 samples, the value is 4.4%; for OTUs present in more than 1,000 samples,
this value reaches 6.1%. Similarly, for OTUs that survived in only a single environmental
type, the proportion of OTUs that encoded at least five copies of the PAAR genes is 2.8%
(Fig. 6D). For OTUs that can survive in two to five types of environments, this proportion
rises to 3.2%; for OTUs that can survive in 6 to 10 types of environments, this value is
3.8%; for OTUs that can survive in more than 10 types of environments, this value
reaches 6.1%. Remarkably, the most widespread OTUs encoding PAARs (present in more

FIG 5 Legend (Continued)
the PAAR gene is labeled with a negative value, and the position of the downstream gene is labeled with a positive value.
(B) The PAAR-related toxins of 29 families that accounted for more than 1% of the total identified toxin proteins. Toxins
whose activity is related to nucleases are colored pink, and other toxins are colored gray. All PAAR-related toxins are labeled
with dark colors, and toxins located at the C terminus of the PAAR protein are labeled with light colors. (C) Proportion of
members with PAAR-related toxin (dark green) or PAAR protein C-terminal toxin (light green) in each PAAR subtype.
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than 10 environment types) are not concentrated in a few taxa but come from as many
as 6 phyla and 12 classes. Therefore, widespread prokaryotic taxa encode more PAAR
genes in their genomes than less widely distributed taxa.

Furthermore, we also focused on the environmental distribution of prokaryotes encoding
vgrG genes (see Fig. S4B). The results showed that the proportions of OTUs encoding vgrG
genes are not less than 25% in all the environmental types and are highly positively corre-
lated with the proportions of OTUs encoding PAAR genes (Pearson’s r = 0.99, P , 0.01).
Similar to the results for PAAR genes, the proportions of generalists encoding vgrG genes are

FIG 6 PAAR genes promote the environmental adaptation of bacterial strains. (A) Proportions of generalists and specialists that encode at least one PAAR
gene. (B) Proportions of generalists and specialists that encode at least five PAAR genes. OTUs with the highest sequence abundance (top 25%) in each
environment are called generalists (red), and OTUs with the lowest sequence abundance (bottom 25%) are called specialists (green). (C) Proportions of
OTUs encoding at least five copies of the PAAR gene among OTUs that appeared in only a single sample, OTUs present in 2 to 100 samples, OTUs present
in 101 to 1,000 samples, or OTUs present in more than 1,000 samples. (D) Proportions of OTUs encoding at least five copies of the PAAR gene among
OTUs that survive in only a single environment type, OTUs that can survive in 2 to 5 types of environments, OTUs that can survive in 6 to 10 types of
environments, and OTUs that can survive in more than 10 types of environments.
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higher than those of specialists in free-living prokaryotic biomes, while the opposite is true
in the animal gut environment (see Fig. S5A and B). In addition, widespread prokaryotic
taxa also encode more vgrG genes in their genomes than less widely distributed taxa (see
Fig. S5C and D). In summary, the results indicated that the protein translocation systems
composed of PAAR, VgrG, etc., are closely related to the survival competitiveness of strains.

DISCUSSION

PAAR proteins are important carriers of toxic effectors located at the front of the
prokaryotic contractile injection system complex (6). However, compared to the attention
given to other toxic effector carriers, such as VgrG, that given to the PAAR protein remains
insufficient. Here, the role and importance of PAAR proteins in the context of general
genomics were investigated with bioinformatics methods for the first time. More than
40,000 PAAR homologues were identified, of which no more than one-thousandth had
been reported previously. The PAAR homologues can be divided into eight different types
and subdivided into 16 subtypes. Their coding genes are widely distributed in prokaryotic
genomes, and the copy numbers astonishingly reach as high as 35. The marked genetic
diversity and wide distribution suggest that PAAR homologues play an important role in
prokaryotes for their ecological functions.

We revealed the prevalence of PAARs in prokaryotes and their close ties with the bacte-
rial injection machinery, including the T6SS and eCIS, which are systems that major contribu-
tors to bacterial competition. According to observations made by cryo-electron tomography,
PAAR proteins can be used as a spike protein of T6SSs or eCISs (1, 4). Interestingly, we found
that there is no clear boundary between the PAAR proteins associated with T6SSs and eCISs
in terms of phylogenetic relationship. Some PAAR subtypes can function with both T6SSs
and eCISs. The versatility of PAAR proteins in secretory systems expands the ability of bacte-
ria to attack surrounding neighbors. We also observed a great diversity of toxins associated
with PAAR proteins. One PAAR subtype can be associated with more than 40 types of toxins,
and one type of toxin can be associated with more than 10 PAAR subtypes. If a T6SS or an
eCIS is regarded as a gun loaded with antibacterial toxin bullets, PAAR proteins are similar
to versatile clips. On the one hand, the clips can be used for two secretion system weapons;
on the other hand, the clips can carry a variety of toxin bullets. Therefore, PAAR proteins
greatly enrich the arsenal of prokaryotes.

Because microorganic toxins exhibit high diversity in sequence and function, identify-
ing unknown toxins is challenging. Our recent work demonstrated an effective approach
of using adaptors as markers to identify toxic effectors (33). Furthermore, some toxic effec-
tors associated with PAAR proteins were also reported in our previous work (13, 20). In this
study, we performed a comprehensive analysis of sequenced prokaryotic genomes, start-
ing with the identification of PAAR genes, and expanded novel toxins and immunity pro-
teins with large-scale bioinformatics methods. In addition, 1,343 potential toxin genes
from 84 different families were identified, and two-thirds of these are currently annotated
as hypothetical proteins or as having unknown functions. Our results revealed the diversity
of toxic effectors carried by PAAR proteins and further increased the understanding of pro-
karyotic antimicrobial toxin systems.

The genetic information of most prokaryotic biomes has been revealed to a high
degree (30). Based on EMP data, we determined that microorganisms encoding PAAR
genes are widely present in various environments worldwide. Encoding PAAR genes,
especially multiple copies of PAAR genes, helps prokaryotic taxa in free-living biomes
acquire survival advantages but is not conducive to survival in host-associated biomes.
We speculated that the possible reasons for this phenomenon were as follows: on the
one hand, the alpha diversity of prokaryotic taxa in the free-living biomes was higher,
and the competition among taxa was more intense, so the roles of PAAR proteins and
related toxins were very important; on the other hand, many PAAR-related toxins could
also act on eukaryotic cells, and a large number of PAAR genes and related toxins were
encoded to cause harm to the host. Similarly, we found that the environmental distribution
of VgrG homologues was highly positively correlated with that of PAAR homologues. The
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presence of a large number of PAAR genes, vgrG genes and involved toxin genes is closely
related to enhancing the survival competitiveness of the population.

In general, the findings will be of great interest to the protein secretion system field and
also those interested in microbial interactions more broadly. This research may help clarify the
interaction mechanism of microorganisms in the community, and the results may also have ref-
erence value in disease prevention and treatment. Our work provides an example of a large-
scale analysis of the global distribution and ecological functions of prokaryotic functional genes.

MATERIALS ANDMETHODS
Acquisition of PAAR homologues. Taxonomic information and functional annotation information

of the protein domain were acquired from the CDD and PFAM database (34, 35). PAAR domains are
defined based on the PAAR-like superfamily (cl21497, containing DUF4150) and DUF4280 superfamily
(cl16620) (6, 19, 20). All proteins with PAAR domains were identified in the CDD (52,910 position-specific
scoring matrices [PSSMs]) by RPS-BLAST, and the retrieval condition was that the E value did not exceed
0.01. Taxonomic information of species was obtained from the NCBI taxonomic database.

The NCBI defines at least one reference or representative genome for each sequenced species. These
genomes usually have high sequencing quality. The genome sequence information of all the reference or
representative prokaryotes and the positional information of all the coding genes in the genome were
obtained from the NCBI RefSeq database (36). The identified PAAR proteins were correlated with the genomic
protein products through their accession number to determine the PAAR genes in each genome.

Phylogenetic analysis of PAAR domains. The sequences of PAAR domains were extracted from the
CDD and employed to construct the initial phylogenetic relationship by domain annotation. Multiple
alignment of amino acid sequences of all PAAR domains was implemented using MAFFT (FFT-NS-i,
BLOSUM62) (37). A maximum-likelihood tree was constructed using FastTree with the JTT1CAT model
(38). The reliability of the corresponding split in the tree was calculated with the Shimodaira-Hasegawa
test (39). The phylogenetic tree was visualized by iTOL (40).

Based on the initial phylogenetic relationship, representative sequences were selected in the main clusters
for structural modeling. Based on the structural information and multiple sequence alignments of each type of
PAAR protein, the start and end positions of the PAAR domains were modified, and a few proteins with incom-
plete domain sequences were eliminated. Based on all the modified PAAR domain sequences, multiple sequence
alignments were performed again, and phylogenetic relationships were constructed again for final analysis.

Modeling and display of PAAR structures. AlphaFold is an AI system that predicts a protein’s
three-dimensional structure from its amino acid sequence (21, 22). It regularly achieves accuracy com-
petitive with that of experiments. The three-dimensional structures of PAAR proteins were modeled by
AlphaFold and displayed by PyMOL (Schrödinger, LLC).

Structural differences in each of the modeled structures with the crystal structure were measured
with TM-align (41). The TM-score, ranging from 0 to 1, was used to measure the structural similarity of
two protein structures (42). The higher the TM-score was, the more similar the two aligned structures. If
the TM-score was higher than 0.5, the pairwise structures were assumed to have the same fold (43).

Multiple structure alignments of the crystal and all the modeled structures of PAAR proteins were
implemented in VMD software (44). The positions of the three PAAR motifs in each modeling structure
were determined based on the corresponding positions in the crystal structure. According to the posi-
tions of the three motifs in each PAAR subtype, the sequences were divided into three parts: Part_1 was
located between Motif_1 and Motif_2, Part_2 was located between Motif_2 and Motif_3, and Part_3 was
located from Motif_3 to the C terminus. The conservation of PAAR motifs in each subtype is illustrated
by multiple sequence alignment and the sequence logo (45).

Genomic context analysis. Context analysis was performed for each of the reference or representative
prokaryotic genomes to extract 20 adjacent genes upstream or downstream of each PAAR gene. CDD domain
annotations of the protein products of all genes were performed with an E value threshold of 0.01 (35).

The eCIS components Afp11, Afp12, Afp13, Afp14, and Afp16 are not seen in T6SSs, but Afp11 and Afp16 are
encoded in more than 85% of eCIS gene clusters (3). Single-gene knockout experiments indicated that Afp2/3/4,
Afp1/5, and Afp11 are essential for eCIS function (46). Homologues of Afp1/5 (Phage_T4_gp19), Afp2/3/4
(Phage_sheath_1), Afp11 (Baseplate_J), and Afp16 (DUF4255) from the corresponding CDD superfamilies were not
found in T6SSs. Therefore, a PAAR gene was determined to be related to eCISs based on the presence of at least
two of the four homologues encoding Afp1/5, Afp2/3/4, Afp11, and Afp16 among the 20 genes upstream or
downstream of the PAAR gene. Similarly, the conserved components TssJ, TssL, and TssM (transenvelope complex)
and ClpV (sheath recycling) of the T6SS are not present in eCISs (4, 23, 24). Therefore, a PAAR gene was determined
to be related to T6SSs if at least two of the four homologues encoding TssJ (T6SS-SciN), TssL (DotU), TssM
(VI_IcmF), and ClpV (VI_ClpV1) were present among the 20 genes upstream and downstream of the PAAR gene.

The correspondence between PAAR subtypes and VgrG types was determined by identifying the
presence of vgrG genes within 20 genes upstream or downstream of the PAAR genes. The classification of
VgrG homologues is based on five superfamilies: Phage_GPD (cl15796), VgrG (cl34624), vgr_GE (cl36942),
VI_Rhs_Vgr (cl37255), and VgrG_rel (cl41471).

In the CDD, the collected toxic effector proteins were divided into 112 families, and the immunity
proteins were divided into 92 families. We identified homologues of these toxin families and immunity
protein families in the protein products of all the PAAR genes and the 20 upstream or downstream genes.
Since many homologues of the immunity protein families were not well identified, we supplemented them by
BLASTp alignment using the identified immunity proteins as seeds. The threshold of the E value for the
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BLASTp alignment was less than 0.001. If a protein had some other functions in addition to the toxic effector
function, the protein was recognized as a toxin only if its homologue was located at the C terminus of the
PAAR protein or its coding gene was close to downstream of the immunity protein-coding gene.

Environmental distribution of PAAR genes. The EMP was founded in 2010 to sample the Earth’s
microbial communities to advance our understanding of the organizing biogeographic principles that
govern microbial community structure on Earth (31). A total of 262,011 OTUs were obtained from a set
of 10,000 EMP samples using Deblur software (47). Chimaera filtering relied on the EMP project.

Alignment between the EMP OTUs and 5808 reference or representative prokaryotic genomes was
performed using BLASTn, and the corresponding relationship was determined with 16S rRNA (V4 region)
identity greater than 97% as the standard. We analyzed the environmental distribution of prokaryotes
encoding PAAR genes or vgrG genes based on the corresponding relationship between the reference or
representative genomes and OTUs. The Earth Microbiome Project Ontology (EMPO) classified 17 micro-
bial environments (level 3) as free-living or host-associated (level 1) and saline or nonsaline (if free-living)
or animal or plant (if host-associated) (level 2) (31).
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