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The endothelium is a multifunctional heterogeneous tissue playing a key role in the
physiology of every organ. To accomplish this role the endothelium presents a phenotypic
diversity that is early prompted during vascular development, allowing it to cope with
specific requirements in a time- and site-specific manner. During the last decade several
reports show that endothelial diversity is also present in the umbilico-placental vasculature,
with differences between macro- and microvascular vessels as well as arterial and venous
endothelium. This diversity is evidenced in vitro as a higher angiogenic capacity in the
microcirculation; or disparity in the levels of several molecules that control endothelial
function (i.e., receptor for growth factors, vasoactive mediators, and adhesion molecules)
which frequently are differentially expressed between arterial and venous endothelium.
Emerging evidence suggests that endothelial diversity would be prominently driven by
epigenetic mechanisms which also control the basal expression of endothelial-specific
genes.This review outlines evidence for endothelial diversity since early stages of vascular
development and how this heterogeneity is expressed in the umbilico-placental vascula-
ture. Furthermore a brief picture of epigenetic mechanisms and their role on endothelial
physiology emphasizing new data on umbilical and placental endothelial cells is presented.
Unraveling the role of epigenetic mechanisms on long term endothelial physiology and its
functional diversity would contribute to develop more accurate therapeutic interventions.
Altogether these data show that micro- versus macro-vascular, or artery versus vein
comparisons are an oversimplification of the complexity occurring in the endothelium at
different levels, and the necessity for the future research to establish the precise source
of cells which are under study.
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INTRODUCTION
Since the discovery of the role of endothelium on vascular
tone regulation at the beginning of 1980s, a countless num-
ber of studies have shown the plethora of remarkable functions
that this tissue has in vascular physiology. Notably significant
advances in understanding the role of endothelium have used
human umbilical and placental vessels as experimental models,
which is also applied to the knowledge regarding endothelial
diversity. The diversity of functions that the endothelium exerts
(i.e., regulation of vessel tone, angiogenesis, immune cell adhe-
sion and migration, exchange, and haemostasis) associates with
specific “zones” of the vasculature, suggesting that endothelial
cells present a phenotypic heterogeneity that supports this func-
tional diversity (Atkins et al., 2011). From the molecular point
of view endothelial cells in vivo express several proteins which
allow to distinguish between arterial and venous endothelial
cells and some of these patterns are preserved in vitro, suggest-
ing that long term endothelial physiology is importantly influ-
enced by epigenetic mechanisms (Matouk and Marsden, 2008;
Aird, 2012).

ORIGINS OF ENDOTHELIAL CELLS
Vasculogenesis is the process by which vessels are formed from
mesenchymal-derived hemangioblasts which differentiate into
endothelial cells (Demir et al., 2007). Current evidence shows that
initial stages of vascular development are determined by genetic
factors (le Noble et al., 2008; Atkins et al., 2011). These processes
require the expression of VEGF (Shalaby et al., 1995) and acti-
vation of downstream mitogenic effectors (Parenti et al., 1998;
Shizukuda et al., 1999). However, the site from which the vas-
cular progenitors for placental and embryo vasculogenesis emerge
is still debated. It is accepted that in the embryo vascular progeni-
tors emerge from intra- and extra-embryonic mesodermal tissues
(Jin and Patterson, 2009), whilst in the placenta they arise from
the extra-embryonic mesoderm (Chaddha et al., 2004). However,
there is growing evidence for a crucial role of the yolk sac in
embryo and placental vascular development (Freyer and Ren-
free, 2009). Indeed, using a sodium-calcium exchanger (Ncx-1)
knockout mice which fails to initiate cardiac contraction Lux
et al. (2008) showed that all the hematopoietic progenitor cells
emerge from the yolk sac. The origin of placental endothelial cells
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could have an important impact on its vascular physiology because
arterial-venous identity is early established by environmental cues
which could have diverse effects depending on the localization in
the embryo.

Growth and consolidation of the placental vascular tree
occurs by angiogenesis. In this process single vessels are formed
by endothelial precursor cells (EPCs) which differentiate into
endothelial cells, and/or proliferate from endothelial cells. These
vessels can spread in two ways, (1) non-branching angiogen-
esis, which implies an increase in the length of the villous
vessels, and (2) branching angiogenesis, in which multiple short
capillary loops are formed (Demir et al., 2007), increasing the vas-
cular surface area. After these processes have taken place, the
vessels mature and their structures stabilize. Additional matu-
ration and specialization in the vascular system are influenced
by environmental signals, such as blood flow, oxygen tension,
oxidative stress, and epigenetic factors (le Noble et al., 2008;
Atkins et al., 2011). All these factors have been implicated in
the development and function of the human placenta (Fowden
et al., 2008; Burton, 2009; Dennery, 2010). Thus, angiogenesis is a
complex process which involves genetic, epigenetic and environ-
mental commands in the development and establishment of the
vasculature.

EPIGENETICS OVERVIEW
During the last decade, the study of genome-environment inter-
actions has revealed a plethora of mechanisms that modulate

short and long term cellular physiology. These mechanisms
involve mainly epigenetic processes which control chromatin
accessibility in a gene- and cell-specific manner. Definition
of epigenetics is still under debate mainly due to the several
molecular mechanisms that it comprises and the heritability
of these changes in an organism and its progeny; however, a
simple and broad definition considers epigenetic mechanisms
as “chromosome-based mechanisms that change the pheno-
typic plasticity in a cell or organism” (Krause et al., 2009;
Gibney and Nolan, 2010).

Epigenetic mechanisms affect chromatin structure and gene
expression regulating DNA and histone interactions, and the
translation and stability of mRNA. Epigenetic markers such
as DNA methylation, histone deacetylation, and other repres-
sive histone post-translational modifications (PTMs) alter the
structure of the chromatin, generating regions with a“closed chro-
matin” conformation. Conversely, DNA demethylation (poten-
tially driven by the oxidation of methylated cytosines and their
replacement by base excision repair; Kohli and Zhang, 2013),
ATP-dependent chromatin remodeling, histone acetylation (Ac),
and other permissive histone PTMs, convert the closed chro-
matin into an “open chromatin” conformation allowing binding
of transcription factors and the RNA polymerase II (Figure 1).
As an additional epigenetic mechanism, the presence of non-
coding RNAs can post-transcriptionally repress gene expression.
Detailed reviews of the diverse epigenetic mechanisms and their
effects on gene expression are available (Klose and Bird, 2006;

FIGURE 1 | Epigenetic mechanisms regulating gene expression.

Epigenetic mechanisms control gene expression by increasing (green
histones) or limiting chromatin accessibility (red histones). These states result
from the equilibrium of modifications on the DNA and histones which reduce

(left list) or promote (right list) DNA/histones interactions. Alternatively gene
expression is limited by the presence of non-coding RNA. Symbols “!?”
denote recently reported mechanisms whose effects are currently under
study.
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Kouzarides, 2007; Wang et al., 2007a,b; Kaikkonen et al., 2011;
Kohli and Zhang, 2013).

From a developmental perspective epigenetic mechanisms
allow the generation of diverse cell phenotypes and functions
of an organism from a single genome, and respond to a range
of environmental fluctuations. This issue is especially evident in
organs and tissues whose structure and function are under con-
stant change across lifespan, such as the cardiovascular system
(Aird, 2012). Nonetheless, placental vasculature may also be pro-
grammed by epigenetic mechanisms, which are currently under
restless research.

EPIGENETICS IN ENDOTHELIAL PHYSIOLOGY AND PATHOPHYSIOLOGY
Vascular development, endothelial differentiation and function
require a fine epigenetic tuning (Table 1). Initial steps of vascu-
lar development in the embryo seem to be influenced by both
genetic and environmental stimuli which drive the emergence
of two different populations of endothelial cells (Atkins et al.,
2011). Differentiation of embryonic stem cells and EPCs into
endothelial cells requires the participation of histone deacety-
lases (HDAC), lysine demethylases (KDM) and reduced DNA
methylation in the promoter region of endothelial-specific genes
(Rossig et al., 2005; Zeng et al., 2006; Lagarkova et al., 2008;
Banerjee and Bacanamwo, 2010; Ohtani et al., 2011). Conversely,
differentiated endothelial cells can be reprogramed to a pseudo-
embryonic stem cell phenotype increasing the DNA methylation
status of endothelial-specific genes (Lagarkova et al., 2010). In
endothelial cells, activating histone PTM, such as acetylation
of H3 and H4 and methylation of H3K4, control the basal
expression of vWF (Peng and Jahroudi, 2003), NOTCH4 (Wu
et al., 2005), VEGF receptor 1 (Dutta et al., 2008), endomucin
(Kanki et al., 2011), and eNOS (Fish et al., 2005; Gan et al.,
2005).

On the other hand, HDAC activity is required for an ade-
quate vascular integrity (Chang et al., 2006) preventing short
term endothelial proliferation and angiogenesis (Ha et al., 2008;
Jin et al., 2011), whilst calmodulin-lysine N-methyltransferase
(KMT) activity has the opposite effect (Diehl et al., 2007). How-
ever, long term HDAC activity promotes angiogenesis in response
to VEGF (Deroanne et al., 2002) and hypoxia (Kim et al., 2001)
increasing the expression of VEGF (Ruchko et al., 2009) and
eNOS (Rossig et al., 2002). Similarly, HDAC activity is increased

in response to shear stress (Illi et al., 2003) improving cell sur-
vival (Zampetaki et al., 2010) and eNOS expression (Wang et al.,
2010). Noteworthy, the epigenetic regulation of NOS3 gene has
been extensively studied in endothelial and non-endothelial cells,
showing that endothelial cells have a distinctive pattern of DNA
methylation and histone PTMs (Fish and Marsden, 2006). Fish
et al. (2007) reported that the decreased expression of eNOS in
HUVEC exposed to acute hypoxia is controlled by the overexpres-
sion of a natural cis-antisense non-coding RNA called sONE, and
changes in histone PTMs which occur specifically at the eNOS
promoter (Fish et al., 2010). Additionally, abrogation of NOS3
promoter DNA methylation increases basal eNOS mRNA expres-
sion in vitro, and protects against hind-limb ischemic injury in
vivo (Rao et al., 2011).

Several studies show that epigenetic mechanisms participate
in the increased risk of developing vascular diseases. In humans,
endothelial cells from atherosclerotic plaques have decreased lev-
els of estrogen receptor β along with increased DNA methylation
at the promoter region of this gene, compared with those from
non-atherosclerotic plaque regions (Kim et al., 2007). Deficiency
of a specific KDM, lysine-specific demethylase-1 (LSD1, KDM1a),
associates with decreased expression of eNOS and NO-dependent
vasodilation, as well as, salt sensitive hypertension (Pojoga et al.,
2011). In newborn rats with persistent pulmonary hypertension,
the increased expression of eNOS mRNA is accompanied by aug-
mented levels of acetylated H3 and H4 in the NOS3 gene promoter
(Xu et al., 2010). Alternatively, cultured endothelial cells exposed
to elevated levels of homocysteine, which relates with increased
cardiovascular risk, present decreased proliferation and increased
levels of oxidative stress. In both cases homocysteine acts inducing
specific hypomethylation of the gene promoters for the cell cycle
regulator cyclin A (Jamaluddin et al., 2007) and the pro-oxidant
protein p66shc (Kim et al., 2011). Additionally, high glucose-
induced endothelial dysfunction requires the participation of HAT
(Chen et al., 2010) and KMT (El-Osta et al., 2008), generating
important epigenomic changes (Pirola et al., 2011), which can
persist several days after the exposure to the noxa (El-Osta et al.,
2008).

Notably, vascular physiology is also influenced by epigenetic
mechanisms occurring in smooth muscle cells (SMCs). Develop-
ment of vascular dysfunction is accompanied by changes in SMC
phenotype, which shift from a “contractile” to a “synthetic” and

Table 1 | Effect of DNA methylation and histone post-translational modifications (PTMs) on endothelial cell physiology.

Mechanism Process Reference

DNA methylation In vitro and in vivo progenitor endothelial cells differentiation

Activation of tissue-specific genes

Ischemia-induced neo-vascularization

Chan et al. (2004), Lagarkova et al. (2008), Ohtani et al.

(2011), Rao et al. (2011)

Histone acetylation Hypoxia-, VEGF- and shear stress- induced angiogenesis

VEGF-induced progenitor endothelial cells differentiation

Basal endothelial cell-specific genes

Kim et al. (2001), Deroanne et al. (2002), Rossig et al.

(2002), Peng and Jahroudi (2003), Illi et al. (2005),

Zeng et al. (2006), Wu et al. (2005)

Other histone PTMs Progenitor endothelial cells differentiation

Hypoxia induced eNOS down-regulation

Ohtani et al. (2011), Fish et al. (2010)
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“pro-inflammatory” phenotype with long term consequences in
the contractile properties of vessels (Owens et al., 2004; Orr et al.,
2010). Increasing data shows that this “phenotypic switching”
requires the participation of epigenetic mechanisms which estab-
lish an altered SMC function (Alexander and Owens, 2012).

PHENOTYPIC AND EPIGENETIC DIVERSITY IN THE
UMBILICO-PLACENTAL ENDOTHELIUM
Pioneer studies by Lang et al. (1993) demonstrated that micro- and
macrovascular umbilico-placental endothelium present different
immunoreactivity to diverse molecular markers for endothelial
cells, suggesting the presence of a phenotypic endothelial diver-
sity in the placenta. Additional evidence from cultured human
endothelial cells isolated from the placental microcirculation
(PLEC) and the umbilical vein (HUVEC) show that microvas-
cular endothelial cells express higher levels of vascular mediators
(angiotensin II, endothelin, and thromboxane; Lang, 2003). Also a
differential pattern of homeobox genes (Murthi et al., 2007, 2008)
and higher cholesterol transport capacity (Stefulj et al., 2009) in
PLEC compared to HUVEC has been shown.

Notably, studies on endothelial cells from arteries and veins
have revealed important differences between arterial and venous
cells at the same vascular level. In fact the higher mitogenic
response observed in PLEC (Lang, 2003) may reflect the combina-
tion of a high response to VEGF present in arterial PLEC (PLAEC)
and to PIGF in venous endothelial cells (PLVEC; Lang et al., 2008).
A transcriptomic analysis between PLAEC and PLVEC showed
that they have differential expression of more than 3,000 genes
(Lang et al., 2008). Similarly there is a differential expression of
eNOS,a key vascular gene, between micro- and macrovascular, and
venous and arterial endothelium (Andersen et al., 2009; Krause
et al., 2012) being more homogenous at the arterial side (Ander-
sen et al., 2009). This opens the queries about the differences
initially reported between micro- and macrovascular endothe-
lium reflecting an endothelial diversity between large and small
vessels, and whether they include variances between arteries and
veins.

Several studies comparing simultaneously umbilical arterial
(HUAEC) and venous (HUVEC) endothelium support the con-
cept that these cells are not a homogenous population, and the
necessity of clarifying the precise source of cells when the term
“macrovasculature” is used. A general characterization shows that
there is a different profile of phospholipids with higher levels
of arachidonic acid-related species and heterogeneous expression
pattern of selenoproteins (Miller et al., 2002) in HUAEC com-
pared to HUVEC (Takamura et al., 1990). Alongside the classical
molecular markers for arterial endothelium, cultured HUAEC
express higher levels of PAI 1 (Gallicchio et al., 1994), Cx40 (Van
Rijen et al., 1997), 17β-HSD2 (Simard et al., 2011), and VCAM-1
(Egorova et al., 2012); and lower levels of von Willebrand Factor
(Shahani et al., 2010) and estrogen receptors beta (ERβ; Simard
et al., 2011) compared with HUVEC. On the other hand expres-
sions of pro-constrictive mediators such as angiotensin converting
enzyme (Ito et al., 2002) and ET-1 (Egorova et al., 2012) are dif-
ferent in HUVEC relative to HUAEC. Furthermore, expression
and activity of eNOS are higher in freshly isolated HUVEC than
HUAEC (Andersen et al., 2009) and this expression pattern is

also observed in cells cultured up to third passage (Krause et al.,
2012). Whether these differences reflects the physiology of umbili-
cal (and potentially placental) arteries and veins, and how they are
preserved in vitro need further examination. Two recent reports
show that the differential gene expression between HUAEC and
HUVEC is partially controlled by specific transcription factors.
Overexpression of the venous-specific nuclear receptor COUP-
TFII in HUAEC decreases the expression of arterial markers (i.e.,
Hey2, EphrinB2 and NICD4), and its down-regulation in HUVEC
increases the expression of arterial markers such as VEGF-A, Dll
and EphrinB2 (Korten et al., 2013). Moreover, in vitro simultane-
ous overexpression of eight arterial-specific transcription factors
turns the HUVEC transcriptome into a HUAEC-like pattern
(Aranguren et al., 2013).

Therefore, the phenotypic diversity in the umbilico-placental
circulation is apparently commanded, at least in part, by an
equivalent diversity in epigenetic mechanisms.

ENDOTHELIAL DIVERSITY AND ANGIOGENESIS
In terms of angiogenesis, microvascular endothelial cells present a
higher mitogenic response to VEGF, PIGF (Lang, 2003; Lang et al.,
2008), and prokineticin 1 (Brouillet et al., 2010) compared with
HUVEC, along with an increased expression of pro-angiogenic
HOX genes (i.e., TLX1, TLX2, and PHOX1; Murthi et al., 2008).
These data are in agreement with the notion that placental angio-
genic capacity is augmented in microvascular vessels compared
to endothelial cells from larger vessels. However, it is also pos-
sible to find significant differences in the angiogenic response
in endothelial cells from umbilical arteries and veins. In vivo
VEGFR3, which is commonly expressed in lymphatic endothelium
or during active angiogenesis (Koch and Claesson-Welsh, 2012),
is absent in HUAEC but expressed in HUVEC (Veikkola et al.,
2003). Moreover in vitro chemotaxis induced by VEGFA or FGF2
is higher in HUVEC compared to HUAEC (Barkefors et al., 2008),
and netrin-1 prevents the VEGF-induced migration in HUAEC
without effect on HUVEC (Lu et al., 2004). Further studies are
needed to address the effects and the role on placental physiology
of this increased angiogenic response observed in HUVEC.

ENDOTHELIAL DIVERSITY IN RESPONSE TO STRESS
Placental vascular and endothelial physiology, similar to adult vas-
culature, are importantly influenced by stimuli such as altered
shear stress and oxygen levels whose effects are apparently dif-
ferent between arteries and veins. Normally arterial endothelium
is exposed to higher shear stress and therefore it is plausible to
predict a stronger response to increasing stress. In fact pulsatile
shear stress increases the expression of arterial markers (i.e., Hey1,
Hey1, and ephrinB2) in HUAEC but decreases the expression
of venous markers (COUP-TFII) in HUVEC (Buschmann et al.,
2010). Laminar shear stress have similar effects on the expression
of arterial-venous markers in these cells, and increases the levels
of S-nitrosylated proteins (Hoffmann et al., 2003) endothelin-1,
VCAM, and vWF (Egorova et al., 2012) in HUAEC compared to
HUVEC. Whether these differences are observed in microvascular
endothelial cells remains to be determined.

Some evidence regarding the effects of low oxygen levels on
endothelial function in placental large and small vessels, as well
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as arteries and veins, show a differential vascular response to
hypoxia throughout the placenta (Krause et al., 2011, 2012). On
the other hand placental endothelium is importantly exposed to
low oxygen levels and oxidative stress which are negative regu-
lator of placental angiogenesis (Burton et al., 2009). A reduction
in oxygen levels from 21 to 12% O2decreases placental venous
microvascular endothelial cells viability with no effect on their
arterial counterparts (Lassance et al., 2012), and PLAEC exposed
to 3% O2 show an increased mitogenic response to VEGFA and
FGF2 compared to cells cultured at 21% O2 (Wang et al., 2009).
This higher response to VEGFA and FGF2 is also observed in
HUAEC exposed to physiological levels of oxygen (3–5% O2; Jiang
et al., 2013). Additionally, hypoxia (1% O2) increases the expres-
sion of the pro-angiogenic factor protease-activated receptor 2
in HUVEC and this effect is higher in HUAEC (Svensson et al.,
2011).

Altogether these data show that venous-arterial endothelial
phenotypic diversity occurs among umbilical and placental ves-
sels (Figure 2). Further studies should include control comparison
between arterial and venous endothelial cells from the same
branching level to rule out potential differences attributable to
arteries and veins rather than micro- and macrovascular vessels. It
is worth to note that most of the differences occurring among these
cells types could be reverted by genetic manipulation. However,
its persistence in vitro suggests that additional mechanisms con-
trolling gene expression should be operating, arguing for a crucial
role for epigenetics in this process.

FIGURE 2 | Phenotypic diversity in the umbilico-placental

endothelium. Umbilical (macrovascular) and placental (microvascular)
endothelial cells present a phenotypic diversity characterized by a
differential response to angiogenic factors and gene expression of key
endothelial genes. In the figure thickness of the triangle denotes
deferential relative expression (or response) regarding arteries or veins at
each level. Square text box includes common traits between macro- and
micro-vascular arterial or venous endothelial cells. 11β-HSD1,
11β-hydroxysteroid dehydrogenase 1; 17β-HSD2, 17β hydroxysteroid
dehydrogenase 2; ARG2, arginase-2 gene; Cx40, conexin-40; eNOS,
endothelial nitric oxide synthase; ET-1, endothelin-1; KDR, vascular
endothelial growth factor (VEGF) receptor 2; NOS3, eNOS gene; PAI 1,
plasminogen activator inhibitor-1; PlGF, placental growth factor; VCAM-1,
vascular cell adhesion molecule 1.

EPIGENETIC AND PLACENTAL ENDOTHELIAL DIVERSITY
Compelling evidence shows the fundamental role of epigenetics
controlling the endothelial-specific gene expression, however, the
next frontier is to determine how epigenetic mechanisms influence
the endothelial functional diversity. Two recent reports studying
placental and umbilical endothelial cells suggest the presence of
significant differences in the DNA methylation of gene promoters
which could be responsible for the differential gene expression
present in these cells.

A comparison of the genome-wide DNA methylation profile
in PLAEC and PLVEC show that venous endothelial cells present
lower levels of global methylation compared to PLAEC (Joo et al.,
2013) which could reflect the immature phenotype of PLVEC
(Lang et al., 2008). Further analysis show the presence of sev-
eral genes which are differentially methylated between PLAEC and
PLVEC, and some of them present an inverse correlation between
the level of methylation and the gene expression. Notably those
genes are considered endothelial markers and play a key role in
vascular physiology, such as eNOS, vWF, Conexin40, VEGFR1,
VEGFC, and angiopiotein-1. However, there are endothelial genes
whose promoters do not present any correlation between methyla-
tion levels and gene expression, such as VEGFR2, Hey2, NOTCH,
EphB2, and EphB4 (Joo et al., 2013).

Conversely, the comparison of DNA methylation status of
NOS3 (eNOS) and ARG2 (arginase-2) promoters by pyrosequenc-
ing in HUAEC, PLAEC and HUVEC, suggest the presence of
site-specific differences between these cells. Methylation status
at NOS3 promoter in umbilical and placental endothelial cells
showed differences in three specific CpG between arterial and
venous endothelial cells (Krause et al., 2013). Two of these dif-
ferentially methylated CpGs correspond to the reported hypoxia
response element (−5369 and −5375; Coulet et al., 2003) which
regulates the response to hypoxia and show lower methylation
levels in PLAEC and HUAEC compared to HUVEC. Whether
this variation participates in the differential regulation of eNOS
expression in response to hypoxia that has been reported between
HUAEC and HUVEC (Krause et al., 2012) needs to be addressed.
An additional differentially methylated CpG is located at −352
from the transcription starting site, showing a higher methylation
pattern in arterial relative to venous cells. Moreover the methyla-
tion status at this CpG suggests an inverse correlation between
DNA methylation and eNOS expression, which is higher in
HUVEC (lower methylation levels) compared to HUAEC (Krause
et al., 2012, 2013). It is also reported that CpG −352 is differentially
methylated between HUVEC and human dermal microvascular
endothelial cells (Chan et al., 2004), having the later a methy-
lation status comparable to that found in HUAEC and PLAEC,
which suggest that CpG −352 might play a role in the differen-
tial regulation of basal eNOS expression in arterial and venous
endothelial cells. Krause et al. (2013) compared the NOS3 pro-
moter DNA methylation status between control and endothelial
cells isolated from pregnancies with intrauterine growth restric-
tion (IUGR). Remarkably changes in DNA methylation in IUGR
cells are restricted to those CpGs that are differentially methylated
in normal endothelial cells. In fact, IUGR HUAEC and PLAEC
present similar changes at CpGs −5375 (increased methylation)
and −352 (decreased methylation) compared with normal cells,
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and these methylation levels are comparable to that find in nor-
mal HUVEC. Conversely, changes in the DNA methylation status
of IUGR HUVEC where at CpGs −5369 (decreased methylation)
and −352 (increased methylation), and they are comparable to
those find in normal HUAEC and PLAEC. The methylation levels
at CpG −352 in IUGR HUAEC and HUVEC are also related with
the levels of mRNA for eNOS (Krause et al., 2013), reinforcing
the potential importance of CpG −352 in the regulation of basal
eNOS expression. Finally analysis of methylation status of ARG2
promoter in HUAEC, PLAEC, and HUVEC show a single differ-
ence between PLAEC and HUVEC, however, it is still unknown if
there is a correlation with arginase-2 expression and activity.

DNA methylation is one of the main epigenetic mechanisms
that controls long term gene expression, showing a high repro-
ducibility after every cellular replication and this characteristic
is driven by the activity of DNA methyltransferase-1 (DNMT1).
In IUGR HUAEC and HUVEC DNMT1 silencing shows a dif-
ferential effect, reducing and increasing basal eNOS expression,
respectively (Krause et al., 2013). Silencing of DNMT1 restores
to normal eNOS mRNA levels in IUGR HUAEC and HUVEC,
and this effect is not observed on arginase-2 expression where
it further increases its expression in IUGR HUVEC, without
any effect in IUGR HUAEC (Krause et al., 2013). This suggests
that DNA methylation (Jamaluddin et al., 2007; Banerjee and
Bacanamwo, 2010; Kim et al., 2011) and other epigenetic mecha-
nisms (Kim et al., 2001; Deroanne et al., 2002; Fish et al., 2010)
control gene expression in endothelial cells in a gene-specific
manner.

Although the studies in PLAEC and PLVEC (Joo et al., 2013),
and in HUAEC and HUVEC (Krause et al., 2013) used two dif-
ferent approaches to analyze the DNA methylation patterns, there
are some similarities in the outcomes. First, both studies show
that methylation status of NOS3 proximal promoter inversely cor-
relates with the levels of mRNA for eNOS, and this occurs in cells
exposed for several days to culture conditions. Second, PLAEC
and PLVEC show differential levels arginase-2 expression with-
out differences in the DNA methylation in ARG2 promoter, whilst
in control and IUGR HUAEC differences in DNA methylation
are not associated to difference in arginase-2 expression. Finally,
DNMT1 silencing in IUGR cells normalize eNOS expression but
not arginase-2 expression.

CONCLUSION
Altogether these seminal data show that epigenetic mechanisms
could be responsible for the phenotypic diversity of endothe-
lial cells in the umbilico-placental unit, and these mechanisms
would be operating in a cell- and gene-specific manner. The
current research on the area is offering novel data about poten-
tial mechanisms but still further studies are required to have a
comprehensive picture of the additional epigenetic mechanisms
controlling the gene expression in physiological and pathophys-
iological conditions and its consequences in umbilico-placental
functions.
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