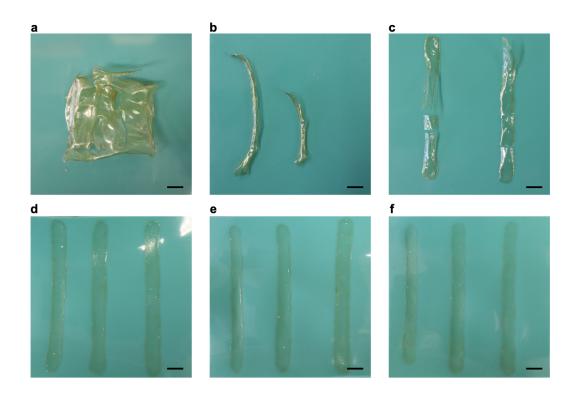
Supplementary Information

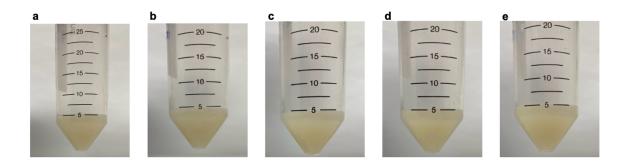
Mechanically Tunable, Compostable, Healable and Scalable Engineered Living Materials

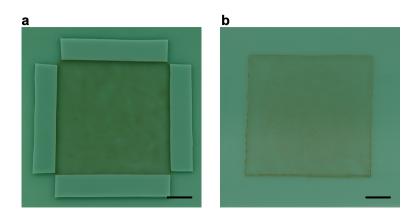
Avinash Manjula-Basavanna^{1,2,3*}, Anna M. Duraj-Thatte², Neel S. Joshi^{1*}

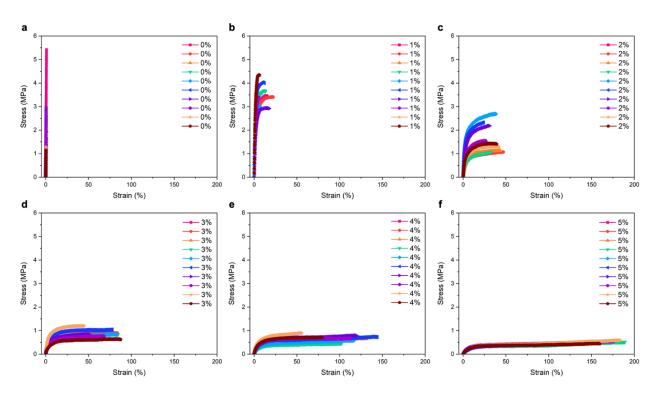
- ¹ Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States
- ² Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States
- ³ Department of Bioengineering, Northeastern University, Boston, Massachusetts, United States


*Corresponding author mbavinash@northeastern.edu ne.joshi@northeastern.edu

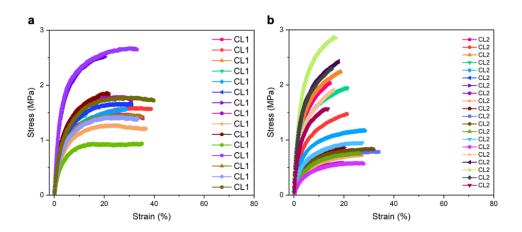
Supplementary Table 1. Genes and their DNA sequence.

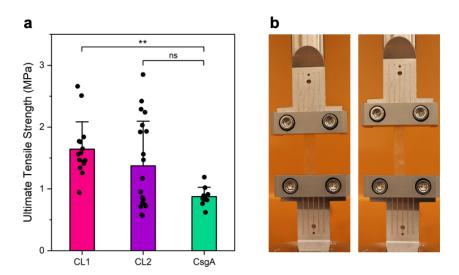

Gene	DNA Sequence
CsgA	GGTGTTGTTCCTCAGTACGGCGGCGGCGGTAACCACGGTGGTGGCGGTAATAA TAGCGGCCCAAATTCTGAGCTGAACATTTACCAGTACGGTGGCGGTAACTCTGC ACTTGCTCTGCAAACTGATGCCCGTAACTCTGACTATTACCCAGCATGGC GGCGGTAATGGTGCAGATGTTGGTCAGGGCTCAGTGACAGCTCAATCGATCTG ACCCAACGTGGCTTCGGTAACAGCGCTACTCTTGATCAGTGGAACGGCAAAAAT TCTGAAATGACGGTTAAACAGTTCGGTGGTGGCAACGGTGCTGCAGTTGACCAG ACTGCATCTAACTCCTCCGTCAACGTGACTCAGGTTGGCTTTGGTAACAACGCG ACCGCTCATCAGTAC
Linker	GGTGGATCTGGTAGCAGCGGCTCTGGTGGTTCTGGGGGGCGGAAGTGGCTCCTC TGGGAGCGGGGGTCGGGTGGTGGCTCGGGTTCATCTGGTAGTGGCGGTTCG GGT
SpyTag	CGCGGCGTGCCGCATATTGTGATGGTGGATGCGTATAAACGCTATAAA
SpyCatcher	GTGACCACCCTGAGCGGCCTGAGCGGCGAACAGGGCCCGAGCGCGATATGA CCACCGAAGAAGATAGCGCGACCCATATTAAATTTAGCAAACGCGATGAAGATG GCCGCGAACTGGCGGCGCCCATGGAACTGCGCGATAGCAGCGGCAAAAC CATTAGCACCTGGATTAGCGATGGCCATGTGAAAGATTTTTATCTGTATCCGGGC AAATATACCTTTGTGGAAACCGCGGCGCCGGATGGCTATGAAGTGGCGACCCC GATTGAATTTACCGTGAACGAAGATGGCCAGGTGACCGTGGATGGCGAAGCGA CCGAAGGCGATGCGCATACC
Spacer	ATGAAAGTGCTGATTCTGGCGTGCCTGGTGGCGCTGGCGCGCGAAAC CATTGAAAGCCTGAGCAGCAGCAGCAGAAAGCATTACCGAATATAAACAGAAAGT GGAAAAAGTGAAACATGAAGATCAGCAGCAGCAGGCGAAGATGAACATCAGGATAA AATTTATCCGAGCTTTCAGCCGCAGCCGCTGATTTATCCGTTTGTGGAACCGATT CCGTATGGCTTTCTGCCGCAGAACATTCTGCCGCTGGCGCAGCCGGCGGTGGT GCTGCCGGTGCCGCAGCCGGAAATTATGGAAGTGCCGAAAGCGAAAGATACCG TGTATACCAAAGGCCGCGTGATGCCGGTGCTGAAAAGCCCGACCATTCCGTTTT TTGATCCGCAGATTCCGAAACTGACCGATCTGGAAAACCTGCATCTGCCGCTGC CGCTGCTGCAGCCGCTGATGCAGCAGGTGCCGCAGCCGATTCCGCAGACCCTG GCGCTGCCGCCGCAGCCGCTGTGGAGCCGTGCCGCAGCCGAAAGTGCTGCCGA TTCCGCAGCAGCTGTGCAGCCGCAGCCGCTGCCGCAGCCCT GCTGCTGAACCAGGAACTGCTGCTGAACCCGACCCATCAGATTTATCCGGTGAC CCAGCCGCTGGCGCCGCGTGCCATTAGCGTG

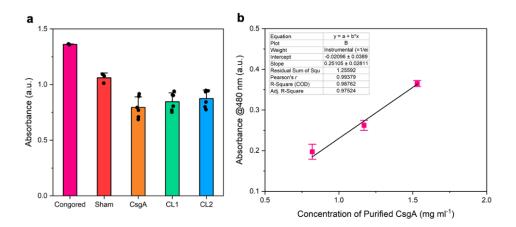

Supplementary Figure 1. Gelator treated curli biomass. Photographs of curli biomass obtained from **a** 1%, **b** 2%, **c** 3%, **d** 4% and **e** 5% gelator (sodium dodecyl sulfate).

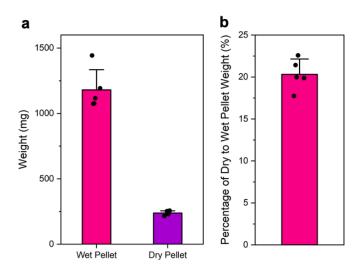

Supplementary Figure 2. Gelator treated MECHS. Photographs of MECHS obtained from **a** 0%, **b** 1%, **c** 2%, **d** 3%, **e** 4% and **f** 5% gelator (sodium dodecyl sulfate). Scale bar 1 cm.

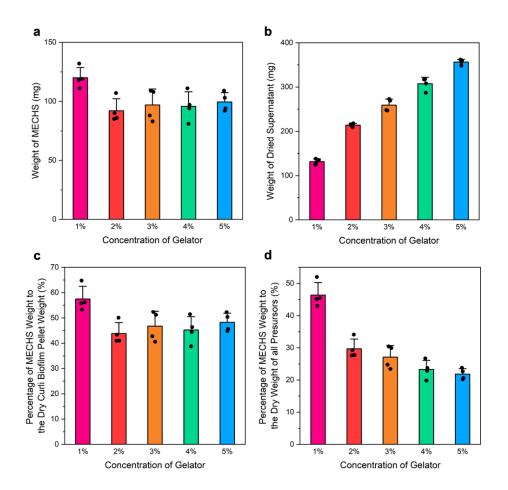
Supplementary Figure 3. Plasticizer treated curli biomass. Photographs of curli biomass obtained from **a** 1%, **b** 2%, **c** 3%, **d** 4% and **e** 5% plasticizer (glycerol).

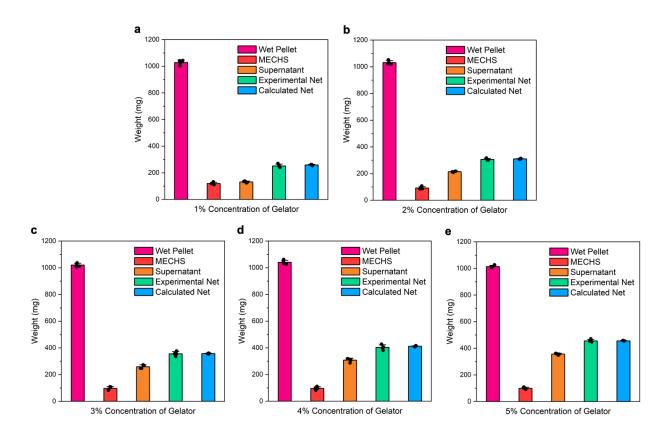

Supplementary Figure 4. Plasticizer treated MECHS. a and **b** Photographs of MECHS film obtained by treating with 3% plasticizer (glycerol) and casting on a silicone mold. Scale bar 1 cm.

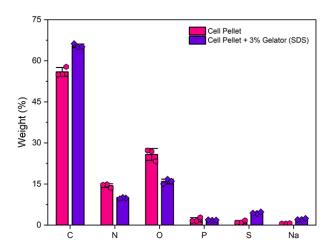

Supplementary Figure 5. Tensile tests of MECHS. Stress strain curves of MECHS films obtained from **a** 0%, **b** 1%, **c** 2%, **d** 3%, **e** 4% and **f** 5% plasticizer (glycerol).

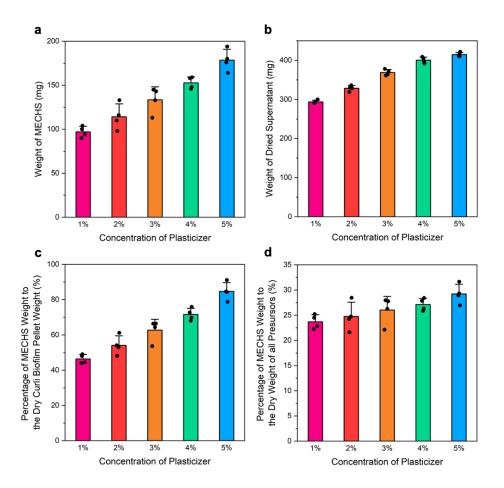

Supplementary Figure 6. Tensile test of MECHS. Representative photographs show the tensile test of MECHS film with the lateral dimension of 1 cm by 4 cm obtained from 3% of gelator. Left image: initial. Right image: before break

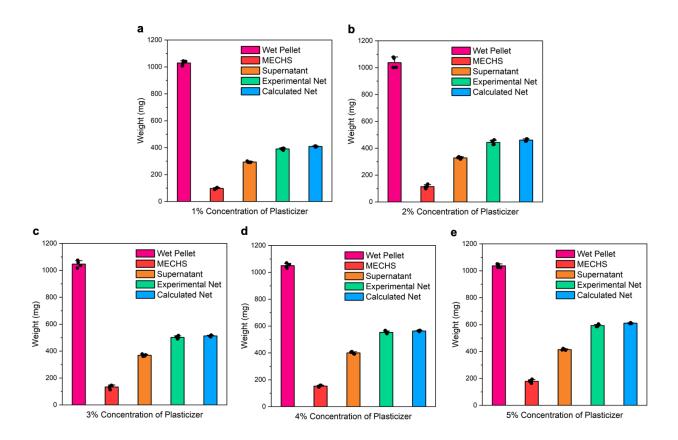

Supplementary Figure 7. Tensile tests of MECHS. Stress strain curves of MECHS obtained from **a** CL1 and **b** CL2.

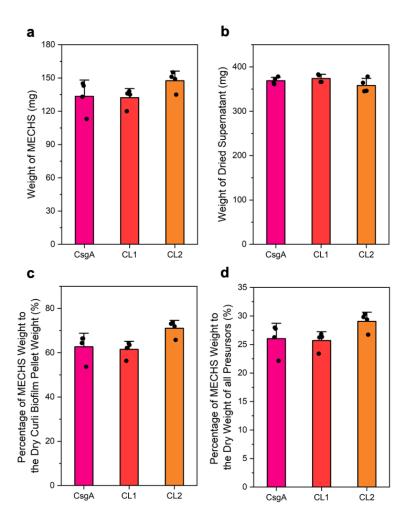

Supplementary Figure 8. Tensile tests of MECHS. a Ultimate tensile strength of CsgA, CL1 and CL2 with 3% plasticizer. Data represented as mean \pm standard deviation. Biological replicates n=10 for CsgA, n=15 for CL1 and n=20 for CL2. **p = 0.0042, *nsp = 0.0637. One-way ANOVA followed by Tukey's multiple comparisons test. **b** Representative photographs show the tensile test of CL2 film with the lateral dimension of 0.5 cm by 4 cm. Left image: initial. Right image: before break.

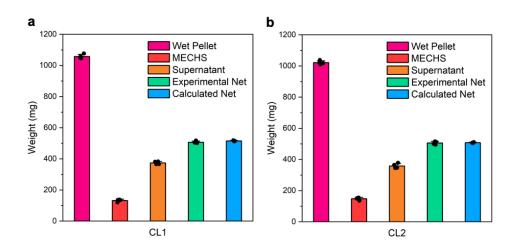

Supplementary Figure 9. Congo Red assay. a Congo Red absorbance at 480 nm for various samples. **b** Congo Red standard curve for purified CsgA (wet weight, CsgA-His). Biological replicates n=3 for Sham and n=6 for CsgA, CL1 and CL2. The net Congo Red absorbance of curli in CsgA, CL1 and CL2 were determined by subtracting the absorbance values of cell pellet having a sham plasmid (without curli operon), to account for the non-specific binding to other biomolecules. Data represented as mean \pm standard deviation.

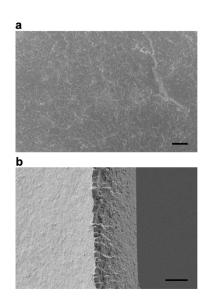

Supplementary Figure 10. Weight analysis. a Weight of wet and dry pellet of curli biofilm obtained from 500 ml cultures. **b** Percentage of dry to wet pellet weight of curli biofilm. n = 5. Data represented as mean \pm standard deviation.

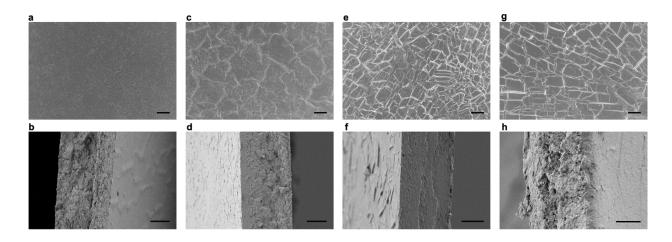

Supplementary Figure 11. Weight analysis of gelator treated MECHS. Weight of a MECHS films and **b** the dried supernatant obtained from 1 to 5% of gelator. Percentage of MECHS film weight to **c** dry curli biofilm pellet weight (20.3% of wet pellet) and **d** dry weight of all precursors for 1 to 5% of gelator. All precursors correspond to weights of cell pellet and that of 1-5% gelator. n = 4. Data represented as mean \pm standard deviation.


Supplementary Figure 12. Weight analysis of gelator treated MECHS. Weights of wet pellet, MECHS film, dried supernatant, experimental net (MECHS and dried Supernatant) and calculated theoretical net (20.3% of wet pellet) for a 1%, b 2%, c 3%, d 4% and e 5% of gelator. n = 4. Data represented as mean \pm standard deviation.

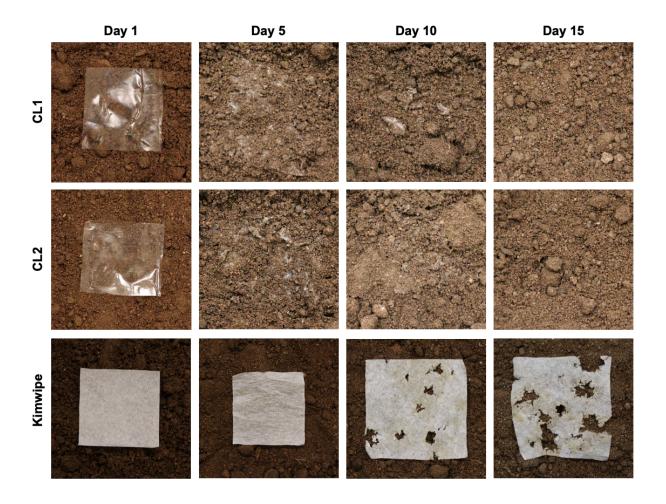

Supplementary Figure 13. Compositional analysis of MECHS. Energy Dispersive X-ray Analysis (EDAX) of *E. coli* curli biofilm cell pellets pretreated with or without 3% gelator (SDS) shows the weight percentage of various elements. n = 3. Data represented as mean \pm standard deviation.

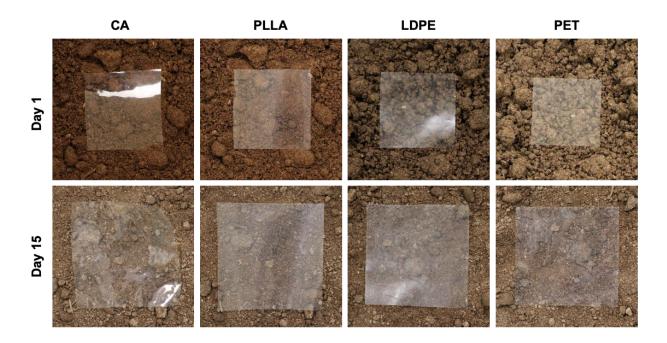

Supplementary Figure 14. Weight analysis of plasticizer treated MECHS. Weight of a MECHS films and **b** the dried supernatant obtained from 1 to 5% of plasticizer. Percentage of MECHS film weight to **c** dry curli biofilm pellet weight (20.3% of wet pellet) and **d** dry weight of all precursors for 1 to 5% of plasticizer. All precursors correspond to weights of cell pellet and that of 3% gelator and 1-5% plasticizer. n = 4. Data represented as mean \pm standard deviation.

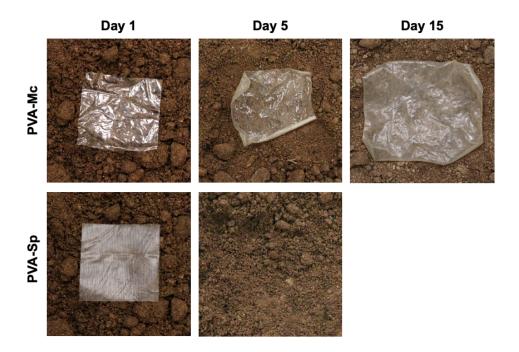

Supplementary Figure 15. Weight analysis of plasticizer treated MECHS. Weights of wet pellet, MECHS film, dried supernatant, experimental net (MECHS and dried Supernatant) and calculated theoretical net (20.3% of wet pellet) for a 1%, b 2%, c 3%, d 4% and e 5% of plasticizer. n = 4. Data represented as mean \pm standard deviation.

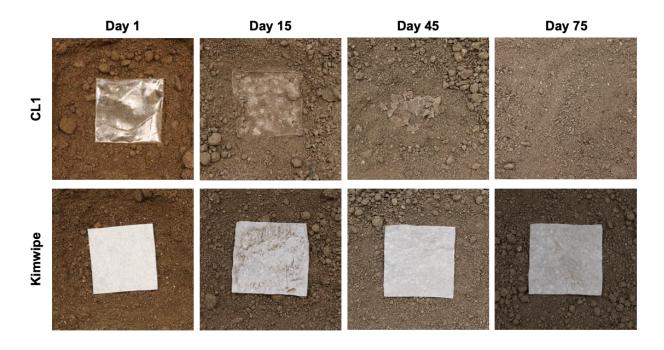

Supplementary Figure 16. Weight analysis of covalently crosslinked MECHS. Weight of a MECHS films and **b** the dried supernatant of CsgA, CL1 and CL2. Percentage of MECHS weight to **c** dry curli biofilm pellet weight (20.3% of wet pellet) and **d** dry weight of all precursors for CsgA, CL1 and CL2. All precursors correspond to weights of cell pellet and that of 3% gelator and 3% plasticizer. n = 4. Data represented as mean \pm standard deviation.

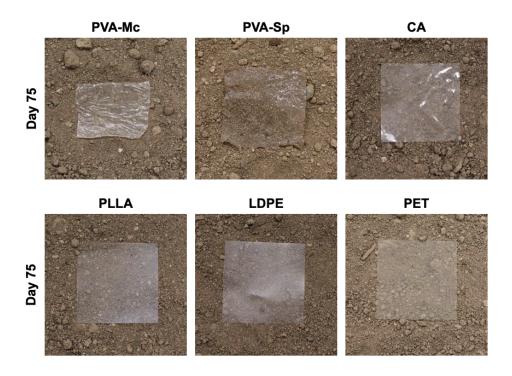
Supplementary Figure 17. Weight analysis of covalently crosslinked MECHS. Weights of wet pellet, MECHS, dried supernatant, experimental net (MECHS and dried Supernatant) and calculated theoretical net (20.3% of wet pellet) for a CL1 and b CL2. n = 4. Data represented as mean \pm standard deviation.

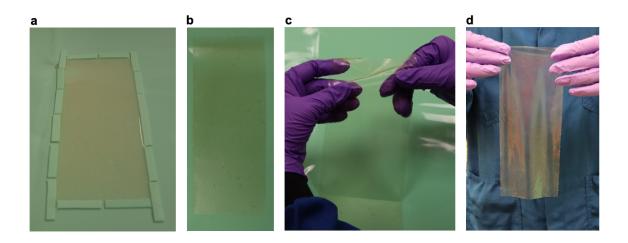

Supplementary Figure 18. Morphological analysis of MECHS. FESEM image of $\bf a$ top view and $\bf b$ side view of MECHS film obtained from 3% gelator. Scale bar $\bf a$ 20 μm and $\bf b$ 10 μm .

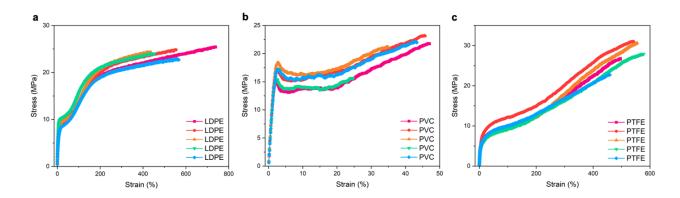

Supplementary Figure 19. Morphological analysis of MECHS. FESEM image of $\mathbf{a}, \mathbf{c}, \mathbf{e}, \mathbf{g}$ top view and $\mathbf{b}, \mathbf{d}, \mathbf{f}, \mathbf{h}$ side view of MECHS film obtained from \mathbf{a}, \mathbf{b} 1%, \mathbf{c}, \mathbf{d} 2%, \mathbf{e}, \mathbf{f} 4% and \mathbf{g}, \mathbf{h} 5% plasticizer. Scale bar Top Row: 20 μ m and Bottom Row: 10 μ m.

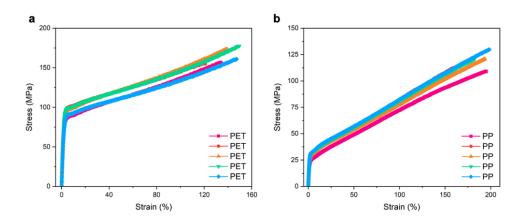

Supplementary Figure 20. Greenhouse for biodegradation experiment. Photograph of a mini greenhouse setup utilized for testing the compostability of MECHS.

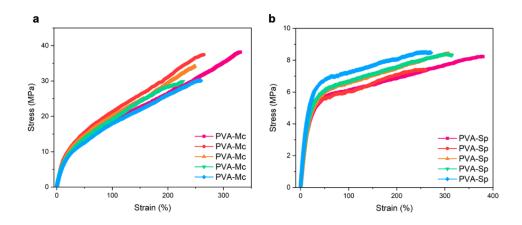

Supplementary Figure 21. Compostability of MECHS and Kimwipe in a fresh fishnure. Photographs show the biodegradation of CL1, CL2 and Kimwipe in a fresh fishnure. The lateral dimensions of the samples were 5 cm by 5 cm.

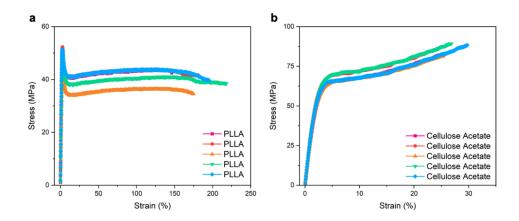

Supplementary Figure 22. Compostability of Bioplastics and Plastics in a fresh fishnure. Photographs show the biodegradation of cellulose acetate (CA), poly-L-lactic acid (PLLA), low density polyethylene (LDPE) and polyethylene terephthalate (PET) in a fresh fishnure. The lateral dimensions of the samples were 5 cm by 5 cm.

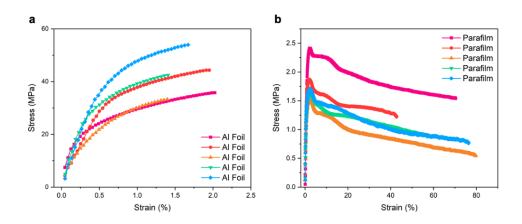

Supplementary Figure 23. Compostability of Polyvinyl alcohol in a fresh fishnure. Photographs show the films of Polyvinyl alcohol - Mckesson (PVA-Mc) and Polyvinyl alcohol - Superpunch (PVA-Sp) in a fresh fishnure. The lateral dimensions of the samples were 5 cm by 5 cm.

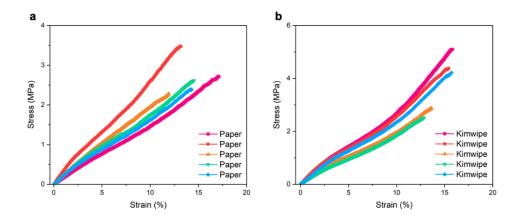

Supplementary Figure 24. Compostability of MECHS and Kimwipe in a dry fishnure. Photographs show the biodegradation of CL1 and Kimwipe in a dry fishnure. The lateral dimensions of the samples were 5 cm by 5 cm.

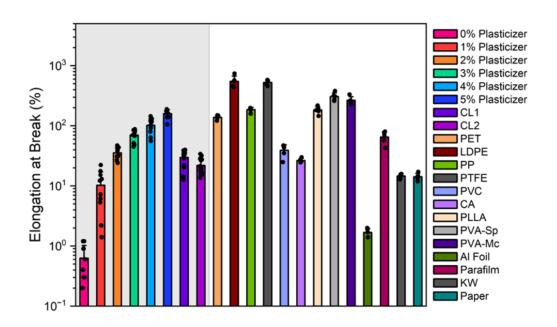

Supplementary Figure 25. Compostability of Bioplastics and Plastics in a dry fishnure. Photographs show the biodegradation of Polyvinyl alcohol - Mckesson (PVA-Mc) and Polyvinyl alcohol - Superpunch (PVA-Sp), cellulose acetate (CA), poly-L-lactic acid (PLLA), low density polyethylene (LDPE) and polyethylene terephthalate (PET) in a dry fishnure. The lateral dimensions of the samples were 5 cm by 5 cm.

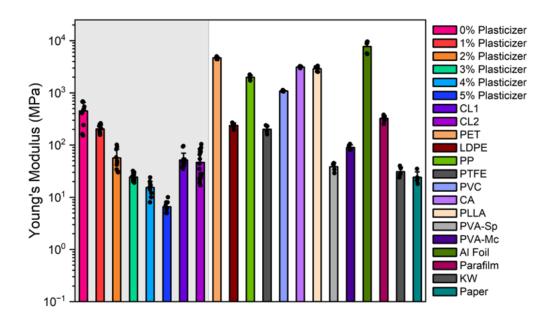

Supplementary Figure 26. Biofabrication of large MECHS prototype. Photographs show **a** casting of curli biomass on to a silicone mold, **b** ambient dried MECHS, **c** peeling of MECHS film from the silicone mold and **d** free-standing flexible MECHS film of lateral dimension 10 cm by 25 cm.

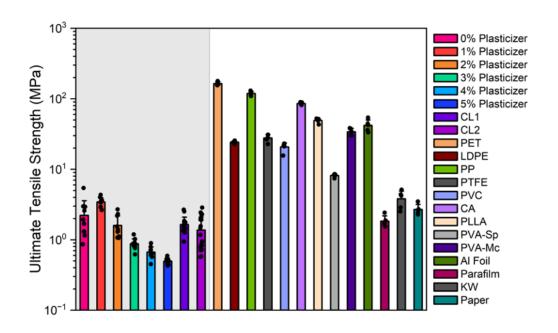

Supplementary Figure 27. Tensile tests. Stress strain curves of **a** Low density polyethylene (LDPE), **b** Polyvinyl chloride (PVC) and **c** Polytetrafluoroethylene (PTFE).


Supplementary Figure 28. Tensile tests. Stress strain curves of a Polyethylene terephthalate (PET) and b Polypropylene (PP).


Supplementary Figure 29. Tensile tests. Stress strain curves of **a** PVA-McKesson and **b** PVA-Superpunch. PVA: Polyvinyl alcohol.


Supplementary Figure 30. Tensile tests. Stress strain curves of **a** Poly-L-lactic acid (PLLA) and **b** Cellulose Acetate.


Supplementary Figure 31. Tensile tests. Stress strain curves of **a** Aluminum foil and **b** parafilm.


Supplementary Figure 32. Tensile tests. Stress strain curves of a Toilet paper and b Kimwipe.

Supplementary Figure 33. Tensile tests. Plot shows the elongation at break for MECHS, various synthetic materials and biomaterials. Biological replicates n = 10 for 0-5% plasticizer, n = 15 for CL1, n = 20 for CL2 and n = 5 for all other samples. Low density polyethylene (LDPE), Polytetrafluoroethylene (PTFE), Poly-L-lactic acid (PLLA), Polyethylene terephthalate (PET), Cellulose acetate (CA), Polypropylene (PP), Polyvinyl chloride (PVC), Polyvinyl alcohol - Superpunch (PVA-Sp), Polyvinyl alcohol - Mckesson (PVA-Mc), Aluminum foil (Al Foil), Parafilm, Kimwipes (KW) and Toilet paper.

Supplementary Figure 34. Tensile tests. Plot shows the Young's modulus for MECHS, various synthetic materials and biomaterials. Biological replicates n=10 for 0-5% plasticizer, n=15 for CL1, n=20 for CL2 and n=5 for all other samples. Low density polyethylene (LDPE), Polytetrafluoroethylene (PTFE), Poly-L-lactic acid (PLLA), Polyethylene terephthalate (PET), Cellulose acetate (CA), Polypropylene (PP), Polyvinyl chloride (PVC), Polyvinyl alcohol - Superpunch (PVA-Sp), Polyvinyl alcohol - Mckesson (PVA-Mc), Aluminum foil (Al Foil), Parafilm, Kimwipes (KW) and Toilet paper.

Supplementary Figure 35. Tensile tests. Plot shows the ultimate tensile strength for MECHS, various synthetic materials and biomaterials. Biological replicates n = 10 for 0-5% plasticizer, n = 15 for CL1, n = 20 for CL2 and n = 5 for all other samples. Low density polyethylene (LDPE), Polytetrafluoroethylene (PTFE), Poly-L-lactic acid (PLLA), Polyethylene terephthalate (PET), Cellulose acetate (CA), Polypropylene (PP), Polyvinyl chloride (PVC), Polyvinyl alcohol - Superpunch (PVA-Sp), Polyvinyl alcohol - Mckesson (PVA-Mc), Aluminum foil (Al Foil), Parafilm, Kimwipes (KW) and Toilet paper.