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Abstract: Research on block copolymers (BCPs) has played a critical role in the development of
polymer chemistry, with numerous pivotal contributions that have advanced our ability to prepare,
characterize, theoretically model, and technologically exploit this class of materials in a myriad
of ways in the fields of chemistry, physics, material sciences, and biological and medical sciences.
The breathtaking progress has been driven by the advancement in experimental techniques enabling
the synthesis and characterization of a wide range of block copolymers with tailored composition,
architectures, and properties. In this review, we briefly discussed the recent progress in BCP synthesis,
followed by a discussion of the fundamentals of self-assembly of BCPs along with their applications.
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1. Introduction

Block copolymers (BCPs) are a specific class of copolymers, in which the chemically distinct
monomer units are grouped in discrete blocks along the polymer chain [1]. Figure 1 illustrates a
few of the many architectures of BCPs, which can be configured into linear, branched (graft and
star), and cyclic molecular architectures. Thanks to the advancement of polymer synthetic strategies
and techniques, e.g., controlled polymerization techniques along with facile post-polymerization
functionalization, BCPs with precisely controlled molecular weights and defined macromolecular
architectures can be prepared [2–8]. The extraordinary structural and compositional versatility of BCPs
has facilitated an explosion in the discovery and implementation of innovative synthetic strategies
capable of generating previously unattainable levels of man-made architectural complexity.
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star terpolymers, and cyclic block terpolymers.
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One of the ubiquitous features of BCPs is their ability to form a plethora of nanoscale ordered
structures. By manipulating the molecular parameters such as the Flory-Huggins interaction parameter
(χ), the degree of polymerization (N), and the volume fraction (f ), various morphologies including
spherical, cylindrical, lamellar, and others have been revealed both experimentally and theoretically [9,10].
Furthermore, recent studies have demonstrated that the macromolecular architecture is another key
factor in controlling both the resulting morphologies and their extent of long range order [11]. Due to
these fascinating features, research on BCPs has long been a popular topic worldwide. Figure 2 shows
the number of publications with the topic “block copolymer” over the past five decades.
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Figure 2. The number of publications with block copolymer as topic against year. The data were 
obtained from Web of Science (2017 Clarivate Analytics). 

In addition to the academic interest in BCPs, the scope of applications for BCPs has been rapidly 
expanding to the fields of advanced materials (e.g., thermoplastic elastomers), drug delivery, 
patterning, porous materials, and many others over the last two decades [12]. Thermoplastic 
elastomers take advantage of the combination of rubbery segments and rigid segments within block 
copolymers. Drug encapsulation and delivery are facilitated by the amphiphilicity of block 
copolymers in solution. The application of block copolymers in both the soft lithography and 
synthesis of porous materials is based on the various nanoscale morphologies induced by self-
assembly. Each of the applications mentioned above will be elaborated on in the main text.  

This review briefly covers the recent breathtaking progress in the synthesis, self-assembly 
behavior, and applications of BCPs. Section 2 briefly describes the synthetic strategies for the 
preparation of BCPs. Section 3 discusses BCP self-assembly in bulk and in solution. Section 4 presents 
several major applications of BCPs in thermoplastic elastomer, drug delivery, soft lithography, and 
porous material applications. The conclusions and future perspectives of BCP research are presented 
in the last section. We hope that this review will attract emerging researchers to this field and advance 
the understanding and utilization of the fascinating BCP systems.  

2. Synthesis of BCPs 

Significant work has been focused on the synthesis of BCPs with structural and composition 
variety. The synthetic strategies mainly include: (1) the sequential addition of monomers via 
“living”/controlled polymerization techniques; and (2) coupling reactions exploiting the active chain-
ends of different chain segments [13]. 
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In addition to the academic interest in BCPs, the scope of applications for BCPs has been rapidly
expanding to the fields of advanced materials (e.g., thermoplastic elastomers), drug delivery, patterning,
porous materials, and many others over the last two decades [12]. Thermoplastic elastomers take
advantage of the combination of rubbery segments and rigid segments within block copolymers.
Drug encapsulation and delivery are facilitated by the amphiphilicity of block copolymers in solution.
The application of block copolymers in both the soft lithography and synthesis of porous materials
is based on the various nanoscale morphologies induced by self-assembly. Each of the applications
mentioned above will be elaborated on in the main text.

This review briefly covers the recent breathtaking progress in the synthesis, self-assembly behavior,
and applications of BCPs. Section 2 briefly describes the synthetic strategies for the preparation of
BCPs. Section 3 discusses BCP self-assembly in bulk and in solution. Section 4 presents several major
applications of BCPs in thermoplastic elastomer, drug delivery, soft lithography, and porous material
applications. The conclusions and future perspectives of BCP research are presented in the last section.
We hope that this review will attract emerging researchers to this field and advance the understanding
and utilization of the fascinating BCP systems.

2. Synthesis of BCPs

Significant work has been focused on the synthesis of BCPs with structural and composition
variety. The synthetic strategies mainly include: (1) the sequential addition of monomers via
“living”/controlled polymerization techniques; and (2) coupling reactions exploiting the active
chain-ends of different chain segments [13].
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2.1. Sequential Addtion Polymerization

2.1.1. Controlled Polymerization

Controlled radical polymerization (CRP) techniques represent the most versatile and facile
approach for BCP synthesis, mainly due to their compatibility with a wide spectrum of monomers, high
tolerance of functional groups and impurities, and ease of experimental setup [14–16]. The preparation
of BCPs using sequential CRP relies on the fact that the reactive polymer chain end is preserved
by a reversible reaction between the active species and the dormant species [17–19]. Over the last
two decades, numerous literature has described the synthesis of BCPs via controlled polymerization
techniques including: atom transfer racial polymerization (ATRP), reversible addition-fragmentation
chain transfer (RAFT) radical polymerization, nitroxide-mediated polymerization (NMP), and many
others [20–22].

Polymer chain ends equipped with an alkyl halide enables ATRP to prepare BCPs through
the addition of a second monomer. For example, a series of biocompatible, thermo-responsive
ABA triblock copolymers comprising poly(N-isopropyl acrylamide) (PNIPAM) as the A block and
poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) as the central B block was synthesized using
ATRP initiated by a difunctional initiator, as illustrated in Scheme 1 [23]. An α,ω-Br terminated
PMPC was first synthesized in methanol, purified, and used subsequently for the polymerization of
NIPAM. This doubly amphiphilic BCP exhibits interesting thermosensitive properties, whereas above
the lower critical solution temperature (LCST) of PNIPAM, the BCP self-assembles into a physical
gel. The phosphoryl choline moiety is an important component of cell membranes. The cell viability
experiments confirmed that these thermo-responsive gels are sufficiently biocompatible to act as a
culture medium for hamster lung cells.
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Scheme 1. Synthesis of the poly(N-isopropyl acrylamide-b-2-methacryloyloxyethylphosphorylcholine-
b-N-isopropyl acrylamide) (PNIPAM-b-PMPC-b-PNIPAM) triblock copolymers via atom transfer racial
polymerization (ATRP) using a bifunctional ATRP initiator.

Matyjaszewski et al. reported the preparation of poly(n-butyl acrylate-b-methyl methacrylate)
(PBA-b-PMMA) by activators regenerated by electron transfer atom transfer radical polymerization
(ARGET ATRP) with ppm levels of Cu catalyst [24]. Controlled polymerization was realized using
tris(2-pyridylmethyl)amine (TPMA) as a ligand because of its strong binding interaction to copper.
This new ARGET system was also successfully applied to the efficient synthesis of styrene and
n-butyl acrylate block copolymers [25]. Later on, miniemulsion ARGET ATRP was developed
by the same group and used for the preparation of homopolymers and block copolymers [26,27].
However, ATRP still does not work for some monomers, though it has many advantages compared
to other polymerization methods for block copolymerization. For example, some monomers contain
functionality that can form complexes with transition metal catalyst and have a detrimental effect
on polymerization, such as side reactions resulting in a broad polydispersity index (PDI) [15].
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Tremendous efforts have been devoted to developing novel ligands to minimize such side reactions [28].
ATRP-based dispersion polymerizations have also been developed. Armes and coworkers synthesized
zwitterionic PMPC-based block copolymers by a dispersion ATRP process [29]. PEG–Br was used as
macroinitiator with CuBr/ 2,2′-bipyridine as the catalyst for the dispersion polymerization of PMPC
in isopropanol/water (9:1, w/w). Using ethylene glycol dimethacrylate (EGDMA) as a crosslinker,
hydrogel particles with controllable sizes were obtained. The particle size could be controlled by
the block composition and initial MPC concentration. Using a similar strategy, the same group
synthesized well-defined PEG-b-PDMAEMA-b-PMPC. Huang and coworkers synthesized a series
of ABA triblock copolymers, consisting of double-bond-containing poly(phenoxyallene) (PPOA),
PMMA, or PBA segments using sequential free radical polymerization and ATRP [30]. A bifunctional
initiator bearing azo and halogen-containing ATRP initiating groups was first used to initiate the
conventional free radical homopolymerization of phenoxyallene with a cumulated double bond to give
a PPOA-based macroinitiator with ATRP-initiating groups at both ends. PMMA-b-PPOA-b-PMMA
and PBA-b-PPOA-b-PBA triblock copolymers were synthesized by the ATRP of methyl methacrylate
and n-butyl acrylate, as depicted in Scheme 2.
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RAFT, on the other hand, has seen rapid growth due to its superior compatibility with a
broader range of functionalities and high tolerance of impurities. The creative combination of RAFT
polymerization with other polymerization techniques, such as ATRP or ring-opening polymerization,
has extended the array of available architectures such as graft, star, hyperbranched, etc. [31,32].
The general method for the preparation of BCPs using the RAFT process is through sequential
polymerization. For the synthesis of an AB diblock copolymer, the first block was synthesized via
a RAFT process, followed by subsequent purification. The resulting end-reactive polymer acts as a
macro-RAFT agent for a second polymerization step. To ensure complete end group functionalization,
the polymerization yield of the first block is usually kept rather low (<30%). In contrast to this two-step
process, Chaduc et al. reported a simple one-pot RAFT process for amphiphilic block copolymers
in water [33]. Using 4-cyano-4-thiothiopropylsulfanyl pentanoic acid (CTPPA) as the RAFT agent,
poly(acrylic acid), poly(methacrylic acid), or poly(methacrylic acid-co-poly(ethylene oxide) methyl
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ether methacrylate) was first formed in water. The resulting macro-RAFT agents were then directly
used without further purification for the RAFT polymerization of styrene in water in the same reactor.
This strategy leads to a very good control of the resulting amphiphilic block copolymers. Very recently,
short poly(ethylene glycol) (PEG) was employed as the solvent in the macromolecular RAFT
agent-mediated dispersion polymerization of BCPs such as PEG-b-PS, P4VP-b-PS, and PNIPAM-b-PS.
A new formulation of polymerization-induced self-assembly of PEG named PEG-PISA to synthesize
diblock copolymer nanoassemblies was reported. In PEG-PISA, the viscous PEG affords advantages
including fast polymerization rate, good control over the synthesis of diblock copolymers, and in
situ synthesis of both amphiphilic and doubly hydrophobic diblock copolymer nanoassemblies at a
polymer concentration of up to 50%. Furthermore, two new self-assembled morphologies of ellipsoidal
vesicles and nanotubes were formed via PEG-PISA. Nevertheless, RAFT dispersion polymerization
often suffers from rather poor colloidal stability, leading to low polymerization rate, broad molecular
weight distribution, and lack of control over molecular weight when using a small RAFT agent.
The reason for this is believed to be the superswelling effect in the early nucleation stage [34]. Zhu et al.
employed an amphiphilic oligomer, poly(acrylic acid-b-styrene) trithiocarbonate, as both surfactant
and RAFT agent to polymerize styrene. This macro-RAFT agent was capable of enhancing the colloidal
stability and, as a result, the polymerization was successful [34,35]. Well-controlled PS with a molecular
weight up to 120 kg/mol and PS-b-PBA were readily synthesized using this method. Furthermore,
the same group demonstrated that this method could be used as a promising approach to synthesize
thermoplastic elastomer materials [36].

NMP is commonly used for the synthesis of block copolymers consisting of PS, PMMA,
poly(vinyl acetate) (PVAc) and poly(dimethyl acrylamide) (PDMA). In a typical process, styrene is
polymerized firstly using a bi-molecular initiator benzoyl peroxide and 2,2,6,6-tetramethylpiperidinoxy
(TEMPO). The PS segment bearing the TEMPO end group is subsequently used as the macroinitiator
for the second block. While the molecular weight distributions are usually broad, this may
not limit their practical applications. The monomer conversion is also low when polymerized
at high temperature. The deviation from the target molecular weight became more significant,
especially when it became higher than 100,000 g/mol. Hawker et al. reported a modified NMP
system for the controlled polymerization of dienes in the presence of alkoxyamine initiators
based on a 2,2,5-trimethyl-4-phenyl-3-azahexane-3-oxy skeleton (Scheme 3). A detailed study
revealed that this modified system was able to control the homopolymerization of isoprene to
high conversion and molecular weights from 1000 to 100 000 g/mol with polydispersities of
1.06–1.15. Polyisoprene-containing BCPs, PI-b-PtBuA and PS-b-PI, were also prepared with similar
control. In comparison with conventional TEMPO systems, these new systems exhibit a significant
improvement in the ability to control the polymerization and further demonstrate the versatility of
nitroxide-mediated living free radical procedures [37].
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2.1.2. Living Anionic Polymerization

The pioneering work on BCP synthesis using living anionic polymerization (LAP) was reported by
Szwarc et al. in 1956 [38,39]. This type of polymerization proceeds to quantitative conversion without
chain transfer and/or chain termination. Although there might be an argument that the demanding
experimental conditions is one of its limitations, LAP has proved itself to be the best polymerization
technique for the preparation of well-defined BCPs based on vinyl monomers such as styrene,
dienes, (meth)acrylates, vinyl pyridines, acrylonitriles, as well as cyclic monomers such as lactones,
oxiranes, and siloxanes over the last 60 years [2,40,41]. Anionic polymerization is widely exploited
in industry to create BCPs on a massive scale. Because of its superior control over the molecular
weight, architecture, composition, and functionality as compared to controlled radical polymerization,
almost all well-defined BCPs with complex architectures such as star, comb, graft, dendritic, etc. are
achievable via the combination of anionic polymerization and linking chemistry [6,42–47]. There are
several insightful reviews available that describe the recent progress in the synthesis of well-defined
BCPs via LAP [48,49].

One key condition that must be satisfied is that the nucleophilicity of the macroanion must be
sufficiently high to initiate the second monomer. Thus, the monomers must be added in the order of
increasing electron affinity: styrene < butadiene ~isoprene < vinyl pyridine < methyl acrylate < ethylene
oxide. One classic example of the synthesis of multiblock copolymers by sequential polymerization
was reported by Hadjichristidis et al., as shown in Scheme 4A [50]. The resulting BCPs exhibited a very
low PDI of 1.04 and the compositions observed from 1H-NMR were consistent with the feeding ratios.
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Nevertheless, sequential LAP is restricted especially when the monomers exhibit different
reactivities. For example, the living polymer of polydimethylsiloxane is not sufficiently nucleophilic to
initiate the polymerization of t-butyl methacrylate. In order to prepare PDMS-b-PtBA, a linking reagent
bearing with chlorosilane moiety was used due to its high reactivity (Scheme 4B) [51]. Hirao et al.
prepared a wide variety of block copolymers with extremely low PDI using new linking methodology.
Another advantage of this linking chemistry is that it opens endless possibilities of various molecular
architectures [5,42,52,53], as demonstrated by the work of Mays, Hadjichristidis, Hirao, Quirk, and
many others through chlorosilane and 1,1-diphenylethylene (DPE)-based linking chemistry (Figure 3).
Well-defined BCPs with structural and compositional homogeneity prepared using LAP have served as
templates for structure-property relationship studies and have also found many important industrial
applications such as adhesives and sealants, in automotive, wire, paving, and footwear applications,
etc. [54].
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2.2. Combination of Different Polymerization Techniques

In some cases, sequential addition polymerization techniques are limited when the monomers are
not suitable to be polymerized using the same polymerization mechanism. A second approach to BCPs
is the coupling of two different polymerization techniques or block copolymer segments either using a
“click” reaction such as Diels–Alder cycloaddition reaction, a thiol-ene reaction, or a copper-catalyzed
azide–alkyne cycloaddition reaction (CuAAC). With appropriate care, this approach can yield BCPs
without substantial homopolymers and comparable PDIs as compared with the sequential addition
approach. Yagci et al. reported a one-pot synthetic approach to BCPs using the combination of ATRP
and ring opening polymerization (ROP) methods simultaneously [56]. Two structurally different
monomers were selected and the polymerization was initiated simultaneously using a difunctional
initiator, as shown in Scheme 5. They found that the two polymerization mechanisms proceeded
without affecting each other. The obtained products showed characteristic thermal transitions of both
PMMA and polycaprolactone (PCL) blocks, indicating that BCPs were synthesized.

Polymers 2017, 9, 494  7 of 31 

 

Star block copolymer Star-b-linear-b-star

Comb Star"Barbwire"

Miktoarm Star "Comb"

"Centipede"  

Figure 3. Illustration of complex architectures using living anionic polymerization and coupling 
chemistry. Adapted from Reference [55]. (Copyright (2017) WILEY-VCH Verlag GmbH & Co. KGaA, 
Weinheim). 

2.2. Combination of Different Polymerization Techniques 

In some cases, sequential addition polymerization techniques are limited when the monomers 
are not suitable to be polymerized using the same polymerization mechanism. A second approach to 
BCPs is the coupling of two different polymerization techniques or block copolymer segments either 
using a “click” reaction such as Diels–Alder cycloaddition reaction, a thiol-ene reaction, or a copper-
catalyzed azide–alkyne cycloaddition reaction (CuAAC). With appropriate care, this approach can 
yield BCPs without substantial homopolymers and comparable PDIs as compared with the 
sequential addition approach. Yagci et al. reported a one-pot synthetic approach to BCPs using the 
combination of ATRP and ring opening polymerization (ROP) methods simultaneously [56]. Two 
structurally different monomers were selected and the polymerization was initiated simultaneously 
using a difunctional initiator, as shown in Scheme 5. They found that the two polymerization 
mechanisms proceeded without affecting each other. The obtained products showed characteristic 
thermal transitions of both PMMA and polycaprolactone (PCL) blocks, indicating that BCPs were 
synthesized. 

 
Scheme 5. One pot polymerization of PMMA-b-PCL using combination of metal-free ATRP and ring 
opening polymerization (ROP) simultaneously under sunlight. Reprinted from Reference [56]. 
(Copyright (2017) Royal Society of Chemisty). 

The synthesis of complex polymeric materials through post-polymerization coupling reactions 
has also attracted significant research interest. Van Hest et al. synthesized PMMA-b-PEG diblock 
copolymers via the combination of ATRP and alkyne-azide click reaction, as shown in Figure 4. 
Terminal alkyne and azide moieties were conveniently introduced via protected functionalized 
initiators [57]. 

Hawker et al. synthesized a series of cyclic PS-b-PEO BCPs using the ATRP and CuAAC of α,ω-
azide-functionalized PS and α,ω-alkyne PEO homopolymers (Figure 5) [11]. The α,ω-azide-
functionalized PS was polymerized using a difunctional ATRP initiator, ethylene bis-(2-

Scheme 5. One pot polymerization of PMMA-b-PCL using combination of metal-free ATRP and
ring opening polymerization (ROP) simultaneously under sunlight. Reprinted from Reference [56].
(Copyright (2017) Royal Society of Chemisty).

The synthesis of complex polymeric materials through post-polymerization coupling reactions
has also attracted significant research interest. Van Hest et al. synthesized PMMA-b-PEG diblock
copolymers via the combination of ATRP and alkyne-azide click reaction, as shown in Figure 4.
Terminal alkyne and azide moieties were conveniently introduced via protected functionalized
initiators [57].

Hawker et al. synthesized a series of cyclic PS-b-PEO BCPs using the ATRP and CuAAC of
α,ω-azide-functionalized PS and α,ω-alkyne PEO homopolymers (Figure 5) [11]. The α,ω-azide-
functionalized PS was polymerized using a difunctional ATRP initiator, ethylene bis-(2-bromoisobutyrate).
The α,ω-Br-terminated PS was then conveniently converted to the azide moiety. The α,ω-alkyne PEO
homopolymer was obtained by treating α,ω-hydroxyl PEO with propargyl bromide. The desired
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products were isolated using preparative gel permeation chromatography. Tezuka et al. reviewed
interesting work about topological studies of BCPs [58].

Polymers 2017, 9, 494  8 of 31 

 

bromoisobutyrate). The α,ω-Br-terminated PS was then conveniently converted to the azide moiety. 
The α,ω-alkyne PEO homopolymer was obtained by treating α,ω-hydroxyl PEO with propargyl 
bromide. The desired products were isolated using preparative gel permeation chromatography. 
Tezuka et al. reviewed interesting work about topological studies of BCPs [58].  

 

Figure 4. (a) Preparation of PMMA-b-PEG block copolymer via ATRP and azide-alkyne click reaction. 
(b) Size exclusion chromatography (SEC) curves of PMMA, polyethylene glycol (PEG), and PMMA-
b-PEG diblock copolymer. Reprinted from Reference [57]. (Copyright (2005) Royal Society of 
Chemistry). 

 
Figure 5. Synthesis of cyclic PS-b-PEO copolymer. Reprinted from Reference [11]. (Copyright (2012) 
American Chemical Society). 

RAFT polymers can be conveniently converted to thiols by treating the chain end with aliphatic 
amines. A block copolymer can therefore be obtained through related thiol chemistry (Figure 6). 

Figure 4. (a) Preparation of PMMA-b-PEG block copolymer via ATRP and azide-alkyne click
reaction. (b) Size exclusion chromatography (SEC) curves of PMMA, polyethylene glycol (PEG),
and PMMA-b-PEG diblock copolymer. Reprinted from Reference [57]. (Copyright (2005) Royal Society
of Chemistry).

Polymers 2017, 9, 494  8 of 31 

 

bromoisobutyrate). The α,ω-Br-terminated PS was then conveniently converted to the azide moiety. 
The α,ω-alkyne PEO homopolymer was obtained by treating α,ω-hydroxyl PEO with propargyl 
bromide. The desired products were isolated using preparative gel permeation chromatography. 
Tezuka et al. reviewed interesting work about topological studies of BCPs [58].  

 

Figure 4. (a) Preparation of PMMA-b-PEG block copolymer via ATRP and azide-alkyne click reaction. 
(b) Size exclusion chromatography (SEC) curves of PMMA, polyethylene glycol (PEG), and PMMA-
b-PEG diblock copolymer. Reprinted from Reference [57]. (Copyright (2005) Royal Society of 
Chemistry). 

 
Figure 5. Synthesis of cyclic PS-b-PEO copolymer. Reprinted from Reference [11]. (Copyright (2012) 
American Chemical Society). 

RAFT polymers can be conveniently converted to thiols by treating the chain end with aliphatic 
amines. A block copolymer can therefore be obtained through related thiol chemistry (Figure 6). 

Figure 5. Synthesis of cyclic PS-b-PEO copolymer. Reprinted from Reference [11]. (Copyright (2012)
American Chemical Society).

RAFT polymers can be conveniently converted to thiols by treating the chain end with aliphatic
amines. A block copolymer can therefore be obtained through related thiol chemistry (Figure 6).
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Barner-Kowollik and Stenzel et al. first synthesized a series of star polymers by a combination
of RAFT chemistry and hetero Diels-Alder reaction [60], in which the reaction occurs between
thiocarbonyl group and a diene in a [4 + 2] cycloaddition process (Scheme 6).
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The incorporation of supramolecular chemistry also provides a very interesting pathway to form
BCPs. Schubert et al. demonstrated that terpyridine-terminated PS and PEO can form BCPs with
RuCl3 [61]. The coordination junction point was formed in two steps: the terpyridine-terminated
PEO was selectively complexed with RuCl3 yielding monocomplex of Ru(III); terpyridine-terminated
PS was then reacted with the monocomplex under the reduction of Ru(III) to Ru(II), resulting in
PS-b-PEO. One advantage of this approach is that the non-covalent junction point can be broken under
external stimuli.

3. Self-Assembly of BCPs

3.1. Self-Assembly in Bulk

Self-assembly of BCPs with immiscible blocks has been extensively studied via experiments and
simulations since the 1960s [62]. Several reviews are available on this topic [22,63,64]. The self-assembly
process is driven by an unfavorable mixing enthalpy coupled with a small mixing entropy. Composition
(f ), the number of repeating units (N), and the Flory-Huggins interaction parameter (χ) are the
important parameters that determine the morphologies, which include spheres (S), cylinders (C),
gyroids (G), and lamellae (L) [65,66]. The self-assembly behavior may also be influenced by other
external parameters such as mechanical or electric fields [67,68]. However, it is beyond the scope of
this review to cover all these aspects. Therefore, we only address the basic concepts of microphase
separation and present several recent examples of the morphological behavior of BCPs. Figure 7 shows
that the different morphologies of a typical linear diblock BCP evolve from spherical to lamellar and
can undergo disorder to order transitions, as a function of f and χN.
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Figure 7. (a) Equilibrium morphologies of AB diblock copolymers in bulk: S and S’ =
body-centered-cubic spheres, C and C’ = hexagonally packed cylinders, G and G’ = bicontinuous
gyroids, and L = lamellae. (b) Theoretical phase diagram of AB diblocks predicted by the self-consistent
mean-field theory, depending on volume fraction (f ) of the blocks and the segregation parameter, χN;
CPS and CPS’ = closely packed spheres. (c) Experimental phase diagram of polystyrene-b-polyisoprene
copolymers, in which f A represents the volume fraction of polyisoprene, PL = perforated lamellae.
Reproduced from Reference [69]. (Copyright (2012) Royal Society of Chemistry).

Furthermore, the self-assembly of triblock copolymers of poly(styrene-b-isoprene-b-styrene)
(PS-b-PI-b-PS) has also been extensively investigated using small-angle X-ray scattering (SAXS)
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and transmission electron microscopy (TEM) by Storey et al. and Elabd et al. [70,71]. Unlike the
conventional study on neutral BCPs, Mays et al. compared the morphologies of well-defined neutral
PS-b-PI and its charged counterpart, sulfonated PS-b-fluorinated PI (sPS-b-f PI). Interestingly, Inversed
morphologies were observed when the diblock BCP, 25sPS-b-75f PI (50% of PS block was sulfonated to
sulfonic form), was casted from tetrahydrofuran compared with its neutral counterpart, as shown in
Figure 8 [72].

Polymers 2017, 9, 494  11 of 31 

 

transmission electron microscopy (TEM) by Storey et al. and Elabd et al. [70,71]. Unlike the 
conventional study on neutral BCPs, Mays et al. compared the morphologies of well-defined neutral 
PS-b-PI and its charged counterpart, sulfonated PS-b-fluorinated PI (sPS-b-fPI). Interestingly, Inversed 
morphologies were observed when the diblock BCP, 25sPS-b-75fPI (50% of PS block was sulfonated 
to sulfonic form), was casted from tetrahydrofuran compared with its neutral counterpart, as shown 
in Figure 8 [72].  

 

Figure 8. TEM and small-angle X-ray scattering (SAXS) images of sPS-b-fPI. (A) ordered hexagonal 
structures without annealing; (B) less ordered structures of sample annealed at 120 °C; (C) SAXS of 
the corresponding samples in (A,B). Reprinted from Reference [72]. (Copyright (2010) Royal Society 
of Chemistry). 

Segalman et al. prepared a series of ionic conducting BCPs to investigate the relationship 
between ionic conductivity and domain spacing [73]. A well-defined BCP precursor, PS-b-PI, was 
synthesized followed by a thiol-ene reaction to attach the ionic moieties to PI segments. The domain 
spacing was controlled by keeping the volume fraction of ionic moieties constant and varying the 
BCP chain length. It was revealed that the ionic conductivity was independent of domain spacing. 
The insights gained by this work could facilitate the development of design rules for the next 
generation of high performance ion-conducting membranes. Balsara et al. studied the effect of salt on 
the morphology of electron conducting poly(3-(2′-ethylhexyl)thiophene)-b-ethylene oxide) (P3EHT-
b-PEO) [74]. PEO was selected due to its good salt solvation capability. Their results showed that, in 
the melt state, the salt-free sample exhibits a gyroid morphology while the salt containing sample (r 
= 0.125) exhibits a lamellar morphology. Furthermore, quenching the salt-free sample to room 
temperature results in a lamellar morphology due to the breakout of the P3EHT crystals. In contrast, 
there is little change in the morphology of the salt-containing sample upon quenching to room 
temperature. This could be attributed to the increase in χN. 

Owing to its structural versatility and precise tunability of morphology, dimensionality, and 
feature size, BCP is an ideal platform for studying periodically ordered functional materials on the 
mesoscale. Wiesner et al. demonstrated the utilization of triblock copolymer (PI-b-PS-b-PEO) self-
assembly to direct the synthesis of a mesoporous niobium nitride (NbN) superconductor (Figure 9). 
The formation of a three-dimensionally continuous gyroidal mesoporous NbN superconductor 
exhibits a critical temperature (Tc) of about 7 to 8 K, a flux exclusion of about 5% compared to a dense 
NbN solid [75]. More examples will be given in Section 4. 

The myriad morphologies that are formed by BCPs are usually obtained by slow cooling so that 
the polymer chains have enough time to reach thermodynamically preferred alignments. Rather than 
using slow cooling, Kim et al. rapidly quenched poly(isoprene-b-lactide) diblock copolymers from 
the disordered state and revealed an extraordinary thermal history dependence [76]. Whereas 
conventional cooling results in the formation of documented morphologies, rapidly cooled samples 
that are then heated from low temperature form the hexagonal C14 and cubic C15 Laves phases 
commonly found in metal alloys. This unusual discovery reinforces fundamental analogies between 

Figure 8. TEM and small-angle X-ray scattering (SAXS) images of sPS-b-f PI. (A) ordered hexagonal
structures without annealing; (B) less ordered structures of sample annealed at 120 ◦C; (C) SAXS of
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Segalman et al. prepared a series of ionic conducting BCPs to investigate the relationship between
ionic conductivity and domain spacing [73]. A well-defined BCP precursor, PS-b-PI, was synthesized
followed by a thiol-ene reaction to attach the ionic moieties to PI segments. The domain spacing
was controlled by keeping the volume fraction of ionic moieties constant and varying the BCP chain
length. It was revealed that the ionic conductivity was independent of domain spacing. The insights
gained by this work could facilitate the development of design rules for the next generation of high
performance ion-conducting membranes. Balsara et al. studied the effect of salt on the morphology of
electron conducting poly(3-(2′-ethylhexyl)thiophene)-b-ethylene oxide) (P3EHT-b-PEO) [74]. PEO was
selected due to its good salt solvation capability. Their results showed that, in the melt state, the
salt-free sample exhibits a gyroid morphology while the salt containing sample (r = 0.125) exhibits a
lamellar morphology. Furthermore, quenching the salt-free sample to room temperature results in a
lamellar morphology due to the breakout of the P3EHT crystals. In contrast, there is little change in
the morphology of the salt-containing sample upon quenching to room temperature. This could be
attributed to the increase in χN.

Owing to its structural versatility and precise tunability of morphology, dimensionality, and
feature size, BCP is an ideal platform for studying periodically ordered functional materials on
the mesoscale. Wiesner et al. demonstrated the utilization of triblock copolymer (PI-b-PS-b-PEO)
self-assembly to direct the synthesis of a mesoporous niobium nitride (NbN) superconductor (Figure 9).
The formation of a three-dimensionally continuous gyroidal mesoporous NbN superconductor exhibits
a critical temperature (Tc) of about 7 to 8 K, a flux exclusion of about 5% compared to a dense NbN
solid [75]. More examples will be given in Section 4.

The myriad morphologies that are formed by BCPs are usually obtained by slow cooling so that
the polymer chains have enough time to reach thermodynamically preferred alignments. Rather than
using slow cooling, Kim et al. rapidly quenched poly(isoprene-b-lactide) diblock copolymers from the
disordered state and revealed an extraordinary thermal history dependence [76]. Whereas conventional
cooling results in the formation of documented morphologies, rapidly cooled samples that are then
heated from low temperature form the hexagonal C14 and cubic C15 Laves phases commonly found
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in metal alloys. This unusual discovery reinforces fundamental analogies between the way metals
and self-assembled soft materials break symmetry when subjected to changes in thermodynamic state
variables that drive phase transitions.
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3.2. Self-Assembly in Solution

The self-assembly of amphiphilic BCPs has been a popular topic in fields such as nano-cargo
delivery, biomedical/pharmaceutics, and nanotechnology [77–79]. Although the self-assembly of
amphiphilic BCPs is also driven by the minimization of free energy in the system, self-assembly
in solution is more complicated than BCP self-assembly in bulk. The morphologies are primarily
determined by the so-called packing parameter (p = v/a0lc), where v is the volume of the hydrophobic
chain, a0 is the optimal area of the head group, and lc is the length of the hydrophobic tail (Figure 10) [80].
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By controlling the factors that are able to change the packing parameter such as BCP composition
and concentration, water content, common solvent, and additives, a wide range of morphologies
have been reported including spherical micelles, cylindrical, bi-continuous, lamella, vesicles, tubules,
etc. [81] (Figure 11).
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Figure 11. TEM images and corresponding schematic diagrams of various morphologies formed
by amphiphilic PSm-b-PAAn copolymers( m and n denote the degrees of polymerization of PS and
PAA, respectively): (a) spherical micelles; (b) rods; (c) bicontinuous rods; (d) small lamellae; (e) large
lamellae; (f) vesicles; (g) hexagonally packed hollow hoops (HHHs); (h) large compound micelles
(LCMs). Reprinted from Reference [69]. (Copyright (2012) Royal Society of Chemistry).

Manners and Winnik reported a series of interesting rod-like micelles using
poly(ferrocenyldimethylsilane) (PFDMS). These micelles are able to grow epitaxially by the
addition of more polymer, leading to extended micelles with a very narrow size distribution
(Figure 12) [82].

Self-assembly of BCPs enables researchers to construct nanoscale structures with molecular level
precision. Not only the chemical composition has significant effect on the properties of nanostructure;
molecular architecture also has profound effect, as revealed by the recent studies. Tezuka and
Yamamoto et al. explored the effect of topology on the thermal stability of self-assembled structures
of BCPs: linear poly(butyl acrylate-b-ethylene oxide-b-butyl acrylate) (PBA-b-PEO-b-PBA) (1) and
the cyclic counterpart (2) (Figure 13). Despite no distinctive change in the chemical composition or
structure of the micelles, they found that the cloud point (Tc) was increased by more than 40 ◦C through
the topological conversion. Moreover, the Tc can be tuned by the changing the ratio of 1 and 2 [83].
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Figure 13. The schematic illustration of linear amphiphilic PBA-b-PEO-b-PBA and cyclic
PBA-b-PEO-b-PBA self-assembly in aqueous media. The cyclic BCP shows an increased Tc. Reprinted
from Reference [83]. (Copyright (2010) American Chemical Society).

Using poly(1,2-butadiene-b-ehtylene oxide) (PB-b-PEO) in water media, Bates et al. observed the
formation of “Y-junctions”, which further assembled to form a 3D network (Figure 14). This observation
is in contrast to that of the low molecular weight counterpart, where only spherical micelles, wormlike
micelles, and vesicles were obtained when mixed with water [84].
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the Advancement of Science).

4. Applications

4.1. Applications as Thermoplastic Elastomers

One of the most important technical applications of BCPs is as thermoplastic elastomers (TPEs).
This‘type of BCP typically contains physically crosslinked rigid glassy domains and a continuous soft
rubbery domain. It offers the elasticity of conventional rubber and, since it is not chemically crosslinked,
is suitable for typical plastic processes such as injection molding and melt extrusion. TPEs have found
applications in adhesives, coatings, food packaging, and many other areas [85]. The most commonly
studied TPEs are poly(styrene-b-isoprene-b-styrene) (SIS) and poly(styrene-b-butadiene-b-styrene)
(SBS). These two types of BCPs were firstly developed by Holden and Milkovich through
living anionic polymerization in the early 1960s [86]. The remarkable mechanical properties are
attributed to the microphase separation of the two chemically incompatible blocks, PS and PI
(or PB). SIS with high 3,4-isoprene exhibits a broad glass transition close to room temperature,
providing a very good vibration damping material at room temperature [54]. Polyethylene (PE)
or poly(ethylene-alt-propylene) can be obtained through the hydrogenation of the diene block; such
products exhibit superior stability under light and oxygen. Hydrogenated SBS has been used in
applications such as electrical wire and cable sheathing due to its cold temperature flexibility and
higher extendibility to incorporate flame retardants over conventional poly(vinyl chloride) (PVC) [54].
Star-block copolymers of butadiene and styrene have found applications in adhesives and sealants [87].
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Because the precise control over composition and architecture is possible through LAP, the
resulting BCPs can be tailored to a wide variety of applications [88]. One research focus is to improve
the upper service temperature of styrenic thermoplastic elastomers (S-TPEs), which is mainly controlled
by the Tg of the hard domain. Considerable research has focused on developing high Tg glassy domains
such as poly(α-methyl styrene) (Tg ~173 ◦C) [89], poly(α-methyl p-methyl styrene) (Tg ~183 ◦C) [90],
and poly(tert-butyl styrene) (PtBS, Tg ~130 ◦C) [91]. In hydrocarbon solvent at room temperature,
Mays et al. prepared a series of BCPs consisting of poly(benzofulvene (BF)-b-isoprene-b-benzofulvene)
(FIF), in which FIF with 14 vol % of PBF exhibited a maximum stress of 14.3 ± 1.3 MPa and strain at
break of 1390 ± 66% from tensile tests [92]. Dynamic mechanical analysis showed that the softening
temperature of PBF in FIF was 145 ◦C, which is much higher than that of thermoplastic elastomers
with PS hard blocks (Figure 15).
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Figure 15. The structure of poly(benzofulvene (BF)-b-isoprene-b-benzofulvene) (FIF) block copolymer
and mechanical analysis. Reprinted from Reference [92]. (Copyright (2016) American Chemical Society).

In comparison with diene-based TPEs, all acrylic-based TPEs showed higher oxidation
stability and UV resistance. The same group synthesized a series of TP all acrylic-based high
temperature thermoplastic elastomers containing poly(1-adamatyl acrylate) as a hard domain and
poly(tetrahydrofurfuryl acrylate) as a soft domain by RAFT polymerization [93]. These TPEs exhibited
superior stress-strain behavior compared to that of conventional all acrylic-based TPEs consisting
of PMMA and PBA made by controlled radical processes [94], while the tensile strength was lower
compared to that of similar products prepared via living anionic polymerization [95].

TPEs with non-linear architectures have also been synthesized and investigated over the last three
decades. Multigraft copolymers of PI-g-PS are found to have high tensile strength, high strain at break,
and low residue strain. Furthermore, Mays et al. synthesized a series of tetrafunctional multigraft
copolymer (“centipede”) with varied branching points (Figure 16) [96]. The tetrafunctional copolymer
with 10 branching points showed an exceptional elongation at break ~2100%, almost double that
of commercial Kraton® (1050% at similar composition), and only 40% residual strain on hysteresis
experiments (elongated at 1400%) [97]. Detailed study revealed that the superelasticity was attributed
to the distinct molecular architectures. Furthermore, the same group developed a low-cost emulsion
polymerization to prepare comb multigraft copolymers such as PI-g-PS and PBA-g-PS as well as
centipede PBA-g-PS for TPE applications [98,99].
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Figure 16. (A) Stress–strain behavior of tetrafunctional multigraft copolymers compared to commercial
thermoplastic elastomers. Reprinted from Reference [96]. (Copyright (2006) American Chemical
Society). (B) Hysteresis curve of a tetrafunctional multigraft copolymer with 14 vol % PS and
5.5 branching points. Reprinted from Reference [97]. (Copyright (2006) WILEY-VCH Verlag GmbH &
Co. KGaA, Weinheim).

4.2. Applications in Drug Delivery and Release

Advanced nanoscale systems created by self-assembly of BCPs have seen tremendous progress
for drug delivery applications over the last decade [100,101]. The advances in BCP self-assembly
offer effective control of morphology, surface chemistry, and the introduction of environmental
responsiveness. Among these nanostructures, micelles and vesicles are the most studied morphologies.
Block copolymer micelles are of interest for drug delivery applications for a number of reasons.
First of all, hydrophobic drugs can be entrapped in the core and transported at concentrations
that can exceed their intrinsic water solubility. Secondly, the hydrophilic blocks, which are often
composed of PEO, can form hydrogen bonds with the aqueous surroundings and form a tight
shell around the micellar core. Moreover, the PEO corona resists protein adsorption and cellular
adhesion, protecting the hydrophobic drug against hydrolysis and enzymatic degradation. In addition,
the PEO corona prevents recognition by the reticuloendothelial system and therefore increases the
blood circulation times [100]. Thermo-responsive micelles are the most widely investigated, such as
poly(N-isopropyl acrylamide-b-D,L-lactide), poly(N-isopropyl acrylamide-b-butyl methacrylate), and
poly(N-isopropyl acrylamide-co-N,N-dimethylacrylamide)-b-poly(D,L-lactide-co-glycolide) [102,103].
These micelles undergo reversible structural changes that facilitate drug release once the temperature
is elevated above the LCST of the polymers [104]. Other stimuli-responsive BCPs have also
been extensively studied. Park et al. developed an amphiphilic BCP composed of PEG and
poly(ε-(4-nitro)benzyloxycarbonyl-L-lysine) for hypoxia-sensitive drug delivery. The formed micelles
encapsulated doxorubicin (DOX) in an aqueous condition and exhibited rapid intracellular release of
DOX under the hypoxic condition [105].

BCPs used in drug delivery should have low toxicity or be non-toxic. BCP vesicles containing
biocompatible PEO, PLA, and PCL have been evaluated [106,107]. Both PEO-b-PLA and PEO-b-PCL
vesicles exhibit the controlled release of active dyes and anti-cancer drugs over periods of up to two
weeks [108,109]. Discher et al. employed vesicles made from a mixture of biocompatible PB-b-PEO
and PLA-b-PEO to simultaneously deliver two anti-cancer drugs, in which hydrophilic doxorubicin
was encapsulated in the cavity and hydrophobic paclitaxel was embedded in the vesicle wall [106,110].
In vivo studies revealed that the vesicle-loaded drugs are more effective and sustainable in tumor
shrinkage as compared with the direct injection of free drugs. Rates of encapsulant release from the
hydrolyzable vesicles are accelerated with an increased proportion of PEG and the molar ratio of
degradable copolymer. In particular, BCP vesicles modified with stimuli-responsive functionalities
have been studied for smart drug delivery. Attaching the vesicle with antibodies allows the delivery of
vesicles to targeted cells [111]. Other than their academic interest, thermosensitive liposomes (TSLs)
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have already been investigated for the treatment of breast cancer and colorectal liver metastasis in
several clinical trials.

In spite of the advances in the design of peptide drugs and the emergence of gene therapy, there
is still a need to further improve the performance of these systems that can precisely direct the drug to
the desired site in the body and to accurately control the rate at which the drug is released.

4.3. Applications in Soft Lithography

One of the remarkable candidates for soft lithography is the directed self-assembly (DSA) of
BCPs, because they can form ordered features at a length scale as low as a few nanometers, which
is required for many of the most demanding next generation patterning applications, including the
fabrication of bit patterned media (BPM) for hard disk drives as well as fin field effect transistor
(FinFETs) and contact holes for microelectronics [112–118]. Poly(styrene-b-methyl methacrylate)
(PS-b-PMMA) is the most studied BCP system because it can produce lamellar or cylinder morphologies,
which are perpendicularly oriented to the substrate simply via thermal treatment (Figure 17) [119].
This phenomenon is attributed to the similarity of the interfacial energies between each block and the
air interface [120]. Hawker et al. reported that the neutral surface (γPS-Air ≈ γPMMA-Air) could be
achieved with thermally annealed PS-b-PMMA at 225 ◦C in air [121].
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Figure 17. Surface force microscopy (SFM) phase image of (A) cylinder-forming PS-b-PMMA and
(B) lamella-forming PS-b-PMMA on the substrate modified by R64 (PS mole fraction of 0.64) and R55
(PS mole fraction of 0.55), respectively, at various film thicknesses of block copolymer after thermally
annealing thin films at 170 ◦C for 24 h. Reprinted from Reference [119]. (Copyright (2008) American
Chemical Society).

Unfortunately, the minimum feature size is limited to ~13 nm due to its low χ (~0.039 at
150 ◦C) [122]. To achieve very high resolution (i.e., small feature size), the chemical structure of
the BCP must be carefully designed to maximize the chemical incompatibility between blocks (i.e.,
high-χ, low-N). Impressive work has been reported employing a variety of high-χ BCPs. Russell et al.
were able to achieve a 3-nm cylindrical domain size using PS-b-PEO on a surface of a sapphire
single-crystal (Figure 18) [123].
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21.0 kg/mol) (E), and PS-b-PEO (Mn = 7.0 kg/mol) (F) BCP thin films annealed in o-xylene vapor were 
obtained. Scale bars, 100 nm. Reprinted from Reference [123]. (Copyright (2009) American Association 
for the Advancement of Science). 
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etch contrast. Cushen et al. synthesized a series of high-χ BCPs composed of oligosaccharides coupled 
to a silicon-containing polystyrene derivative. The BCPs exhibit hexagonally packed cylinders with 
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Figure 18. Atomic force microscopy (AFM) height images of sawtooth patterns and phase images of
solvent-annealed PS-b-PEO thin films. (A,D) When the M-plane sapphire was annealed at 1400 ◦C
and 1500 ◦C, a pitch of ~48 and ~24 nm and a peak-to-valley depth of ~6 and ~3 nm were obtained,
respectively. Highly ordered PEO cylindrical microdomains having areal densities of 0.74 to 10.5
terabit/inch2 from PS-b-PEO (Mn = 26.5 kg/mol) (B), PS-b-PEO (Mn = 25.4 kg/mol) (C), PS-b-PEO
(Mn = 21.0 kg/mol) (E), and PS-b-PEO (Mn = 7.0 kg/mol) (F) BCP thin films annealed in o-xylene
vapor were obtained. Scale bars, 100 nm. Reprinted from Reference [123]. (Copyright (2009) American
Association for the Advancement of Science).

Hillmyer et al. synthesized poly(lactide-b-dimethylsiloxane-lactide) (PLA-PDMS-PLA) to achieve
a 7-nm pitch size [124]. Some other BCPs that are capable of self-assembling into sub-10 nm domain
sizes include PS-b-PDMS [125], PS-b-P2VP [126], and PS-b-PLA [118]. On the other hand, high-χ
organic BCPs that can form sub-10 nm domains suffer from low etch contrast when sizes approach
down to 10 nm. Since organic polymers that contain inorganic constituents, such as silicon, are
inherently etch resistant, the incorporation of one such block in high-χ BCPs affords exceptional etch
contrast. Cushen et al. synthesized a series of high-χ BCPs composed of oligosaccharides coupled to
a silicon-containing polystyrene derivative. The BCPs exhibit hexagonally packed cylinders with a
5-nm feature size in thin film [127]. A polarity-switchable top layer was also applied to the surface
of silicon-containing BCPs films to obtain perpendicular orientation of poly(styrene-b-trimethyl silyl
styrene-b-styrene) (PS-b-PTMSS-b-PS) and poly(trimethyl silyl styrene-b-lactide) (PTMSS-b-PLA) after
thermal annealing [128].

On the other hand, BCP architecture also plays a key role in controlling the feature size. Hawker
compared linear PS-b-PEO and cyclic PS-b-PEO and found that the thin film self-assembly of the
latter showed a ~30% decrease in domain spacing (Figure 19), which was attributed to the reduced
hydrodynamic radii of the cyclic systems [11].

Limited synthetic access has largely restricted the application of cyclic BCPs in soft lithography.
Other complex architecture such as star copolymers, etc. remains a largely unexplored regime.
Nevertheless, the advancement of BCP design, synthesis, processing strategies, and morphological
characterization tools (e.g., atomic force microscopy (AFM), tomographic TEM, grazing-incidence
small-angle scattering (GISAXS), etc.) offers hope that this technology may impact industry and society
in the coming years.
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4.4. Applications in Mesoporous Materials

Research interest in ordered porous materials originated from the successful synthesis of porous
silicates in the 1990s and soon spread to a variety of framework compositions including metal oxides,
non-oxide inorganics, and carbon [129]. This group of materials exhibits periodically aligned structures
and uniform cavities with sizes ranging from micro- (<2 nm), to meso- (2–50 nm), to macropores
(>50 nm) [130], which lead to very high surface areas (up to 1500 m2/g) [131]. With these unique features,
porous materials present great value for applications in energy conversion and storage [132–135],
catalysis [136], drug delivery [137], gas capture [138,139], and water purification [140,141].

As mentioned in the previous section, the self-assembly of BCPs may induce a series of interesting
2D or 3D morphologies, which make them very useful as structure-directing “templates” for the
fabrication of porous materials. Generally, the formation of porous materials through polymer
templating involves the following steps: (1) Cooperative self-assembly of amphiphilic BCPs in the
presence of a precursor for the framework (such as hydrolyzed silicate, metal oxides, or carbon source)
where the precursor is directed to the hydrophilic domain through hydrogen bonding, ion pairing or
hydrophilic interactions; (2) solidification/condensation/crosslinking/curing of the precursor to form
the framework of the porous material; and (3) removal of the BCP template by solvent washing or
thermal decomposition leaving spaces for pores. However, the specific procedures vary based on the
final shape of the porous material, namely membranes, spheres, or monoliths, and detailed examples
will be given below.

The most commonly used copolymer template are the commercial Pluronic surfactants, a group
of poly(ethylene glycol-b-propylene glycol-b-ethylene glycol) (PEG-b-PPG-b-PEG) with limited options
for lengths of polymer blocks. Alternatively, amphiphilic BCPs with wider choices for composition
and molecular weight of the polymer segments are readily designed and synthesized in the laboratory
through controlled/“living” polymerization techniques [142]. These synthesized BCPs usually contain
poly(2-vinylpyridine) (P2VP), poly(4-vinylpyridine) (P4VP), or poly(ethylene oxide) (PEO) as the
hydrophilic block, and PS, PMMA, PI, polyisobutylene (PIB), and polyacrylonitrile (PAN) as the
hydrophobic block [143,144]. In addition to high versatility, BCPs synthesized in the laboratory show
other merits as compared to commercial Pluronic copolymers. The contrast in hydrophilicity between
the two selected blocks are usually higher than for the PEG and PPG pair in the Pluronics, which
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is beneficial for the self-assembly of polymer micelles in aqueous solution. Moreover, hydrophobic
blocks such as PS and PMMA exhibit much higher glass transition temperatures than PPG, resulting
in better stability of the self-assembled structures. In the case of copolymers containing PS and PAN,
the hydrophobic segments can be converted to carbon residue in high yield in the carbonization step,
which provides additional mechanical support to the mesoporous framework [145].

Evaporation-induced self-assembly (EISA) is widely used in the preparation of ordered
mesoporous films and particles, which is especially important for oxides. In a typical EISA process, the
cooperative self-assembly of a precursor with an amphiphilic template is induced by a concentration
gradient of an organic solvent such as tetrahydrofuran (THF), chloroform, or dioxane. Different from
a general solvent-annealing process, precursor molecules are crosslinked in EISA as the solvent
evaporates, leaving no chance for structure refinement after it is formed [146,147]. Wiesner et al.
synthesized mesostructured silicate/copolymer composite film through EISA with PS-b-PEO as a
structure-directing agent in a mixture of THF and water [148]. A large variety of mesoporous metal
oxides in the form of powder were synthesized through EISA using commercial Pluronics as a
template [149]. In addition, mesoporous carbon films were prepared via EISA from a thermosetting
precursor (phenol-formaldehyde system, resol, resorcinol, etc.) using a variety of BCP templates
such as PS-b-P4VP, PEO-b-PS, PEO-b-PMMA, and PEO-b-PMMA-b-PS [143]. Recently, Wei and
coworkers reported the synthesis of nitrogen-doped mesoporous carbon in the form of powder
through EISA, using Pluoric copolymer as the template, with resol and dicyandiamide as sources
for C and N, respectively [147]. For clarification, some research groups do not consider systems
involving formaldehyde as an actual EISA process, since the crosslinking of precursors occurs after the
cooperative self-assembly, instead of simultaneously, as in many EISA processes [146].

Following the traditional EISA method, an evaporation-induced aggregation assembly (EIAA)
mechanism, was proposed [150]. This solution precipitation method can produce mesoporous materials
with various shapes including spheres, fibers, and polyhedrons in the form of powder [151]. Moreover,
the EIAA method tolerates a greater portion of water compared to EISA, which makes it more suitable
for scaling up. In detail, the water-insoluble template PEO-b-PMMA and silica precursor were first
dissolved in a mixture of THF and water. As THF evaporated, the BCP and silicate oligomers were
driven to form composite micelles with silicates located at the shell. With further removal of the solvent,
the micelles assembled into mesostructured particles at the liquid-liquid interface and precipitated
from the solution. Subsequent calcination of the precipitants completely removed the PMMA block to
form pores. A schematic illustration of EIAA is shown in Figure 20.
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Figure 20. (A) Formation mechanism of ordered mesoporous silica through the solvent evaporation
-induced aggregating assembly (EIAA) process by using diblock copolymer PEO-b-PMMA as a template,
tetraethylorthosilicate (TEOS) as the silica source, and acidic tetrahydrofuran (THF)/H2O mixture as the
solvent; (B) Typical field-emission scanning electron microscopy (FESEM) image of mesoporous silica
calcinated in air at 550 ◦C. Reprinted from Reference [150]. (Copyright (2011) American Chemical Society).
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More recently, Tang et al. proposed a facile micelle method to synthesize N-doped mesoporous
carbon spheres without the EISA process (Figure 21). The key difference of this research from EISA lies
in the formation of stable micelles of dopamine (both C and N sources) using a high molecular weight
PS-b-PEO as a template. After the micelle was formed, dopamine was polymerized using ammonia
as an initiator. These “frozen” micelles joined together forming into larger spheres with sizes around
200 nm. These composite spheres were easily separated from the solution through centrifugation and
allowed for further carbonization to remove the template and fabricate mesoporous spheres [152].
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Many studies demonstrated the advantage of mesopores over micropores in the mass transport
process in a variety of applications [135,153]. Larger pore size facilitates a more efficient diffusion of
guest molecules within the pores [136], and also allows the loading of metal catalyst particles [154,155].
Thick pore walls are also favorable because of the possibility for further modification on the pore
surface [151,155].

Since the pores are produced from the calcination of the hydrophobic segment of the BCP, high
molecular weight of the sacrificial block is highly desired. Unfortunately, the mesoporous materials
templated from commercial Pluronic copolymers show a pore size limited to 12 nm and a wall thickness
no more than 6 nm [151]. BCPs with higher molecular weight in the sacrificial segment (higher
hydrophobic volume in the copolymer) have been extensively utilized for larger pores in the resulting
porous material. Using PEO-b-PS (Mw = 29,700 g/mol) as the copolymer template, adding a special
hydrothermal treatment step, Deng et al. achieved mesoporous silica with pore diameters as large as
30.8 nm [156]. By varying the lengths of each segment of BCP templates, Tang et al. observed a strong
correlation of the resulting pore size with the length of BCP, where PS37-b-PEO114, PS178-b-PEO886,
and PS173-b-PEO170 resulted in pore sizes of 5.4 nm, 16 nm and 16 nm, respectively [152]. In another
case, aluminum-organophosphonate films with tunable macropores (30–200 nm) were synthesized
via ultra-high molecular weight PEO-b-PS (250,000 g/mol) templates, though the resulting material
exhibited a relatively disordered mesostructure [157]. In addition to utilizing high molecular weight
BCPs as templates to target material with larger pores, an additional hydrophobic component can be
added to the mixture as a pore swelling agent. For example, with the aid of trimethylbenzene (TMB),
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the pore size of silica can be expanded to 30 nm [158]. Moreover, Deng et al. reported the use of PS
homopolymer as the pore expanding agent in the synthesis of mesoporous carbon, when PS-b-PEO is
selected as the template [159]. However, care must be taken when using the pore expanding agent to
the composite in order to avoid the risk of unstable mesostructures [160].

The arrangement of a mesostructured material is closely related to the microphase separation
of the BCP template. Interestingly, simply varying the amount of the precursor with respect to the
copolymer would also lead to morphological changes in the composite system [148]. Garcia and
coworkers fully explored the phase diagram of a polymer/alumina/silane composite system aimed for
the synthesis of porous aluminosilicate using PEO-b-PI as a template. As illustrated in Figure 22, eight
morphologies of the composite system were obtained by adding different amounts of the inorganic
precursor into BCP templates [161]. Many interesting crystal symmetries could be achieved through
fine tuning the template compositions, and examples are substantially reviewed [151].
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Figure 22. Ternary diagram mapping out the morphologies found for various composites directed
by PI-b-PEO using (3-glycidyloxypropyl)trimethoxysilane (GLYMO) and aluminum sec-butoxide as
inorganic precursors. At the bottom of the diagram, schematics of the morphologies found for the pure
PI-b-PEO are shown. Hatched areas along the PI-b-PEO axis indicate areas where no data was available
from the diblock copolymer diagram. Each white region within the diagram is labeled with a schematic
representing the morphology of the composites formed. The yellow (light) regions in these schematic
morphologies on the right and left are a representation of the PEO/inorganic domains. Closed dark
points on a gray background indicate areas where biphasic behavior is observed. Reprinted from
Reference [161]. (Copyright (2009) American Chemical Society).

5. Conclusions and Perspectives

In this review, we have discussed the robust synthetic approaches to well-defined block
copolymers with controlled compositions and architectures, in which the sequential addition of
controlled/living polymerization techniques and the combination of controlled polymerization
techniques with facile coupling chemistry have expanded the spectrum of available BCPs. One of the
most fascinating features of BCPs is their ability to self-assemble into nanoscale ordered structures
with various morphologies such as spheres, cylinders, bicontinuous structures, lamellae, etc. Detailed
study both from experiments and theoretical modeling has revealed that the nature of morphologies
is determined by factors including interaction parameter (χ), degree of polymerization (N), and the
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volume fraction (f ), as well as molecular architecture. Due to these unique features, BCPs have
attracted massive attention as thermoplastic elastomers, as drug delivery systems, in soft lithography,
as mesoporous materials, and in many other areas.

These fascinating BCPs with chemical and topological diversity bring new challenges for the
establishment of structure-property relationships and novel applications. For instance, BCP materials
including rod–coil diblocks and bottlebrush materials should be investigated to create more elaborate
nanostructures. Recent advancements in BCP patterning have pushed the limits of feature sizes
to both smaller (<5 nm) and larger scales (>50 nm). We expect that these new challenges can
be coped with by precisely tunable interactions between blocks in terms of range and strength,
which further relies on their precise synthesis and guidance from theory and simulation. Strategical
placement of ionic moieties might offer a promising approach. Although significant work has been
reported, more interdisciplinary collaborations are still needed in order to advance the synthesis,
structural and dynamic characterization, theory and simulation, and to gain a clear picture of BCP
structure-property relationships.
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