
Article
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Abstract

Tumor relapse as a consequence of chemotherapy resistance is a
major clinical challenge in advanced stage breast tumors. To iden-
tify processes associated with poor clinical outcome, we took a
mass spectrometry-based proteomic approach and analyzed a
breast cancer cohort of 113 formalin-fixed paraffin-embedded
samples. Proteomic profiling of matched tumors before and after
chemotherapy, and tumor-adjacent normal tissue, all from the
same patients, allowed us to define eight patterns of protein level
changes, two of which correlate to better chemotherapy response.
Supervised analysis identified two proteins of proline biosynthesis
pathway, PYCR1 and ALDH18A1, that were significantly associated
with resistance to treatment based on pattern dominance.
Weighted gene correlation network analysis of post-treatment
samples revealed that these proteins are associated with tumor
relapse and affect patient survival. Functional analysis showed
that knockdown of PYCR1 reduced invasion and migration capabil-
ities of breast cancer cell lines. PYCR1 knockout significantly
reduced tumor burden and increased drug sensitivity of orthotopi-
cally injected ER-positive tumor in vivo, thus emphasizing the role
of PYCR1 in resistance to chemotherapy.
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Introduction

Breast cancer is the leading cause of female cancer-related death.

While survival rates are very high when diagnosed early, treatment

of large tumors and metastatic disease is more challenging.

Treatment decisions are based on the breast cancer subtype, and the

tumor stage at diagnosis. Hormone-positive subtypes that express

the estrogen receptor (ER) and/or the progesterone receptor (PR)

can be treated with hormonal therapy (e.g., tamoxifen). Her2-

positive subtype can be targeted by herceptin. The main available

option to treat triple-negative breast cancer (TNBC), which do not

express any of these receptors, is chemotherapy and surgery (Guar-

neri & Conte, 2009). These clinical subtypes are linked to molecular

classification based on gene expression analysis. Four main

subtypes include the following: luminal A (ER+ and/or PR+,

HER2�, Ki67low), luminal B (ER+ and/or PR+, HER2+, Ki67high),

basal-like (ER�, PR�, HER2�), and Her2 overexpressing (ER�, PR�,
and HER2+; Perou et al, 2000; Sorlie et al, 2001, 2003). The

subtypes were reproducibly identified in several studies and also

reflect clinical outcomes, with basal-like subtype having the worst,

and luminal A subtype having the best prognosis (Hodgkinson et al,

2010; The Cancer Genome Atlas Network, 2012).

Beyond subtype-specific treatment decisions, tumor TNM staging

dictates the therapeutic approach. Locally advanced invasive tumors

and tumors that are difficult to operate are considered for neoadju-

vant treatment (NAT), which is given before surgery (Saleh et al,

2014). Although NAT is administered to shrink large tumors, it is

increasingly used to obtain prognostic information about tumor

chemo-sensitivity by evaluation of pathological complete response

(pCR). pCR is defined as the complete eradication of malignant

disease in the breast and related axillary lymph nodes on comple-

tion of NAT and is often associated with improved survival rates

(Perou et al, 2000; Goldstein et al, 2007; Cortazar et al, 2014). The

lowest pCR rate is found among luminal tumors (6.4–22%) and

highest among Her2 overexpressing and triple-negative subtypes

(27–32%) (Cortazar et al, 2014; Broglio et al, 2016). The extent of

residual disease in partial responders after NAT is variable and is an

important prognostic factor to predict risk of relapse and overall

survival (OS; Denkert et al, 2011; Symmans et al, 2017). Conse-

quently, there is a major clinical need to understand the underlying

resistance mechanisms that eventually lead to tumor recurrence.
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Previous breast cancer studies analyzed tumor tissues utilizing

cDNA microarray and sequencing and identified markers of drug

resistance such as CSNK2B, DDB1, ABL, PRKDC, and DUSP4

that were differentially expressed between responders and non-

responders to NAT (Chang et al, 2003; Balko et al, 2012). Using

reverse-phase protein arrays of 76 proteins, Sohn et al identified

AKT, IGFBP2, LKB1, S6, and Stathmin as predictors of recurrence-

free survival (RFS) in triple-negative breast cancer (TNBC; Sohn

et al, 2013). These studies highlighted the importance of cancer

signaling in eliciting resistance. MS-based clinical proteomics of

breast cancer has focused in recent years on cancer classification,

showing protein networks associated with each subtype, with driver

mutations and was able to challenge the RNA-based classification

(Mertins et al, 2016; Tyanova et al, 2016a; Yanovich et al, 2018).

Recently, proteogenomic analysis of breast cancer treatment

response showed proteins associated with Herceptin resistance in a

small patient cohort (Satpathy et al, 2020). We hypothesized that an

untargeted, proteomic approach has the potential to unravel novel

pathways of neoadjuvant chemotherapy response.

In this study, we performed LC-MS/MS proteomic analysis of

formalin-fixed paraffin-embedded (FFPE) tissues to understand

response to NAT in breast cancer. We analyzed matched tumors

before and after NAT, with matched tumor-adjacent normal samples

from 35 patients with partial response to chemotherapy. We

measured the response to chemotherapy using the previously

described Miller & Payne pathological response score (M&P score;

Ogston et al, 2003), and examined the factors associated with tumor

recurrence. The longitudinal analysis highlighted protein expression

patterns associated with pathological response and recurrence,

revealing two proteins in the proline biosynthesis pathway. Finally,

functional analysis in vivo showed that abundance of PYCR1, a mito-

chondrial metabolic protein, was associated with drug resistance to

chemotherapy, thus stressing the role of this protein in breast cancer.

Results

Proteomic analysis of response to neoadjuvant treatment

To identify the proteomic alterations that result in poor response to

NAT, we assembled 108 FFPE tissue samples from a cohort of 35

partial responders to NAT. One patient had bilateral invasive

cancer, and samples from both breasts were analyzed separately.

We obtained matched pre-treatment biopsy, post-treatment residual

carcinoma, and tumor-adjacent normal samples from each of the 35

patients. To ensure that the tumor-adjacent normal samples are

suitable as controls, we compared them to breast ducts from five

breast reduction surgeries of healthy women bringing us to 113

samples (Appendix Fig S1A). The tumor specimens were pathologi-

cally classified as triple-positive (ER, PR, and HER2 positive;

n = 9), triple-negative (ER, PR, and HER2 negative; n = 5), Her2

overexpressing (n = 1), and hormone-positive (ER/PR positive;

n = 21) subtypes. The average follow-up time in the cohort was

five years, and seven patients showed relapse post-treatment

(Fig 1A, Dataset EV1). For every patient in the cohort, we

compared the reduction in tumor cellularity before and after treat-

ment and calculated the Miller & Payne (M&P) pathological

response score (MP1: no reduction in tumor cellularity/poor

responders, n = 6; MP2: minimum reduction in cellularity/partial

responders, n = 13; MP3: partial reduction in cellularity/better

responders, n = 16; MP4: significant reduction in cellularity/better

responders, n = 1, grouped with MP3 as a better responder). A

higher M&P score (MP5) represents full responders with more than

90% reduction in cellularity and was not included in this study

since these have no post-treatment specimens. Patients assigned to

the three M&P groups showed significantly different relapse rates,

and relapse-free survival time (RFS; Fig 1B and C).

We performed LC-MS/MS-based proteomic analysis on each

sample, with a common super-SILAC mix as a heavy-labeled refer-

ence sample for accurate quantification. Due to limited sample

amount (from biopsies and from post-treatment samples), we

reached a partial proteome coverage of 7,600 identified and 7,180

quantified proteins in total, with 3,200–3,900 proteins in each

sample group (Appendix Fig S1B, Dataset EV2).

Principal component analysis (PCA) showed a clear separation

between tumor-adjacent normal samples and tumor samples (pre-

and post-treatment) in the first two components (Appendix Fig

S1C). Healthy samples from breast reduction surgery (non-trans-

formed normal samples) and the tumor-adjacent normal samples

were not separated, and had no significant differences between

them (Student’s t-test FDR < 5%), thus confirming the longitudinal

analysis of matched adjacent normal samples as a normal breast

reference.

In agreement with the PCA analysis, hierarchical clustering of

sample correlations separated between normal and cancer samples

(Fig 1D). Notably, the matched pre-treatment and post-treatment

tumor samples from 19 patients co-clustered significantly (P < 0.05).

Interestingly, we found that pre- and post-treatment co-clustering,

representing higher proteome correlations and reduced treatment

effect, also showed significantly higher relapse (P = 0.051) and poor

pathological response (P = 0.035) compared to patients that did

not show co-clustering of tumor samples (Fig 1E and F). Spearman

rank correlations of all samples ranged between 0.18 and 0.82

(Appendix Fig S1D). Average correlation between matched pre- and

post-treatment samples was 0.58, and the correlations with matched

tumor-adjacent normal were markedly lower (post-treatment: tumor-

adjacent normal (R = 0.43) and pre-treatment: tumor-adjacent

normal (R = 0.39; Appendix Fig S1E).

Pattern analysis links pattern 3 to poor survival

Pathological response is reflected in the change that occurs between

two tumor states (pre- and post-treatment), rather than a snapshot

of one of them. Therefore, in order to identify resistance mecha-

nisms from the protein abundance data, we took advantage of the

matched nature of our cohort. For each patient, we divided the

proteins into eight profiles of protein level changes between normal,

pre-treatment tumors, and post-treatment tumor samples (Dadiani

et al, 2016). For example, pattern 1 consists of all the proteins

upregulated in the pre-treatment sample compared to the tumor-

adjacent normal sample and downregulated post-treatment

(Fig 2A). We first performed the analysis using three paired

Student’s t-tests, each between two groups with an FDR cutoff of

5% across all patients (henceforth referred to as global pattern anal-

ysis). Significantly changing proteins (904 proteins) followed

patterns 1, 2, 3, 4, and 6, across the 36 matched samples, and no
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significant proteins followed patterns 5, 7, and 8 (Appendix Fig S1F,

Dataset EV3). We postulated that proteins dominated by global

patterns 1 and 2, which revert to normal levels upon treatment, are

associated with good prognosis, while proteins that mostly follow

patterns 3, 4, 7, and 8, which remain significantly different from the

tumor-adjacent normal even after treatment, may be associated with

poor response. Pattern 3, which includes proteins significantly

upregulated in cancer, that are not affected by treatment, was the

most dominant pattern, with 736 proteins. Centrality analysis of

pattern 3 protein network highlighted several oncogenes among the

top 10% most central proteins, including AKT, MTOR, and STAT1,

suggesting a role for these proteins in forming specific patterns of

protein level changes and treatment resistance (Fig 2B and C).

To directly associate the pattern of protein changes to treatment

response in individual patients, we defined a patient-wise protein

pattern for every protein in each patient, using a fold change cutoff

of 1.5 for protein level changes between matched samples (Dataset

EV4). Percentage of each patient-wise pattern in the different

patients shows dominance of patterns 1–4 in all patients (Fig 2D).

In support of our hypothesis, percentage of pattern 3 proteins in

patients was associated with shorter relapse-free survival

(R = �0.45, q = 0.03; Fig 2E).
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Figure 1. Unsupervised analysis of proteomics of neoadjuvant treatment.

A Clinical parameters of 35 patients. Subtype at diagnosis (HP: ER+ and/or PR+, TP: ER+ and/or PR+, HER2+, TN: ER�, PR�, HER2� and Her2 overexpressing: ER�, PR�, and
HER2+, H: healthy breast ducts, N: tumor adjacent normal); tumor grade at diagnosis (1, 2, or 3); Miller & Payne score(1: no reduction in tumor cellularity, 2: minimum
reduction in cellularity, 3: partial reduction in cellularity); relapse (yes/no); death (yes/no); Ki67 intensity measured by immunohistochemistry at diagnosis (1–3); tumor
size at diagnosis (1: < 2 cm, 2:2–5 cm, 3:> 5 cm, 4 indicates that tumor has grown into chest wall or skin); age (years); co-clustering of matched pre- and post-
treatment samples after hierarchical clustering (yes/no, P < 0.05); relapse-free survival time (years); overall survival time (years).

B Association between patient pathological response and tumor relapse in our cohort. Significance was determined using chi-square test.
C Kaplan–Meier survival curve for Miller and Payne pathological response score. Global log rank P value and corrected P value for pairwise comparison are indicated.
D Dendrogram colors indicate co-clustering of matched pre- and post-treatment tumor samples coming from the same patient.
E Association between co-clustering of matched pre- and post-treatment tumor samples with relapse. Significance was determined using chi-square test.
F Association between co-clustering of matched pre- and post-treatment tumor samples with M&P score. Significance was determined using chi-square test.
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Next, to identify the proteins and pathways associated with

patient response and relapse, we divided the patients into two

groups based on their M&P score (better responders-M&P = 3,4 and

worse responders-M&P = 1,2) and performed a paired Student’s t-

test between matched pre-treatment and post-treatment samples.

We identified 316 significantly altered proteins in better responders

(q < 0.05); however, 93% of these proteins remained unaltered

after treatment in poor responders (Fig 3A). Essentially, signifi-

cantly downregulated proteins follow pattern 1 in responders and

pattern 3 in non-responders, while significantly upregulated

proteins follow pattern 2 in responders and pattern 4 in non-respon-

ders. Similarly, separate analyses of the relapse groups identified

223 proteins that were differentially expressed in patients with no

relapse, while these were unaffected by treatment in patients who

showed relapse (Fig 3B). Interestingly, 150 proteins were associated

with both drug response and relapse in our cohort. Combined

network of upregulated proteins upon treatment in better respon-

ders showed a significant enrichment of amino acid biosynthesis

pathway, pentose phosphate pathway, inflammatory response, and

glycolysis/gluconeogenesis (Fisher exact test, q < 0.05, Fig EV1A).

Combined network of downregulated proteins upon treatment in

better responders showed a significant enrichment of TCA cycle,

oxidative phosphorylation, PPAR signaling, and proline biosynthe-

sis pathway (Fig EV1B).
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Figure 2. Pattern analysis associates proteins with patient prognosis.

A Eight patterns of protein level changes between the three clinical groups: adjacent normal, pre-treatment tumor, and post-treatment tumor.
B Pattern 3 protein network based on global pattern analysis: Node size and color are based on betweenness centrality score of each node in the network. Top 10% of

the most central nodes are indicated
C Profile plot shows z-scored protein pattern of selected significantly changing oncogenes in pattern 3. Each line represents a patient and colored based on the

distance to the median profile.
D Radial bar plot with percentages of proteins following each pattern (patient-wise pattern) in 35 patients
E Scatter plots show Spearman rank correlations between percent of proteins following each pattern and relapse-free survival (RFS), based on patient-wise pattern

analysis. Significance was determined using t-test, and P values were corrected using Benjamini–Hochberg FDR correction.
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Weighted gene correlation network analysis (WGCNA)
identifies protein modules associated with neoadjuvant
treatment response

To further examine the association of the proteomics data with clini-

cal parameters, we performed unsupervised WGCNA (Storey, 2004;

Zhang & Horvath, 2005; Langfelder & Horvath, 2008) on the post-

treatment tumor samples, which best reflect tumor response

(Appendix Fig S2A, Dataset EV5). Analysis resulted in 39 modules,

which were subjected to correlation analysis with clinical features,

including age, Ki67 staining, tumor grade, tumor size, relapse,

death, survival time, M&P score, and tumor co-clustering

(Appendix Fig S2B). Of these, 19 modules correlated with at least

one clinical feature (Fig 3C and D; P < 0.05, Dataset EV5); six eigen-

gene modules correlated with M&P score (Fig EV2A). Three

modules, which positively correlated to M&P score, or better

responders (pale-turquoise, yellow, and purple modules, collectively

referred to as protein cluster A), presented high levels of collagens,

integrins, and actin regulators that mediate focal adhesion and

cytoskeletal organization (Fig EV2B). In contrast, turquoise, orange,

and brown modules (collectively referred to as protein cluster B)

negatively correlated with M&P score (poor responders) and was

enriched for mRNA processing, components of the ubiquitin-depen-

dent protein catabolic process, spliceosome, fatty acid, and ketone

body metabolism (q < 0.05; Fig EV3A). Poor responders also

showed upregulation of MHC protein complex, and related proteins,

including HLA-A, HLA-B, HLA-C, HLA-DR, TAP2, and STAT1 along

with interferon signaling post-treatment, suggesting potential

involvement of the immune system (see Discussion). Examination

of pattern enrichment within these clusters showed that clusters A

and B were significantly enriched for pattern 3 and 4 proteins,

respectively (global pattern, Fisher’s exact test q < 0.02). In agree-

ment, clustering of the average protein levels in normal, pre-treat-

ment, and post-treatment samples shows that better responders

present dominance of patterns 1 and 2, while poorer responders

(MP1 and 2) present dominance of patterns 3 and 4 (Fig EV3B).

To evaluate proteins associated with tumorigenic phenotypes

such as tumor size and relapse, we looked at protein networks of

cluster C (combined proteins from module blue, white, sienna3, and

yellowgreen) that show a positive correlation to these clinical

features, and protein cluster D (proteins of module pale-turquoise

and red) that shows a negative correlation to tumor size and

relapse. Smaller tumors showed increased oxidative phosphoryla-

tion and TCA cycle. As expected, large tumors showed higher levels

of proliferation markers such as MKI67, EGFR, and MCM complex

proteins and elevated glycolysis. This metabolic shift was also

accompanied by upregulated pentose phosphate pathway, serine

synthesis, and proline biosynthesis (Appendix Fig S3A and B).

PYCR1 level is associated with drug response and relapse

All bioinformatic analyses described above associate the proline

biosynthesis pathway, specifically, PYCR1 and ALDH18A1 with

relapse-free survival (global pattern analysis, Fig 2B); relapse

(WGCNA, Fig 4A and B, Appendix Fig S3A and supervised analysis,

Fig 3B); and treatment response (supervised analysis, Fig 3A,

Appendix Fig S4A). PYCR1 and ALDH18A1 are members of the

proline cycle that consists of four enzymes that convert glutamate to

proline, and two enzymes that catalyze the reverse reactions. Alde-

hyde dehydrogenase family 18 member A1 (ALDH18A1), also

known as pyrroline-5-carboxylate synthetase (P5CS), converts

glutamate to D1-pyrroline-5-carboxylate (P5C), an intermediate

metabolite. P5C is converted to proline by the mitochondrial

enzymes pyrroline-5-carboxylate reductase (PYCR1/2) or cytosolic

pyrroline-5-carboxylate reductase-like (PYCRL). The NADP+ and

NAD+ generated from the biosynthesis reactions are also known to

drive glycolysis and the pentose phosphate pathway (Fig 4C; Phang

et al, 2012). Examination of the levels of all pathway proteins

showed that mitochondrial proline biosynthesis pathway proteins,

PYCR1, PYCR2 and ALDH18A1, are higher in tumor samples rela-

tive to normal tissue before and after treatment. Interestingly, this

pattern was very similar across all subtypes in our data (Fig 4D). In

contrast, proline degradation enzymes PRODH and ALDH4A1 as

well as ornithine aminotransferase (OAT), the bidirectional enzyme

that links the proline cycle to urea cycle, were not significantly

altered in our data (Appendix Fig S4B).

To validate the proteomic results, we performed immunohisto-

chemical staining of PYCR1 on tissue samples from our cohort.

PYCR1 protein level was significantly higher than normal in the

cancer samples pre-treatment (P = 0.002), and despite some reduc-

tion upon treatment, it was still significantly higher than normal also

in the post-treatment samples (P = 0.047) (Fig 4E and F). Since post-

treatment residual cancer is a prognostic factor associated with

survival, we used Cox proportional hazard model to determine

whether post-treatment PYCR1 level alone had prognostic value in

our proteomics data. Survival analysis of our cohort showed that

high PYCR1 abundance level (above median) in residual tumors was

associated with shorter overall survival (OS) and recurrence-free

survival (RFS; hazard ratio OS = 2.4, Cox proportional hazard

univariate OS P = 0.015; hazard ratio RFS = 2.2, Cox proportional

hazard univariate RFS P = 0.046; Fig 4G, Appendix Fig S4C). PYCR1

significance remained even after correction for potential confounding

factors, including tumor size, grade, and M&P score (Appendix Fig

S4D). Interestingly, pre-treatment PYCR1 level was not significantly

associated with survival (hazard ratio RFS = 1.2, Cox proportional

hazard univariate RFS P = 0.537; Appendix Fig S4E). In a multivari-

ate model, proline biosynthesis pathway, containing all four proline

biosynthesis proteins, was associated with survival and PYCR1 was

the most significant among them (Cox proportional hazard multi-

variate RFS, PYCR1 P = 0.037, global P = 0.07; Appendix Fig S4F).

Beyond the clinical significance of PYCR1 in our dataset, we also

validated its significance on external datasets. Evaluation of 1,010

treatment-naı̈ve samples from the TCGA breast cancer provisional

dataset showed that high mRNA levels of PYCR1 were also signifi-

cantly associated with poor progression-free survival (Appendix Fig

S4G). In addition, a proteomic dataset of drug response in ten

patients (Satpathy et al, 2020) showed that similar to our observa-

tion, PYCR1 was significantly downregulated in samples from

complete responders taken 72 h post-treatment and was unaltered

in non-responders (Appendix Fig S4H).

CRISPR/Cas9-based PYCR1 knockout in MDA-MB-231 and MCF7
cells affects tumor growth and drug response

Previously, PYCR1 knockout in triple-negative cell lines was shown

to significantly reduce Transwell invasion and tumor burden in mice
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(Loayza-Puch et al, 2016; Ding et al, 2017). We recapitulated these

results and showed that knockout of PYCR1 in triple-negative breast

cancer cell line MDA-MB-231 reduced invasion and migration

capability, and 2D proliferation in vitro (Fig EV4A–D). However, we

did not observe significant effects on the response to treatment with

paclitaxel and doxorubicin (Fig EV4E). Marked growth inhibition
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was also observed in vivo upon cell injection to the mammary fat

pad of immunodeficient mice. We could not evaluate the response to

chemotherapy, since tumors did not reach the target tumor size for

initiating chemotherapy treatment, even after 26 days (Fig EV4F–H).

Since the pattern of PYCR1 levels was most significant in

hormone-positive subtype in our cohort (Fig 4D), we further

focused our analyses on the metabolic effects of PYCR1 KO and

response to chemotherapy in MCF7 (Appendix Fig S5A). We
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knocked out PYCR1 by CRISPR/Cas9 and validated the functional-

ity of the KO by extracellular proline measurement (Appendix Fig

S5B) and by measurement of incorporation of carbons from 13C5

glutamine or 13C6 arginine into proline. PYCR1 knockout reduced

overall intracellular proline levels and specifically, proline biosyn-

thesis from glutamine (Appendix Fig S5C). Given that the pathway

diverts glutamate from the TCA cycle, we examined the effects on

central metabolism. Seahorse measurements showed that PYCR1

KO cells present a higher basal respiration rate compared to

control cells (Fig 5A); however, the spare respiratory capacity or

the ability of cells to maximize mitochondrial respiration during

stress was reduced (Fig 5B). This suggests that PYCR1 may play a

role in maintaining good mitochondrial function to support maxi-

mal respiration under stress, thus presumably contributing to

tumor cell survival. In support of these results, flux analysis upon

heavy glutamine administration showed that KO of PYCR1

increased incorporation of heavy label into the TCA cycle interme-

diates fumarate, malate, and citrate in comparison with control

cells (Fig 5C). Examination of the glycolytic function showed that

extracellular acidification rate (associated with lactate secretion)

was significantly reduced upon PYCR1 KO presumably due to low

NAD+ in the cells (Liu et al, 2015) (Fig 5D and E). In agreement,

measurement of extracellular lactate showed reduced secretion in

the KO cells (Fig 5F).

Proteomic analysis of PYCR1 KO and control cells showed signifi-

cant downregulation of mitochondrial enzyme PYCR2, with no

effect on other proline biosynthesis proteins ALDH18A1 and PYCRL

(FDR cutoff 0.1; Appendix Fig S5D). Further examination of biologi-

cal pathways using a non-parametric 1D enrichment test showed

significant upregulation of DNA damage response and downregula-

tion of ECM interaction, antioxidant activity, and ABC transporters

in the KO cells, suggesting a role in drug response and tumorigenic

potential (q-value < 0.02; Appendix Fig S5E).

Similar to MDA-MB-231 cells, PYCR1 KO in MCF7 cells signifi-

cantly compromised their migration and invasion capabilities

(Fig 6A and B). Furthermore, PYCR1 KO cells formed smaller and

fewer colonies when compared to the control cells under anchorage-

independent conditions (Fig 6C). In contrast to MDA-MB-231 cells,

we found no effect on the proliferation rate of MCF7 cells in 2D

cultures (Fig 6D). In agreement with (Yasuda et al, 2013), PYCR1

KO in MCF7 increased sensitivity to oxidative stress, generated by

hydrogen-peroxide (Fig 6E).

◀ Figure 4. PYCR1 abundance level is associated with breast cancer relapse.

A Abundance level of the Eigengene vector of yellowgreen module. Each bar represents a patient and is separated and colored according to relapse status.
B Scatter plot of module membership vs gene significance score for the yellowgreen module that shows highest correlation to relapse. Proline biosynthesis proteins

PYCR1 and ALDH18A1 are highlighted. Significance of Pearson correlation was determined using t-test.
C Diagram of the proline metabolism pathways. Proline biosynthesis genes are PYCRL, pyrroline-5-carboxylate reductase-like; PYCR1, pyrroline-5-carboxylate reductase

1; PYCR2, pyrroline-5-carboxylate reductase 2; ALDH18A1, aldehyde dehydrogenase 18 family member A1 (pyrroline-5-carboxylate synthetase).
D Proline biosynthesis protein levels in breast cancer subtypes (Log2 ratios of light vs. SILAC standard). The upper and lower limits of the box show values from the first

to the third quartile, with the horizontal line indicating the median. The whiskers extend 1.5 times the interquartile range from the edges of the box. Outlier values
were plotted outside the whiskers. Significance was determined using paired Student’s t-test and P values were corrected using permutation-based FDR. *P < 0.05
and ***P < 0.001.

E High abundance of PYCR1 in the cancer tissue was validated by immunohistochemistry on matched tissue specimens from patients in this study (n = 3); scale bar: 200 lm.
F Quantification of IHC shows percentage of cells with 2+ and 3+ PYCR1 staining intensity. Data are expressed as mean � SD of three patient samples. Paired samples

were compared by Student’s t-test. *P < 0.05 and ***P < 0.001.
G Kaplan–Meier survival curve for PYCR1 levels in residual cancer in the current proteomics data. Cox univariate P value, risk table, and hazard ratio with 95% CI indicated.

▸Figure 5. CRISPR/Cas9-based PYCR1 knockout increases glutamine flux to the TCA cycle.

A Seahorse experiment measuring oxygen consumption rate (OCR) in MCF7 cells upon addition of oligomycin, FCCP, and a mixture of antimycin and rotenone. Arrows
indicate the points of addition of each inhibitor. Data are presented as mean � SD of one representative experiment (n = 4 wells). Similar results were obtained in
three biological experiments. Samples were compared using Kruskal–Wallis test followed by Dunnett’s test for multiple pairwise comparisons. Corrected P values were
indicated as follows **P < 0.01 and ***P < 0.001. Shapiro–Wilk test was used to check data normality, and Bartlett test was used to examine homogeneity of
variances.

B Bar plot indicates average basal OCR and spare respiratory capacity in seahorse measurements. Data are presented as mean � SD of one representative experiment
(n = 4 wells). Samples were compared using Kruskal–Wallis test followed by Dunnett’s test for multiple pairwise comparisons. Corrected P values are indicated as
follows *P < 0.05 and ***P < 0.001. Shapiro–Wilk test was used to check data normality, and Bartlett test was used to examine homogeneity of variances.

C 13C5-Glutamine-derived carbon labeling patterns of TCA cycle intermediates fumarate, malate, and citrate in MCF7 cells. Data are presented as mean � SD of
triplicate samples. Isotopologues are represented as M+n where M indicates the mass and n equals number of 13C incorporated.

D Seahorse experiment measuring extracellular acidification rate (ECAR) in MCF7 cells upon addition of glucose, oligomycin, and 2-deoxyglucose (2DG). Arrows indicate
the points of addition of each inhibitor. Data are presented as mean � SD of one representative experiment (n = 4 wells). Samples were compared using Kruskal–
Wallis test followed by Dunnett’s test for multiple pairwise comparisons. Corrected P values are indicated as follows **P < 0.01. Shapiro–Wilk test was used to check
data normality, and Bartlett test was used to examine homogeneity of variances.

E Bar plot indicates average glycolytic capacity and glycolytic reserve in seahorse measurements. Data are presented as mean � SD of one representative experiment
(n = 4 wells). Similar results were obtained in three biological experiments. Samples were compared using Kruskal–Wallis test followed by Dunnett’s test for multiple
pairwise comparisons. Corrected P values are indicated as follows **P < 0.01 and ***P < 0.001. Shapiro–Wilk test was used to check data normality, and Bartlett test
was used to examine homogeneity of variances.

F Normalized lactate concentration upon PYCR1 KO. Data represents mean � SE of three biological experiments. Samples are compared using Kruskal–Wallis test
followed by Dunnett’s test for multiple pairwise comparisons. Corrected P values are indicated as follows *P < 0.05. Shapiro–Wilk test was used to check data
normality, and Bartlett test was used to examine homogeneity of variances.
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Next, we examined the involvement of PYCR1 in drug response.

Measurement of cell survival upon 72 hrs of treatment showed that

KO cells were significantly more sensitive to paclitaxel and doxoru-

bicin (Fig 6F and G) and to a lesser extent to cyclophosphamide

(Fig 6H), which may result in part, from compromised oxidative

stress response in these cells. In agreement with our in vitro results,

PYCR1-KO tumors induced a slight but significant reduction in

tumor size in vivo (Fig 6I). Furthermore, WT MCF7 tumors showed

no significant difference in tumor weight and volume upon treat-

ment with paclitaxel and doxorubicin (Fig 6J). Finally, in support of

our results thus far, PYCR1 KO MCF7 tumors showed a marked

reduction in tumor volume and weight upon treatment with two

cytotoxic drugs (Fig 6J, Appendix Fig S6A and B). Collectively, func-

tional perturbations of PYCR1 revealed a role for this metabolic

protein in tumor progression and response to treatment and support

the observations from our clinical proteomics data, wherein residual

tumors with high PYCR1 level are associated with resistance to

treatment and with poor clinical outcome.

Discussion

We present a proteomic study of neoadjuvant treatment response,

analyzing a matched cohort of pre- and post-treatment breast cancer
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samples and their matched tumor-adjacent normal samples. We

took two analytical approaches to associate between protein level

dynamics and treatment response. The first, pattern analysis, takes

advantage of the matched nature of this cohort and focuses on the

change in protein level in the different states. We found that higher

percentage of pattern 3 proteins was associated with shorter relapse-

free survival time in patients. Among the pattern 3 proteins, we

found multiple oncogenes (e.g., Akt, Stat1, mTOR), and in addition,

we found two proline biosynthesis pathway proteins, PYCR1 and

ALDH18A1. The second approach focused on the post-treatment
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samples, which are associated with response and relapse. These

results largely overlapped with the first approach and reinforced the

importance of PYCR1 and ALDH18A1. Kaplan–Meier analysis using

Cox proportional hazard model showed that indeed patients with

high PYCR1 level in post-treatment residual carcinoma had poorer

prognosis than patients with low PYCR1 level.

The clinical proteomic results identified PYCR1 as a candidate

cancer regulator irrespective of cancer subtype, while having

stronger association with hormone-positive tumors. In agreement,

we found that PYCR1-KO affects the invasive migratory capacity in

both MCF7 cells (ER+) and MDA-MB-231 cells (TNBC). These

results are further reinforced by the proteomic analyses of PYCR1-

KO cells, which suggest reduced ECM receptor interactions with

downregulation of integrins and laminins. In contrast to the

common PYCR1 effects, we found that in MDA-MB-231 cells, the

KO affects growth in vitro and in vivo, while in MCF7 cells, growth

rates were hardly affected. However, while the PYCR1-KO had no

effect on chemotherapy-treated TNBC cells, we observed marked

increase in response to chemotherapy in ER+ cells and tumors.

Considering the relatively low sensitivity of ER+ tumors to

chemotherapy, finding their vulnerability to this treatment holds a

promising clinical implication. Given the marked effect of the KO on

central metabolism, we associate the different effects on the basal

metabolic differences between TNBC and ER+ tumors (Tyanova

et al, 2016a; Yanovich et al, 2018). While TNBC presents high

glycolytic activity, ER+ tumors present higher oxidative metabolism.

Therefore, the effect of PYCR1-KO, which also reduces glycolytic

flux, is more specific to TNBC cell growth.

Apart from the metabolic effects, mutations in PYCR1 and

ALDH18A1 have been shown to affect elastin and collagen forma-

tion in the extracellular matrix, leading to progeroid changes and

wrinkled skin, known as Cutis Laxa syndrome (Scherrer et al,

2013). Interestingly, extracellular matrix stiffness was shown to

correlate with pathological response to NAT (Evans et al, 2013).

Altogether, our results add another layer to the understating of

proline biosynthesis in the context of tumor aggressiveness and

relapse, and place this pathway as a central mediator of metabolism,

cancer cell invasion, and drug response.

Our results open a new gateway for potential combination of

chemotherapy with PYCR1 inhibitors, for the treatment of ER+ and

TNBC, as well as heterogeneous tumors that contain TN regions

adjacent to ER+ regions. This could also be extended to other

cancers where PYCR1 is known to be upregulated. In support of

this hypothesis, meta-analysis of 13 pooled microarray datasets

showed better survival of stage II breast cancer patients with low

PYCR1 expression (Ding et al, 2017). Furthermore, upregulation of

PYCR1 has been shown to be associated with increased tumori-

genic and metastatic potential in several cancer types (De Ingeniis

et al, 2012; Elia et al, 2017; Zeng et al, 2017; Ye et al, 2018; Wang

et al, 2019).

Beyond PYCR1, our analysis uncovers many proteins with a

potential role in mediating drug resistance and can uncover new

therapeutic opportunities. For example, investigation of cluster A

proteins, which were associated with poor chemotherapy response,

showed high levels of MHC processing, presentation proteins, and

lipid metabolism proteins (Appendix Fig S3B). Recently, in a cohort

of melanoma response to anti-PD1 immunotherapy, we showed that

tumors of responders expressed higher mitochondrial lipid metabo-

lism proteins, which led to elevated antigen presentation and inter-

feron signaling (Harel et al, 2019). High levels of these proteins in

poor responders to chemotherapy suggest that these may be respon-

sive to immunotherapy. Despite disappointing results of breast

cancer response to single-agent immunotherapy, recent clinical

trials suggest higher response of triple-negative tumors in combina-

tion with chemotherapy (Kim et al, 2019; Planes-Laine et al, 2019).

Our results suggest that these approaches may also be applicable to

aggressive ER+ tumors that do not respond to neoadjuvant therapy.

Altogether, this proteomic resource may be the basis for multiple

functional and translational studies aiming to identify the cancer

vulnerabilities and increase therapeutic responses.

Materials and Methods

Cohort assembly

113 formalin-fixed paraffin-embedded (FFPE) samples were retro-

spectively collected from 35 women with breast cancer who showed

partial response to NAT and from five healthy women who under-

went breast reduction surgeries. The study was approved by the

Institutional Review Board of Sheba Medical Center (Approval No.

8736-11-SMC) and Tel Aviv University, with full exemption for

◀ Figure 6. PYCR1 knockout results in reduced invasion of MCF7 cells.

A Representative pictures of Transwell migration and invasion after PYCR1 knockout. Scale bar :100 lm.
B Bar plot represents mean � SD of three biological replicates for Transwell migration and invasion. Samples were compared using Kruskal–Wallis test followed by

Dunnett’s test for multiple pairwise comparisons. Corrected P values are reported as follows ***P < 0.001.
C Representative images of colony formation in soft agar upon PYCR1 KO. Scale bar: 100 lm.
D Growth measurements of MCF7 wild-type and PYCR1 KO cells over 96 h. Data represent mean � SE of three biological experiments. Samples were compared using

paired Student’s t-test.
E–H Bar plots show percentage of viable cells after treatment with 0.75 mM H2O2 (E), 0.06 lM paclitaxel (F), 0.15 lM doxorubicin (G), and 2.5 mM cyclophosphamide

(H). Data represent mean � SE of three biological experiments. Samples are compared using Kruskal–Wallis test followed by Dunnett’s test for multiple pairwise
comparisons. Corrected P values are indicated as follows *P < 0.05.

I Tumor volume measurements for 26 days in MCF7-injected NSG mice. CRISPR control and PYCR1 KO tumors with (n = 8) and without treatment (n = 5) are
shown. Data represent mean � SE. Pax: paclitaxel, Dox: doxorubicin. Groups were compared by one-way ANOVA followed by Tukey’s multiple comparisons test for
pairwise group comparisons. Corrected P values are reported as follows *P < 0.05, **P < 0.01. Shapiro–Wilk test was used to check data normality, and Bartlett test
was used to examine homogeneity of variances.

J Bar plot indicates mean � SE of tumor volume measurements for day 26. CRISPR control and PYCR1 KO tumors with (n = 8) and without treatment (n = 5) were
compared by one-way ANOVA followed by Tukey’s multiple comparisons test for pairwise group comparisons. Corrected P values are reported as follows
***P < 0.001. Shapiro–Wilk test was used to check data normality, and Bartlett test was used to examine homogeneity of variances.
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consent form for anonymized samples. All samples were anon-

ymized as defined in the study protocol. All patients in the cohort

had stage II or III invasive breast cancer. 33 patients had grade 2

and 3 tumors, and 29 patients showed lymph node involvement. All

patients underwent NAT to reduce tumor burden with AC-T (four

cycles of doxorubicin (60 mg/m2) and cyclophosphamide (600 mg/

m2) every 2 weeks followed by paclitaxel (175/m2) two weekly for

four cycles. Her2 overexpressing patients also received Herceptin.

For every patient in the cohort, we compared the reduction in tumor

cellularity before and after treatment and calculated the Miller &

Payne (M&P) pathological response score (MP1: no reduction in

tumor cellularity/poor responders, n = 6; MP2: minimum reduction

in cellularity/partial responders, n = 13; MP3: partial reduction

in cellularity/better responders, n = 16; MP4: significant reduction

in cellularity/better responders, n = 1). The single MP4 patient was

analyzed together with the other better responders as MP3 (n = 17).

Cell lines

For in vitro functional analysis and proteomics, MCF7 and MDA-

MB-231 cell lines were cultured in DMEM-high glucose media with-

out proline (Biological industries). Media were supplemented with

10% dialyzed FBS (Biological industries), 1 mM sodium pyruvate,

and 1mM penicillin–streptomycin at 5% CO2. MCF7 cell line was

authenticated by analyzing STR profiles using Promega PowerPlex

16 HS kit at the Genomics Core Facility of BioRap Technologies and

the Rappaport Research Institute in Technion, Israel. Cell cultures

were routinely verified to be mycoplasma-free by PCR-detection kit

(Hy-Mycoplasma Detection Kit, Biolabs). For exo-metabolome anal-

ysis, the MCF7 cells were cultured in glucose/glutamine/proline-free

DMEM (Biological Industries), supplemented with 10% DFBS, 1%

antibiotics, 2 mM glutamine, and 25 mM glucose.

MS-based proteomics

Formalin-fixed paraffin-embedded tissue samples were deparaf-

finized with xylene according to the standard protocol and rehy-

drated in graded ethanol. Using hematoxylin and eosin stained

tissue samples as template, tumor and tumor-adjacent normal ducts

were macrodissected to contain at least 70% cellular areas. Patho-

logical analysis of each tumor ensured that we avoid mainly fibrotic

and necrotic areas, as well as avoid regions with intense lymphocyte

infiltration and adipose tissue. Analysis of core needle biopsies

provides a very unique sample type, but also limited in protein

amounts. For each biopsy sample, we macrodissected cancer cell

regions from 2 to 3 FFPE sections (~5- to 10-mm2 tissue area in each

section) of 10 lm thickness, resulting in ~7.5 lg protein amounts.

Post-treatment samples were extracted from 100-mm2 tissue area.

The scraped tissues were lysed in 50% trifluoroethanol (TFE) in

50 mM ammonium bicarbonate buffer followed by heating for 1 h

at 95°C and sonication for 10 cycles (30 s on, 30 s off) in a Biorup-

tor Sonicator (Diagenode). After 20 min high-speed centrifugation,

the supernatant was transferred to a new tube and protein amounts

were calculated by Coomassie Brilliant Blue assay (Minamide &

Bamburg, 1990). 7.5 lg total protein in each sample was mixed 1:1

with the breast super-SILAC mix that served as an internal standard

(Geiger et al, 2010). Proteins were reduced with 5 mM dithiothreitol

(DTT) and alkylated with 15 mM IAA (Iodoacetamide) followed by

overnight in-solution digestion at 37°C with Lysine-C (LysC)-Trypsin

mix (Promega, 1:100 enzyme:protein ratio) and sequencing grade-

modified trypsin (Promega, 1:50 enzyme: protein ratio), respec-

tively. The resulting peptides were acidified with trifluoroacetic acid

(TFA) and separated using strong cation exchange (SCX) fractiona-

tion (Wi�sniewski et al, 2009). Peptides were desalted on C18 stage

tips (Rappsilber et al, 2003), vacuum dried, and resuspended in 2%

acetonitrile/0.1%TFA.

For cell line proteomic experiments, MCF7 cells were cultured in

DMEM (without proline) for 72 h and lysed with 6 M urea/2 M

thiourea in 50 mM ammonium bicarbonate buffer in three biological

repeats (3 technical repeats each). Protein concentrations were

measured using Bradford assay, and in-solution digestion was

performed with LysC-Trypsin mix (1:100 enzyme: protein ratio) and

trypsin (Promega; 1:50 enzyme: protein ratio). Peptides were

desalted on C18 stage tips, vacuum dried, and resuspended in 2%

acetonitrile/0.1% TFA.

Samples were analyzed by liquid-chromatography using the

EASY-nLC1000 HPLC (Thermo Fisher Scientific) coupled to either

Q-Exactive (QE) Plus or Q-Exactive HF mass spectrometers (Thermo

Fisher Scientific, Bremen, Germany). Peptides were separated on

75 lm × 50 cm long EASY-spray PepMap columns (Thermo Fisher

Scientific) and loaded with Buffer A (0.1% formic acid). Peptides

were eluted with a gradient of 5–28% Buffer B (80% acetonitrile/

0.1% formic acid), at a flow rate of 300 nl/min, over a gradient of

140 min. MS acquisition was performed in a data-dependent

manner, with selection of the top 10 (for QE-Plus) and top 15 (for

QE-HF) most intense peaks from each MS scan for fragmentation at

MS/MS level.

MS-based metabolomics

For endo-metabolome analysis, MCF7 control and PYCR1-KO cells

were cultured in DMEM (without proline) until 80% confluence.

Medium was aspirated, and cells were gently washed once with

PBS. Medium was replaced with glucose or glutamine-free DMEM

(Biological Industries), supplemented either with 2 mM 13C-gluta-

mine or 1 mM 13C-arginine (Cambridge Isotope Laboratories), 10%

DFBS, 1% antibiotics for 4 h. Endo-metabolome was extracted with

methanol:acetonitrile:water (5:3:2) on top of a dry ice-ethanol bath,

and the lysates were rotated at 4°C for 10 min and centrifuged at

14,000 g for 10 min at 4°C. Supernatants were stored at �80°C.

Experiments were conducted in three biological replicates and three

technical replicates each.

For exo-metabolome analysis, MCF7 control and KO cells were

cultured for 72 h in glucose/glutamine/proline-free DMEM (Biological

Industries), supplemented with 10% DFBS, 1% antibiotics, 2 mM

glutamine, and 25 mM glucose. Medium without cells served as a

control. Exo-metabolome was extracted by transferring 50 ll of

medium into 750 ll ice-cold extraction solution of acetonitrile: water

(4:1), vortexed vigorously, and centrifuged at 14,000 g for 10 min at

4°C. Supernatants were stored at �80°C. Three biological replicates

were performed, with three technical replicates each. Protein concen-

tration was calculated using Bradford assay for data normalization.

Metabolites were separated on SeQuant ZIC-pHILIC (150 ×

2.1 mm, 5 lm) column coupled to a SeQuant ZIC-pHILIC guard

column (20 × 2.1 mm, 5 lm) (Merck) with flow rate 0.1 ml/min.

LC-MS analysis was performed on an Ultimate 3000 UHPLC
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(Thermo Scientific). QE-Plus mass spectrometer (Thermo Scientific)

operated in a polarity switching mode (between positive and nega-

tive ion modes). Metabolites were separated in a 49-min gradient of

acetonitrile and 50 mM ammonium carbonate (pH10). Injection

volume was 5 ll.

CRISPR/Cas9 knockout of PYCR1

Two single guide-RNAs TGAAATAGGCGCCGACATTG (Loayza-Puch

et al, 2016) and TCTCCGGACAGCATGAGCG (Sanjana et al, 2014)

were cloned into PX459 vector (Addgene plasmid # 62988; Ran et al,

2013), which contains the Cas9 enzyme from S. pyogenes. The

cloned vectors were transfected into MCF7 cells with Xfect transfec-

tion reagent (Takara bio) and treated with puromycin for 2–3 weeks

followed by Western blot to confirm KO. CTTCATCGGCGCTGGC

CAGC gRNA was used to create the KO MDA-MB-231 cell line.

Empty vector without the gRNA served as control.

Western blot

Whole cell lysates (20 lg) from MCF7 and MDA-MB-231 were sepa-

rated by precast SDS-PAGE (Bio-Rad). Western blots were reacted

with the following antibodies: Rabbit anti-PYCR1(1:1,000; Protein-

Tech, #13108-1-AP) and Mouse anti-Tubulin (1:400,000; Sigma,

#T6074) at 4°C, overnight. Secondary antibodies were conjugated to

horseradish peroxidase.

Cell proliferation and viability assays

Control and KO MCF7 cells were seeded in triplicates at a density

of 2,500 cells/well in 96-well plates for cell proliferation measure-

ment. Cells were fixed with 0.5% glutaraldehyde every 24 h for

4 days, and growth rates were assessed by methylene blue assay.

For drug sensitivity assay, 5,000 cells/well were seeded in a 96-

well plate in triplicates and treated with the drugs at a concentra-

tion that showed 50% cell viability. Briefly, after 24 h, the cells

were treated with either 0.06 lM paclitaxel, 0.15 lM doxorubicin,

or 2.5 mM cyclophosphamide. Cells were fixed after 72 h and

assessed by methylene blue assay. For the oxidative stress rescue

test, cells were treated with 0.75 mM H2O2 for 48 h. Experiments

were performed in biological triplicates. Similarly, control and KO

MDA-MB-231 cells were seeded in triplicates at a density of

2,000 cells/well in 96-well plates for cell proliferation measure-

ment and the cells were fixed everyday for 4 days. For drug sensi-

tivity assay, 10,000 cells/well were seeded in a 96-well plate in

triplicates and treated after 24 h with either 1.25 lM paclitaxel or

0.314 lM doxorubicin.

Soft agar assay

Anchorage-independent growth was examined by growing MCF7

cells embedded in agarose and on top of a dense agarose layer. Base

agar (1 ml of 1% agar) was added to each well of a 6-well plate and

allowed to solidify at room temperature. Then, 15,000 cells/well

were prepared in 0.3% agarose and layered on top of the base agar.

1ml of medium was added on top of the two agar layers. Cells were

grown for 2 weeks in a humidified incubator at 37°C. Colonies were

fixed with 4% paraformaldehyde, stained with 0.005% crystal violet

in ethanol for 30 min, and photographed. Three independent experi-

ments were performed.

Transwell assays

Migration and invasion assays were performed by plating 1 × 105

MCF7 cells and 8 × 104 MDA-MB-231 cells in Transwell inserts

(8 mm pore size, BD Biosciences), on top of Matrigel (ECL cell

attachment matrix, Millipore) for invasion assay, or without

Matrigel for migration assay. Cells were cultured in serum-free

DMEM, and complete medium with 10% serum was added to the

bottom chambers. Cells were fixed with 2.5% glutaraldehyde and

stained with 1% methylene blue. MCF7 cells were fixed after 48 h,

and MDA-MB-231 cells were fixed after 12 h. Top (non-migrating)

cells were gently removed, and migrating cells were photographed.

Assays were performed in biological triplicates.

Immunohistochemistry

Matched FFPE specimens from three non-responders to NAT were

obtained from the Institute of Pathology, Sheba Medical center.

Tissue sections (3.5 lm) were probed with anti-PYCR1 antibody

(1:100, ProteinTech #13108-1-AP) using BOND-RX automated stain-

ing platform (Leica Biosystems) following selected protocol for the

Bond Polymer Refine Detection Novocastra kit (catalog number

DS9800, Leica Biosystems). Slides were scanned using Aperio

ScanScopeXT system (Leica Biosystems) with selected objective of

20×. Tissue areas with normal or tumor regions were manually

annotated and subsequently analyzed by optimized cytoplasm algo-

rithm (Leica Biosystems). Percentage of positively stained cells (in-

tensity 2+ and 3+) were used for statistical analysis.

Seahorse metabolic analysis

Seahorse-XF 96-well plates were coated with 50 lg/ml Poly-D-

lysine for an hour. MCF7 control and KO cells were seeded at a

density of 15,000 cells/well and incubated for 24 h at 37°C in 5%

CO2 atmosphere. The Mito Stress Test Kit and Glyco Stress Test Kit

(Agilent Technologies, Santa Clara, CA, USA) were used to measure

oxygen consumption rate (OCR) and extracellular acidification rate

(ECAR), respectively. For OCR measurement, the culture medium

was replaced with 180 ll of bicarbonate-free and phenol red-free

DMEM (Seahorse base medium #103335) incubated without CO2

for 1 h before the assay. The base medium was supplemented with

2 mM L-glutamine, 10 mM glucose, and 1 mM sodium pyruvate;

pH was adjusted to 7.4. For serial injections, we used oligomycin

(1 lM), carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone

FCCP (1 lM), antimycin A (0.5 lM), and rotenone (0.5 lM). For

ECAR measurement, the base assay medium was supplemented

with 2 mM L-glutamine and pH was adjusted to 7.4. Cells were pre-

incubated for 1 h without CO2 before starting the assay. Sequential

injections were performed with glucose (10 mM), oligomycin A

(1 lM), and 2-deoxy-D-glucose (2- DG; 50 mM). Both, oxygen

consumption and extracellular acidification, were measured using

the Seahorse XF96 Extracellular Flux Analyzer (Agilent, CA, USA)

for 90 min as described (Invernizzi et al, 2012). ECAR and OCR

measurements were normalized to cell number, obtained by methy-

lene blue assay.
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Animal experiments

All animal procedures were approved by the Institutional Animal

Care and Use Committee of the Weizmann Institute of Science.

Female NSG mice (6 weeks old) were obtained from the in-house

Weizmann Institute colony. 17 beta-estradiol (E2) pellets (0.72

mg/pellet, 30-day release time; Belma Technologies, Belgium) were

implanted underneath the back skin. Two days later, 1 × 107 MCF7-

WT (no gRNA) or MCF7-PYCR1 KO cells (gRNA1 and gRNA2) were

inoculated into the mammary fat pad under anesthetic conditions.

Once the palpable tumor was observed, mice were randomly

divided into treatment and no-treatment group. Animals were then

treated with paclitaxel (16 mg/kg) or doxorubicin (8 mg/kg) intra-

venously (IV) twice a week. Tumor width (W) and length (L) were

measured once a week using a caliper, and tumor volume (V) was

calculated according to the following formula: V = (W/2× L/

2) × 3.14 × 1.33. Body weight was evaluated once per week. At the

end of the study, mice were euthanized, tumors were photographed,

and weight was recorded. Similarly, 1 × 106 MDA-MB-231 cells

(WT-no gRNA and gRNA1) were implanted to mammary fat pad of

NSG mice and tumor growth was monitored without treatment.

Treatment groups of MCF7-injected mice were compared with one-

way ANOVA, followed by Tukey’s multiple comparisons test for

pairwise group comparisons. Corrected P values are reported. MDA-

MB-231 WT and PYCR1 KO tumors were compared with paired

Student’s t-test, and P value is indicated.

Quantification and statistical analysis

MS-based Proteomics and data filtration
Raw files were analyzed using MaxQuant software (version 1.5.5.1)

with integrated Andromeda search engine (Cox & Mann, 2008; Cox

et al, 2011). MS/MS spectra were searched against the human

FASTA file from the UniProt database (September 2015), a reverse

decoy database and common contaminants (a list of 245 entries).

The peptide search included cysteine carbamidomethylation as a

fixed modification, and N-terminal acetylation and methionine

oxidation as variable modifications. Trypsin was selected as the

specified protease, and maximum of two missed cleavages were

allowed. The minimal peptide length was set to seven amino

acids, and “match between runs” feature was enabled. A false

discovery rate cutoff of 1% was applied at both the protein and

PSM identification levels.

The Perseus program (versions 1.5.5.3 and 1.6.2.1; Tyanova

et al, 2016b), MATLAB (version R2016a) and R (http://cran.r-

project.org/) were used for statistical analysis. The protein groups

were filtered to remove potential contaminants, peptides matched to

the reverse decoy database, and proteins only identified by a modifi-

cation site resulting in 7,600 protein identifications and 7,180 quan-

tifications. Next, the H/L normalized data were log2 transformed

and converted to L/H ratios. These data were filtered to have at least

2/3 quantified values per matched sample (per patient), and if the

3rd value was missing, it was imputed separately based on normal

distribution with a width of 0.3 and a downshift of 1.2 standard

deviations. Patient-wise filtration and imputation ensured that we

do not compare matched protein levels of a patient based on 2/3

missing values. On average, every sample had 4.5% of imputed

values at the end.

The entire list of 7,600 identified proteins (after patient-wise fil-

tration and imputation) was used for patient-wise pattern analysis

and to calculate the percentage of patient-wise patterns in each

patient individually. A fold change threshold of 1.5 was used

between matched samples to define the different patterns and

reflects the trend of changes between normal, pre-, and post-treat-

ment samples.

This entire dataset was further filtered to have quantified values

(valid values) in at least 70% of samples. Principal component anal-

ysis was used to normalize the data for batch effects by subtracting

the 3rd component. The resulting dataset of 2,915 proteins was

used to perform global pattern analysis with paired Student’s t-test

to integrate all samples in the cohort and was used to show

general functional associations with response. The global pattern

analysis was conducted by performing three paired Student’s t-

tests between each of the three groups for each protein with 5%

FDR and S0 = 0.3.

Co-clustering analysis
Data clustering was performed in R using Spearman correlation as

distance measure and average linkage. P value for each cluster in

the co-clustering analysis was generated with the R package

“pvclust” via multiscale bootstrap resampling of 10,000 iterations.

Centrality analysis
Protein interaction network of 736 pattern 3 proteins was imported

from STRING database, and connected nodes were visualized in

Cytoscape. Betweenness centrality of nodes was calculated using

the “cytoNCA” tool in Cytoscape. Node size and color of top 10% of

the network were adjusted based on centrality value.

Weighted gene correlation network analysis
Weighted gene correlation network analysis was performed with

the R package to extract subnetworks associated with pathologi-

cal response score and relapse. This method identifies clusters of

highly correlated genes/proteins across the samples, and calcu-

lates a module eigengene vector for each cluster. The module

eigengene enables the user to relate modules to one another and

to external sample traits. The R package also provides the gene

significance (GS, correlation between each protein in the module

to the clinical trait) values and module membership (MM, the

correlation of each protein in the module to the module eigen-

gene) values of genes/proteins in each module. We used an

input matrix consisting of 2,915 proteins from post-treatment

samples. Soft thresholding power was set to 10, and “signed”

network function was selected. Pearson correlation was calcu-

lated between module eigengene and the following clinical

parameters: Ki67 intensity, tumor grade at diagnosis, age, relapse,

death, relapse-free survival time, overall survival time, tumor size

at diagnosis, and Miller & Payne score. In addition, we associated

the eigengene profiles with co-clustering of matched pre- and

post-treatment samples after hierarchical clustering. P values are

indicated. Network of proteins combined from different modules

was constructed using the STRING database (http://string-db.

org). All networks were visualized with Cytoscape (http://www.

cytoscape.org/). Node size was set based on degree of connectiv-

ity of each protein to other interacting proteins (minimum 1,

maximum 88).
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Enrichment analysis
For supervised and unsupervised WGCNA analyses, gene annota-

tions including GOBP, GOMF, GOCC, GSEA gene sets from MSigDB,

and KEGG pathway were added from UniProt, and Fisher exact test

was performed with an FDR cutoff of 2% or 5% (as indicated

for each analysis) with the entire identified data of 7,600 proteins

as background.

Survival analysis
Univariate Cox proportional hazard and Kaplan–Meier analysis were

performed with R package “survminer”. For survival analysis in our

dataset, all 35 patients were included and patients were stratified

based on median protein level of PYCR1 (above median = high,

below median = low). Multivariate Cox proportional hazard analy-

sis was performed with R package “survival”. Both global and

univariate P values are indicated. Number of events in the multivari-

ate model was 7, and all 35 patients are included. For analysis using

mRNA expression, we used the cBioportal database to mine TCGA

invasive breast cancer provisional dataset of 1,010 samples. High or

low mRNA expression was determined by the number of standard

deviations (SD) from the mean (mRNA expression z-Scores of RNA

Seq V2 RSEM values).

Cell line proteomics
For analysis of PYCR1 WT versus KO MCF7 cell line, we used the

label-free algorithm in MaxQuant (version 1.5.6.9) for relative quan-

tification. Log2 data were filtered to retain only proteins with 70%

valid values across samples. Missing data were overcome by imput-

ing values based on normal distribution with a width of 0.3 and a

downshift of 1.2 standard deviations. Differentially expressed

proteins between WT and PYCR1 KO MCF7 cells were extracted by

performing Student’s t-test (Benjamini–Hochberg FDR 0.1) after

batch-effect removal using “Limma” package in R. 1D annotation

enrichment test was performed on the t-test difference (Benjamini–

Hochberg FDR, q-value < 0.02).

MS-based metabolomics
Metabolites were identified and analyzed with Xcalibur and LCquan

2.7 (Thermo scientific) based on retention time and mass-to-charge

ratio with 20 ppm threshold. Retention time was calculated based

on a calibration curve of metabolite standard. Peak areas of the

metabolites were normalized to the intensity of the MS raw files

and to the total protein amount. Exo-metabolites were also normal-

ized to the media control (without cells). For 13C6-glutamine label-

ing experiments, heavy carbon incorporation results in

isotopologues of metabolites. The increase in mass (M) is reported

as M+0 (all carbons unlabeled, e.g., 12C) to M+6 (all carbons

labeled, e.g., 13C6), respectively.

Data availability

All raw files and clinical proteomics data can be downloaded from

ProteomeXchange Consortium via the PRIDE repository (project
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Expanded View for this article is available online.
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