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Synapses are critical actors of neuronal transmission as they form the basis of
chemical communication between neurons. Accurate computational models of synaptic
dynamics may prove important in elucidating emergent properties across hierarchical
scales. Yet, in large-scale neuronal network simulations, synapses are often modeled as
highly simplified linear exponential functions due to their small computational footprint.
However, these models cannot capture the complex non-linear dynamics that biological
synapses exhibit and thus, are insufficient in representing synaptic behavior accurately.
Existing detailed mechanistic synapse models can replicate these non-linear dynamics
by modeling the underlying kinetics of biological synapses, but their high complexity
prevents them from being a suitable option in large-scale models due to long simulation
times. This motivates the development of more parsimonious models that can capture
the complex non-linear dynamics of synapses accurately while maintaining a minimal
computational cost. We propose a look-up table approach that stores precomputed
values thereby circumventing most computations at runtime and enabling extremely fast
simulations for glutamatergic receptors AMPAr and NMDAr. Our results demonstrate
that this methodology is capable of replicating the dynamics of biological synapses as
accurately as the mechanistic synapse models while offering up to a 56-fold increase
in speed. This powerful approach allows for multi-scale neuronal networks to be
simulated at large scales, enabling the investigation of how low-level synaptic activity
may lead to changes in high-level phenomena, such as memory and learning.

Keywords: input-output modeling, multi-scale modeling, large-scale modeling, glutamatergic receptors, look-up
table, synapse, AMPAR, NMDAR

INTRODUCTION

In modern neuroscience, computational modeling has become a pivotal part of research as it allows
for the investigation of underlying physiological neural mechanisms that are often too difficult to
test experimentally on live tissue. Multi-scale and large-scale models of the nervous system aim
to replicate and integrate complex dynamics across multiple hierarchies (e.g., molecular, synaptic,
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single neuron, neuronal network) within large networks
of neurons. Such models have the potential to further
our understanding of how low-level mechanisms (such as
biomolecular interactions) might affect high-level outcomes,
such as cognition (Micheli et al., 2021). Depending on the level
of analysis being performed, large-scale models can integrate
over multiple temporal and spatial scales, with varying degrees
of detail as to keep simulations feasible, tractable, and adequately
informing. On the less detailed end of the spectrum, one can
avoid the heavy complexity of simulating many individual
neurons by condensing them into neural ensembles that are
reduced to statistical descriptions as done in the use of the
Fokker-Planck equation (FPE)—which imposes the “diffusion
approximation” simplification—or through neural mass models
(NMMs) that describe the mean activity of neural populations
as described in Breakspear (2017). In efforts to bridge micro-
to macroscopic scales, others have employed simple neural
activation functions to model neuromodulation across the brain
as described in Shine et al. (2018, 2021) or by stacking each
hierarchical scale with feedforward ad hoc models, such that
each scale is modeled individually, to examine how changes in
molecular parameters impact neuronal firing rates (Bouteiller
et al., 2011). Multi- and large-scale models of entire neural
subsystems that are anatomically detailed with connectivity or
that consider cell morphology closely tend to require entire
clusters of computing nodes to simulate (Izhikevich and
Edelman, 2008; Yu et al., 2013). These multi-scale models
have potential for in silico experimentation of neurological
perturbations either due to specific pathologies, electrical
stimulation (electrotherapy), or the influence of exogenous
compounds (i.e., drugs), thereby constituting a useful platform
for the discovery and development of novel therapeutics. This
has important implications in neuropharmacology, for example,
as it enables parts of the drug discovery pipeline to be performed
via simulations, potentially resulting in a massive speedup in the
drug development process. Yet, for multi- and large-scale models
to attain such predictive power, they must provide a sufficiently
accurate representation of the underlying neuronal processes,
making it necessary to depict their constituents, at all levels, with
biological accuracy.

Various methods in accelerating simulations have been
explored to alleviate the long runtimes experienced in large-
scale neuronal models. In Marasco et al. (2012), entire
complex cell morphologies were reduced to few functionally
equivalent compartments that can accurately reproduce the
electrophysiological properties of full morphological cell models
with 13–50 times faster runtimes. Tikidji-Hamburyan and
Colonnese (2021) used combinations of polynomial, piecewise-
linear, and step (PLS) functions to accurately approximate
neuronal dynamics resulting in speedups ranging from 3 to 5
times faster than the original models. Multiple artificial neural
network (ANN) architectures were explored in Olah et al. (2021)
where runtimes in networks containing 50 neuronal cells were
accelerated by orders of magnitude compared to their traditional
modeling counterparts.

The high-level outcomes of a neural system model that spans
multiple hierarchies is highly contingent on the processes of

its lower-level components. That is, the observed macroscale
behavior of such a model will depend on the microscale activity
whose effects will propagate up the hierarchical scales. One of
the fundamental levels in hierarchically modeling neural systems
arguably lies at the synaptic scale. Not only do synapses form
the basis for neuronal transmission, they are also critical in
modulating learning and memory (Bliss and Collingridge, 1993;
Mayford et al., 2012). Because of the highly impactful role that
synapses play, their accurate representation is critical.

Several studies have shown the success of mechanistic
approaches that use Markov kinetic state models (Robert
and Howe, 2003; Schorge et al., 2005). Such kinetic models
represent synaptic dynamics using multiple internal states that
are governed by multiple ordinary differential equations (ODEs)
and can capture the complex non-linear and time-varying
behavior of synaptic mechanisms. However, in the context of
large-scale modeling, these methodologies become increasingly
prohibitive due to their computational burden. As a result, large
network simulations involving kinetic models of synapses lead
to extremely long runtimes given the sheer number of synapses
that must be simulated. To compensate, synaptic dynamics are
often reduced to linear rise and decay exponential functions
(alpha synapses) due to their small computational load. These
alpha synapses alleviate the computational complexity problems
of kinetic models by providing fast simulation times, but they
are unable to capture any level of non-linearity and thus, are
inadequate at accurately replicating complex synaptic dynamics
observed experimentally.

Previously, our group had proposed the Laguerre-Volterra
input-output (LVIO) model (Hu et al., 2015) and its artificial
neural-network variant, the Laguerre-Volterra Network (LVN)
(Hu et al., 2018) as faster, middle-ground alternatives to
synaptic modeling. These two models aim to efficiently map
the mathematical relationship between inputs and outputs of
synapses while avoiding the modeling of the underlying complex
biological mechanisms. Both models involve combining the
Volterra functional power series with Laguerre basis functions
(Marmarelis, 1993), thereby replacing the complex computations
associated with solving multiple ODEs in the kinetic models
with simple computations involving algebraic equations (for
details, see Hu et al., 2015, 2018). Despite its speed advantage
over kinetic models, the latter LVN model still runs notably
slower than the alpha synapse model, which provides room
for even further improvement. Here, we introduce a novel
look-up table synapse (LUTsyn) model for both ionotropic
receptors, AMPAr and NMDAr, of glutamatergic synapses that
further reduces simulation time while replicating kinetic model
dynamics. Similar to its Laguerre-Volterra predecessors, the
LUTsyn model implements the input-output relationship of
synaptic dynamics by way of look-up tables without simulating
the computationally heavy mechanisms.

In this paper, we first introduce three underlying assumptions
imposed by the LUTsyn model, illustrate the structure of the
model, describe how it operates at runtime, and discuss how
different structural parameters may affect its performance. We
then cover how mechanistic kinetic synapse models (for AMPAr
and NMDAr) serve as ground truth input-output data and how
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they are utilized to populate the look-up table with amplitude
values. The look-up table data structure is further discussed,
addressing issues of indexing and size followed by a description of
the implementation of the models into the NEURON simulation
environment. Then, the methodology for optimizing the time
constants of the model is covered as well as the equations
involved during runtime. Using the kinetic models as reference,
we then validate (1) the LUTsyn model’s accuracy in response
to random pulse train inputs and (2) its ability to reproduce
precise spike times by measuring spike synchrony at both
the single cell level and network level. To measure the speed
of the model, we implement a large-scale neuronal network
simulation—where each receptor uses the LUTsyn model—and
record the runtime. We compare these benchmarks to other
synapse models (kinetic, LVN, and exponential) and show the
significant speed increase that our new model delivers while
offering powerful predictability on a complex non-linear system.
Our results strongly demonstrate that our LUTsyn methodology
enables large-scale network-level simulations containing a very
large number of synapses, all while maintaining biological
realism at high speeds.

MATERIALS AND METHODS

The LUTsyn model is a methodology that aims to abstract
the input-output relationships for the glutamatergic receptors
AMPAr and NMDAr in a computationally inexpensive way. The
implementation of the LUTsyn model was achieved by imposing
three major simplifying assumptions:

1. The input to the model—presynaptic neurotransmitter
release or “pulse”—is a binary time series.

2. The temporal waveform underlying any Nth order output
response is fixed. That is, the normalized response to
any input is identical to other normalized responses
of the same order.

3. The amplitude of the output waveform is modulated based
on the relative timings of previous inputs (interpulse
intervals) within a finite memory window.

Assumption 1 can safely be made due to the quantal nature of
neurotransmitter release (del Castillo and Katz, 1954). Because
neurotransmitter is released in discrete vesicles (i.e., fixed
amount) in response to presynaptic cells firing, only the timings
of presynaptic events need to be accounted for, not the amount
of neurotransmitter. Assumption 2 enables our model to greatly
simplify the output by providing a computationally light template
waveform in response to each presynaptic input event. Since
AMPAr and NMDAr can accurately be characterized by kinetic
state models (Robert and Howe, 2003; Schorge et al., 2005),
assumption 3 can be made without major loss in accuracy because
of the behavior of these kinetic models: past input events (i.e.,
“pulses”) that occur closer in time to the present input event have
a larger effect on the amplitude of the present output, whereas
input events that occur further in the past have a diminishing
effect. Therefore, the amplitude of the present output waveform
is assumed to be a function of the temporal pattern of past

input events—i.e., the past interpulse intervals. Moreover, the
LUTsyn model assumes a finite memory window where input
events that occur far enough in the past will have no effect on
the present output. With these assumptions, the LUTsyn model
stores precomputed amplitude values into an array-like data
structure (i.e., the look-up table) such that access to these values
is accomplished by using the interpulse intervals of past input
events as indices.

LUTsyn Model Structure
The LUTsyn model’s structure is illustrated in Figure 1. The
model takes a binary time series as input, indicating presynaptic
neurotransmitter release, and provides a continuous time series
as output, representing either AMPAr conductance or NMDAr
open-state probability. The three simplifying assumptions
described above lead to two fundamental objects in the LUTsyn
model. The first (based on assumption 2) is the basis waveform
which serves as a template, providing the shape to each output.
It is derived from an exponential synapse model whose output is
optimized via time constants to estimate the output response of a
kinetically modeled synapse and normalized to have an amplitude
of 1 (details are discussed in the Optimization of Time Constants
section). The second fundamental object is the look-up table
(note: we will use “look-up table” to refer to the data structure
and “LUTsyn” to refer to the model) in which the amplitude
values are stored in a multi-dimensional array-like data structure
that is indexed by past input interpulse intervals (IPIs). The
look-up table provides the predicted amplitude of a given output
waveform such that the amplitude value is multiplied with the
basis waveform to provide the model’s output response. At
runtime, the LUTsyn model operates by progressing through the
simulation and searching for presynaptic input events. When an
input event is received, the model will calculate the IPIs of past
input events which will be used as indices for the look-up table to
retrieve the corresponding amplitude value for the present pulse’s
output response. The present pulse time is then stored to be used
in future IPI calculations. The past IPIs are denoted as τ (τ 1, τ 2,
etc.). For example, τ 1 would represent the IPI between the present
pulse and the most recent past pulse, and τ 2 would represent the
IPI between the present pulse and the second most recent past
pulse. These τ values are transformed into a single index that
accesses the corresponding look-up table amplitude value (see
Look-Up Table Size and Indexing section).

The LUTsyn model contains multiple parameters that affect
both its memory footprint and performance. The order of the
model dictates the number of past pulses that are considered
to form the predicted amplitude value. For example, a LUTsyn
model of order 4 considers four pulses: the present pulse and the
three most recent pulses. In other words, a 4th order LUTsyn
model is indexed using τ 1, τ 2, and τ 3 (3 IPIs). As a result, the
order will also determine the dimension of the look-up table (Nth
order implies an N-1 dimensional look-up table) which directly
governs the memory size. As the order of the look-up table
increases, the accuracy of the model will also increase because
more pulse interactions are accounted for. However, because
input pulses that occur further in the past have decreasing effects
on the present output, the marginal improvement of the model’s
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FIGURE 1 | Structure of the LUTsyn model. The LUTsyn model is an input-output model of glutamatergic synapses containing AMPAr and NMDAr. The input to the
model is a binary time series representing the times when neurotransmitter is released by a presynaptic terminal. The model records past input events that occur
within a specified memory window (denoted by M and shown as the dotted vertical line) and calculates a finite number of interpulse intervals (denoted by τ and
shown as the solid vertical lines) to predict the output response of the present input event (red dashed line). All input events beyond the memory window (shown as
the two dashed vertical lines) are ignored in the prediction of the present output. The interpulse intervals are used to access a look-up table which contains
precomputed amplitude values. The value retrieved from the look-up table is multiplied by a normalized basis waveform to compute the prediction of the output
response to the present input pulse.

accuracy will decrease as the model’s order increases. Therefore,
the order must be chosen to balance model accuracy and memory
consumption. Note: this paper refers to two different, yet related,
notions of “order.” The first is used as defined in this paragraph—
the maximal number of past pulses considered for a particular
LUTsyn model. The second is a way to describe responses that
occur as a result of successive input pulses (e.g., a second order
response is one that resulted from two successive input pulses).

The memory window, M (measured in milliseconds), is
another parameter which determines how far in the past the
LUTsyn model will look for input events. Pulses that occur
beyond the memory window are assumed to have no effect on
the present pulse’s output response and are therefore ignored.
Consequently, when an amount of time greater than M has
passed without any input events, the next input event will be

treated as a “first order pulse.” Additionally, the memory window
governs the size of the look-up table because it is the upper
limit of τ . Increasing M may improve accuracy by considering
more temporally distant pulse interactions but will also increase
memory size. Again, the value of M must be chosen to balance
accuracy and memory consumption.

The granularity, denoted by δ, determines the resolution of
IPIs for which the look-up table is constructed. For example, a
2nd order look-up table (indexed with just τ 1) with a memory
window size of 500 ms and a granularity of 5 ms will contain 100
values, for which each subsequent value is sampled in increments
of 5 ms. The IPI values are rounded to the closest multiple of δ

when generating the prediction index. For the previous example,
if τ 1 = 92 ms, then the index that corresponds to a 90 ms delay
(closest multiple of 5 ms) is used. The value of δ should be chosen
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such that δ is a divisor of the memory window M. Decreasing the
value of δ results in finer resolution which may increase accuracy
but will also increase the look-up table’s memory consumption
due to more values being stored.

The use of exponential functions as the template of the
output requires the optimization of time constants (Tc), which
govern the temporal dynamics and shape of the model’s predicted
waveform. These time constants must be optimized such that
the dynamics of the kinetic synapse models can be replicated.
Unlike the other parameters, the choice of time constants has no
trade-off between model accuracy and memory consumption.

LUTsyn Model Equations
The LUTsyn model utilizes a triple exponential function (sum of
three exponentials) to serve as the basis of the temporal output
waveform to replicate the kinetic synapse models. The triple
exponential function was used to model the output response
to a single input event, which was parameterized by three time
constants Tc1, Tc2, and Tc3 (one for each exponential) shown in
the following equation:

ŷ (t) = Fnorm ·
(

w · e
−t
Tc2 + (1− w) · e

−t
Tc3 − e

−t
Tc1

)
(1)

for which ŷ (t) represents the general normalized output response
of the LUTsyn model, which is either a measure of conductance
(for AMPAr) or a measure of open-state probability (NMDAr).
Fnorm is a normalization factor that scales the amplitude of the
waveform to be 1 (based on the triplet of time constants used),
t represents the amount of time that has passed since the input
event (in ms), and Tc1, Tc2, and Tc3 are the time constants (ms)
that govern the dynamics of the waveform which are optimized
to replicate the output waveform of the kinetic models. The w
variable is a weighting factor constrained within the range (0,1)
and was optimized (along with the time constant variables via
grid search) to have a value of ∼0.963 for both AMPAr and
NMDAr. Fnorm values were computed empirically once the time
constants were known.

Ultimately, the LUTsyn models must output conductance
values for each receptor to simulate the receptor-mediated
excitatory postsynaptic currents (EPSCs). The following
equations show the calculations involved in the LUTsyn model at
runtime:

Ir (t) = nbr · (V − Vrev) · gr (t) (2)

gAMPA(t) = LUTAMPA × ŷAMPA(t) (3)

ONMDA (t) = LUTNMDA × ŷNMDA (t) (4)

g0 = g1
g2 − g1

1 + eαψm
(5)

gmax =
g0

1 +
(

Mg2+
0

K0

)
e−0.062·V

(6)

gNMDA (t) = gmax × ONMDA (t) (7)

for which Ir , nbr , and gr represent EPSC, number, and
conductance of receptor r (AMPAr or NMDAr), respectively.
V represents the membrane voltage, and Vrev represents the
reversal potential (set to 0 mV for both receptors). gAMPA
and gNMDA are the single-receptor conductances of AMPAr
and NMDAr, respectively. LUTAMPA and LUTNMDA are the
amplitude values (for each respective receptor) that scale—
depending on the present IPI pattern—the normalized triple
exponential waveforms of ŷAMPA and ŷNMDA, which both take the
form of Equation 1. ONMDA represents the open-state probability
of NMDAr. Equation 5 was derived from Ambert (2010) for
which g0 represents the total NMDAr conductance in the absence
of magnesium and α represents the steepness of the voltage-
dependent transition from g1 to g2. g1 and g2 represent the open
state conductances with one and two glutamate molecules bound
with values of 40 and 247 pS, respectively. Equation 6 was derived
from Jahr and Stevens (1990) for which Mg2

0 represents the
external magnesium concentration (with value of 1 mM) and K0
represents the equilibrium constant of magnesium (set to 3.57).

Kinetic Synapse Models for
Glutamatergic Receptors AMPAr and
NMDAr
Our proposed LUTsyn approach is an IO model that
fundamentally relies on data that accurately represents the
system being modeled. Despite their computational burden,
kinetic models provide value in their realistic portrayal of
biological systems and thus, were used as the source of input-
output data for which the LUTsyn model was based. Specifically,
two different kinetic synapse models were utilized—one for
each of the ionotropic receptors, AMPAr and NMDAr—to
generate the look-up tables. The AMPAr model, derived from
Robert and Howe (2003), consists of 16 internal states and
outputs the conductance of the AMPAr-associated channel. The
NMDAr model, derived from Schorge et al. (2005), consists
of 15 states and uses the receptor’s open-state probability as
output (see Supplementary Figures 1, 2 for kinetic state model
schematics). Both kinetic models use glutamate concentration (in
response to a presynaptic cell firing) as input, which is calculated
using the NTDiffusion model based on the analytic solutions
for neurotransmitter diffusion in the cleft by Savtchenko
and Rusakov (2007). The NTDiffusion model uses nominal
parameter values of a 60 nm cleft radius, a 20 nm cleft height,
and a diffusivity of 0.33 µm2 ms−1. These models were tuned to
represent the synaptic connections from the entorhinal cortex to
the dentate gyrus in rat hippocampus. For AMPAr, parameters
were chosen that nominally induce a 0.22 mV excitatory
postsynaptic potential (EPSP) at the soma in accordance with
Foster et al. (1991). The rate constants for both AMPAr and
NMDAr kinetic models are summarized in Supplementary
Tables 1, 2, which are taken (and modified for NMDAr)
from Allam et al. (2012).

Look-Up Table Generation
The generation of the look-up tables utilized the kinetic models
discussed previously with an iterative process shown in Figure 2.
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When generating an Nth order look-up table, a train of N
pulses (with IPIs τ 1, τ 2, . . ., τN−1) was sent as input to the
kinetic model where the amplitude of the Nth pulse’s output
response was recorded and stored. This process was repeated
with a new input train until every combination of τ 1, . . .,
τN−1 was exhausted, which was constrained by the memory
window and granularity parameters. Each amplitude value of
the look-up table was stored at an index that corresponds to
the τ values that were used to obtain it, making access simple.
Because the time courses of AMPAr and NMDAr are inherently
different, the LUTsyn model parameters were chosen specifically
for each receptor. AMPAr has faster dynamics than NMDAr
which results in a finer granularity but smaller memory window.
We chose the look-up table to be of 4th order with a memory
window of 300 ms and a granularity of 1 ms for AMPAr.
The 1 ms granularity provided sufficient accuracy to the model
while keeping memory consumption low. See Supplementary
Figure 3 for a comparison on the effects on accuracy and
memory of different granularity levels. NMDAr exhibits much
slower dynamics, greater non-linearity, and longer lasting pulse
interactions. We set the NMDAr look-up table to be of 5th order
with a memory window of 1,000 ms and a granularity of 5 ms.
Both memory window values were found by searching for the
amount of time required between two pulses (simulated on the
kinetic models) such that the second pulse’s output response had
an amplitude within a 2% error of the first, which would signify
that the system had returned to a “baseline” state after transients
from the first pulse settled down.

Look-Up Table Size and Indexing
The shape of the look-up tables are not uniform hypercubes
(square, cube, tesseract, etc.) for which each τ axis contains the
same number of values. This is because of the intrinsic constraint
τ 1 < τ 2 < . . . < τN−1. Figure 3 illustrates the shape of the look-
up table data structure for a 3rd order (2-dimensional) LUTsyn
model. As a result of the shape, the look-up table was stored
as a sequentially flattened one-dimensional array such that an
index transformation is used to access the values. The following
Equations 8, 9 are the general form for calculating the number
of values in an Nth order look-up table with memory window M
and granularity δ:

C (R,N) =
(

R
N − 1

)
=

R!
(N − 1)! (R − N + 1)!

(8)

R =
M
δ
, R ∈ N (9)

for which R represents the ratio (assumed to be a positive integer)
between the memory window (M) and granularity (δ). R can be
interpreted as the maximum number of time samples within a
memory window given a specific granularity. C(R,N) represents
the total number of values stored in a look-up table of Nth order,
with ratio R. Equation 8 is equal to the combination function.
It can be interpreted as having R time slots and any N-1 of
those slots contains an input event: “R choose N-1.” The look-up
tables reported in this paper are of 4th (for AMPAr) and 5th (for
NMDAr) order. The specific formulas for calculating the number
of values in 4th and 5th order look-up tables, as functions of R,

were derived by plugging in N = 4 and N = 5 into Equation 8 and
simplifying:

C (R, 4) =
R3
− 3R2

+ 2R
6

(8.1)

C (R, 5) =
R4
− 6R3

+ 11R2
− 6R

24
(8.2)

for which C(R,4) and C(R,5) represent the total number of values
stored in 4th and 5th order look-up tables, respectively. The R
value for AMPAr is 300 (M = 300 ms, δ = 1 ms) while the R value
for NMDAr is 200 (M = 1,000 ms, δ = 5 ms). Using the equations
above, the total number of values in the 4th order AMPAr look-up
table and the 5th order NMDAr look-up table are 4,455,100 and
64,684,950, respectively. Since each value stored is of datatype
double, then the memory size, in bytes, can be calculated by
multiplying the number of values, C, by 8. This results in the
4th order AMPAr look-up table consuming 35,640,800 bytes
(∼33.9 MB) of memory while the 5th order NMDAr look-up
table consumes 517,479,600 bytes (∼493.5 MB). Generation of
the look-up tables was parallelized and performed on a high
performance computer cluster containing 1,000 processing cores
(Intel Xeon 4116). The time required to generate the AMPAr and
NMDAr look-up tables were∼24 and∼299 min, respectively.

The general equation that converts the multi-dimensional
indices (using τ values) into a one-dimensional index were
derived using Equation 8:

iN(τ ′1, τ
′
2, ..., τ

′
N−1) =

N−1∑
n = 1

C
(
τ
′

n, n
)

(10)

τ ′n (τn, δ) = round
(τn

δ

)
(11)

for which δ represents the granularity of the LUTsyn model
(measured in ms), the round() function rounds the input
to the nearest integer, τn represents the interpulse interval
between the nth most recent input pulse and the present input
pulse in milliseconds, τ

′

n represents the transformation of τn
into an array index (which must be a natural number) that
depends on the value of δ, and iN is the Nth order one-
dimensional index transformation given the multi-dimensional
indices τ ′1, τ ′2, ..., τ ′N−1. For 4th and 5th order look-up tables,
the formulas for the one-dimensional indices were derived by
plugging in N = 4 and N = 5 into Equation 10:

i4
(
τ ′1, τ

′
2, τ
′
3
)
=

τ
′ 3
3 − 3τ

′ 2
3 + 2τ

′

3
6

+
τ
′ 2
2 − τ

′

2
2

+ τ
′

1

(10.1)

i5
(
τ ′1, τ

′
2, τ
′
3, τ
′
4
)
=

τ
′ 4
4 − 6τ

′ 3
4 + 11τ

′ 2
4 − 6τ

′

4
24

+ i4(τ
′
1, τ
′
2, τ
′
3) (10.2)

Implementation in NEURON Framework
The LUTsyn, kinetic, and neurotransmitter diffusion models
were all implemented into NEURON, a simulation environment
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FIGURE 2 | Generation of a 4th order look-up table. For a 4th order look-up table, all possible temporal combinations of input pulse trains consisting of four pulses
(constrained by M and δ) are sent to a kinetic state model (either representing AMPAr or NMDAr). For each input pulse train, the amplitude of the kinetic model’s
output response due to the fourth pulse is recorded and stored into the look-up table at an index that corresponds to the IPIs of the pulse train.

FIGURE 3 | Visualization of 3rd order look-up table. A 3rd order look-up table can be abstracted as a two-dimensional data structure indexed by τ
′

1 and τ
′

2 (integer
analogs of the IPIs τ1 and τ2). The intrinsic constraint τ1 < τ2 for a given pulse train gives the look-up table its “lower triangular matrix” shape (shown on the left)
where Ai represents the ith amplitude value stored. For efficient use of computer memory, the look-up table is flattened into a one-dimensional array (shown on the
right) which is indexed by i. The one-dimensional index i has a direct mathematical mapping from the two-dimensional indices τ

′

1 and τ
′

2 (shown by the center arrow)
which was derived by Equation 10 and taking N = 3.

for computational models of neuronal networks (Hines and
Carnevale, 1997). Each model was written into a module (.mod)
file using the NMODL programming language. In this study,
large-scale simulations, model validation, and look-up table
generation were all performed using the NEURON framework
(v7.6.7). NEURON simulations were interfaced through the
Python programming language (v3.5) and allowed for multiple
instantiations of each model to run in parallel. The LUTsyn
models of AMPAr and NMDAr were implemented in separate
.mod files and were written to follow the logic described in the
previous LUTsyn Model Structure section. In order for NEURON
to interface with the data structures of the look-up tables, the
look-up tables are first loaded in Python as NumPy arrays.
Access to these arrays was achieved by creating pointers that held
their memory addresses and linking them to every NEURON
instantiation of the LUTsyn model. In the context of large-scale
simulations, this is a highly memory efficient approach as only
one look-up table must be loaded into memory (per core) for any
number of instantiations of the synapse to access them.

Optimization of Time Constants
From the previously discussed assumption 2, a different set
of time constants were used for each different order response.
For example, the 4th order LUTsyn model uses four different
sets of time constants; one set for each 1st, 2nd, 3rd, and 4th
order output response. Optimization of these time constants
was performed by first obtaining the average 1st, 2nd, . . .,
Nth order output responses (using the kinetic models) in
a Poisson random pulse train with a mean firing rate of
10 Hz (see Figure 4). The full duration at half maximum
(FDHM) was calculated for each of the average N output
responses to characterize the temporal dynamics of the output
waveform of the kinetic models and to optimize the basis
waveforms of the LUTsyn model. A grid search algorithm
was used to optimize each triplet of time constants for each
order. The objective function used in this algorithm was the
equally weighted sum of the relative error of the FDHM and
the normalized root mean square error (NRMSE) between
the response from the kinetic model and estimation of the
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FIGURE 4 | Waveform isolation and time constant optimization. (A) A 20 s 10 Hz Poisson random pulse train response (simulated using the kinetic models) is
decomposed into its isolated constituent waveforms to be measured. This process is illustrated for isolating the output response of the fifth pulse in the entire pulse
train (shown by the dashed red waveform) as an example. Output waveforms in response to only the first five pulses (original waveform) and first four pulses
(subtracted waveform) are captured. The pulse of interest (the fifth pulse) is isolated by subtracting the subtracted waveform from the original waveform which
produces the individual contribution of the fifth pulse. The isolated waveform is then saved and categorized based on the order of the pulse (in this case, fifth order).
This process is repeated for every individual pulse in the full 20 s input train. (B) After all pulses in the input train have been saved and categorized, the average
waveform of each order is found. The full duration at half maximum (FDHM) is found for each average nth order waveform. The FDHM and average waveform are
then used in the optimization of the three time constants for the triple exponential basis waveform of the LUTsyn model as described in Equations 12, 13.

triple exponential model. The equations below summarize the
objective functions used in the time constant optimization:

f (Tc) =
|γ− γ̂|

γ
+ NRMSE (12)

NRMSE =

√√√√∑K−1
k = 0

(
y
(
k
)
− ŷ

(
k
))2∑K−1

k = 0 y2(k)
(13)

for which f (Tc) represents the objective function that is
being minimized, Tc is the vector containing the three
time constants Tc1, Tc2, and Tc3, γ represents the target
FDHM given by the average kinetic response, γ̂ represents
the FDHM given by the triple exponential estimate function
using the time constants of Tc, and NRMSE represents
the normalized root mean square error between two time
series y

(
k
)

(the reference) and ŷ
(
k
)

(the estimate), both
which are of length K. In the context of time constant
optimization, y

(
k
)

represents the kinetic model’s normalized

average output in response to one input event and ŷ
(
k
)

represents the estimate output response of the normalized
triple exponential function, parameterized by Tc. The time
constants optimization was performed N times (N = 4 for
AMPAr and N = 5 for NMDAr), according to the objective
function above, resulting in N triplets of time constants—
one triplet for each response order being modeled (see
Table 1).

During this study, it was found that the global error
between the target and estimated waveforms were not the
best predictors of model performance in terms of spike
synchrony. In many cases, optimizing solely based on NRMSE
within the constraint of the triple exponential function
resulted in deviations during the decay phase of the output
waveform and poor performance in the LUTsyn model’s
spike synchrony. Therefore, the FDHM was considered
as a way of further constraining and optimizing the
temporal aspects of the output waveform and ultimately,
spike synchrony.
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TABLE 1 | Average full duration at half maximum (FDHM) and optimized
time constants.

Receptor Order Average FDHM (ms) Tc1 (ms) Tc2 (ms) Tc3 (ms)

AMPAr 1 5.4658 1.05 3.80 16.0

2 5.6135 1.05 3.95 19.0

3 5.6232 1.10 3.85 18.0

4+ 5.8301 1.05 4.20 19.5

NMDAr 1 59.7048 18 23 148

2 59.0823 17 20 140

3 63.3173 18 21 144

4 62.2335 18 22 168

5+ 62.6808 18 21 140

The average FDHMs of the kinetic models over a 20 s 10 Hz input train is
reported, which are grouped by pulse order and receptor. The triple exponential
time constants are also reported, which optimize the normalized root mean square
error (NRMSE) of the waveform and the average FDHM.

RESULTS

Model Validation—Accuracy
The LUTsyn model’s accuracy was evaluated using validation
datasets consisting of binary Poisson random pulse train inputs
with mean firing rates of 2, 4, 6, 8, 10, 12, and 14 Hz, all with
simulation durations of 20 s. These pulse trains were chosen
to provide a broad spectrum of input patterns that led to a
diverse range of non-linearities. The outputs of the validation
datasets were the responses given by the AMPAr or NMDAr
kinetic models (both coupled with the NTDiffusion mechanism)
implemented in NEURON. The outputs that were measured
were AMPAr conductance and NMDAr open-state probability.
To provide context to our LUTsyn model’s performance, we
compared its accuracy to that of our previous LVN model,
a double exponential synapse (for AMPAr), and a triple
exponential synapse (for NMDAr). Each of the models were
given the same validation inputs while accuracy was evaluated
with respect to their ability to replicate the outputs of the
kinetic models. The metric used for evaluating accuracy was
chosen to be the NRMSE. The NRMSE is a good choice of
criterion for this data because the baseline of the output is
zero. The error calculated using NRMSE is primarily focused
on the difference in amplitudes of the expected and predicted
response, which is precisely the desired measurement. In this
study, we implemented each model into NEURON and simulated
a single synapse for each model with fixed timesteps of 0.1 ms.
Figures 5A,B show the comparison of average NRMSE results
of both AMPAr and NMDAr across mean frequencies ranging
from 2 to 14 Hz using the exponential and LUTsyn models. In
terms of accuracy, the exponential synapse models performed
the worst in every case with NRMSE values ranging from 10 to
27% in AMPAr and 42 to 65% in NMDAr due to their inability
to capture any degree of non-linearity while the LUTsyn model
maintained NRMSE values ranging from 6 to 11% in AMPAr and
9 to 12% in NMDAr. Figures 5C,D show an accuracy comparison
of the LUTsyn and LVN models. The LUTsyn model provided
marginally worse results than the LVN model except for the 10 Hz
NMDAr case. Despite small decreases in accuracy compared

to the LVN model, the LUTsyn model still provides accurate
results that are adequate in replicating kinetic model dynamics.
Figure 5E illustrates a sample comparison of the NMDAr outputs
of open-state probability simulated at 10 Hz using the kinetic,
LUTsyn, and triple exponential synapse models. These output
traces make it clear that the non-linear dynamics of NMDAr
cannot be accurately captured by the linear triple exponential
synapse model but can be captured by the LUTsyn model.

Model Validation—Spike Synchrony
Though the LUTsyn models had been shown to perform better
than the exponential models at the receptor and conductance
level, the errors were non-zero. One of the ultimate goals of this
work is to evaluate how the lower-level molecular differences
are propagated through a neural system and consequently affect
higher-level properties, such as spike timing at the cellular
level. Therefore, we utilized spike synchrony to quantify the
differences in spike timing that would result from using the
various synaptic models and to evaluate the LUTsyn model’s
capability of replicating the behavior of the kinetic models.
A NEURON simulation protocol was devised to measure spike
synchrony which included a model of a single granule cell from
the rat dentate gyrus with a varying number of active input
synapses ranging from 1,200 to 6,000 (depending on mean input
firing rate) at the outer molecular layer (see Figure 6). The
granule cell morphology was reduced to an equivalent four
compartment model, as described in Yu et al. (2019), using
the reduction algorithm outlined in Marasco et al. (2012). The
number of input synapses were changed based on input firing
rate so that regardless of the input firing rate, the granule cell
output firing rate was approximately the same (see Table 2). Fixed
timesteps of 0.1 ms were used. Within a given simulation, all the
synapses were given unique 20 s Poisson random input trains of
the same mean firing rate of either: 2, 4, 6, 8, 10, 12, or 14 Hz.
A spike detection algorithm was used on the granule cell which
recorded the times the soma produced an action potential (i.e.,
the “spike times”), which was defined as the time at which the
somatic voltage crossed 0 mV during a rising phase. Spike times
were generated and compared using the different synapse models
and the spike times generated by the kinetic models were used as
reference. The spike synchrony was evaluated in two cases: (1)
synapses containing only AMPAr and (2) synapses containing
both AMPAr and NMDAr. In simulations including synapses
that contained both AMPAr and NMDAr, analogous pairs of
models were chosen to be simulated together (e.g., LUTsyn model
for AMPAr was simulated with LUTsyn model for NMDAr). An
efficient version of the van Rossum distance (VRD) (Van Rossum,
2001; Houghton and Kreuz, 2012) was used to measure spike
synchrony. The input trains for each synapse were randomly
generated over five different seeds such that five different VRD
measurements were taken for each input firing rate. The five VRD
scores were then averaged (per firing rate) and compared among
the different synapse models. Figure 7 compares the average VRD
score of the exponential and LUTsyn synapse models as a function
of input firing rate. The results demonstrate that in all cases, the
LUTsyn model provided superior spike synchrony and replicated
kinetic spike times better than the exponential models—except
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FIGURE 5 | Accuracy comparison of synapse models. (A,B) Error of the LUTsyn and exponential models were measured using NRMSE at 2–14 Hz Poisson inputs.
The reported NRMSE values were averaged over five different random input trains (each 20 s long). (A) Average AMPAr conductance NRMSE is compared.
(B) Average NMDAr open-state probability NRMSE is compared. (C,D) The LUTsyn and LVN models’ accuracy were compared using NRMSE over 2 and 10 Hz
(each containing one 20 s trial). The LVN NRMSE values were taken directly from Hu et al. (2018). The LUTsyn values were found by reproducing the same
simulations used in Hu et al. (2018). (C) AMPAr EPSC NRMSE is compared. (D) NMDAr open-state probability NRMSE is compared. (E) NMDAr open-state
probability sample traces are compared at 10 Hz for the first 2 s of a 20 s simulation.

in the 2 Hz AMPAr case, in which both models gave nearly
identical VRD scores. This is likely due to the fact that AMPAr
dynamics occur fast in comparison with a 2 Hz firing rate, thus,
resulting in low spike orders and the LUTsyn synapses behaving
quite linearly. In the case of cells containing both LUTsyn AMPAr
and NMDAr, spike synchrony noticeably degrades as input firing

rate increases (Figure 7B). This is likely due to the non-linearities
that arise due to pulse interactions that are not accounted for by
the NMDAr LUTsyn model. NMDAr dynamics take significantly
longer and require a longer memory window than AMPAr. This
longer 1,000 ms memory window, combined with the increased
firing rates, inherently increase the likelihood that pulses beyond
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FIGURE 6 | Simulation protocol for measuring spike times. Spike synchrony was assessed by first collecting spike times for all synapse model-firing rate
combinations. The simulation protocol was implemented in NEURON with a single rat dentate granule cell consisting of thousands of synapses distributed in the
outer third molecular layer. For a given simulation, all synapse instantiations were of the same model type (all kinetic, all LUTsyn, etc.) and each synapse was
stimulated with the same mean firing rate. Input firing rates ranged from 2 to 14 Hz. For a given input firing rate, each synapse received a unique Poisson process
stimulation pattern with the same mean frequency, i.e., the inputs were asynchronous across synapses. The stimulation pattern that a synapse received remained
the same regardless of the synaptic model being used such that if the synapse models performed identically, the granule cell should elicit the same spiking train.
Membrane voltage at the soma was recorded as well as times that action potentials were produced (i.e., “spike times”). Spike times were collected for all synapse
models across all input firing rates. The spike times produced by the kinetic models were used as reference in assessing the other models’ spike synchrony (see
Figure 7 for comparison results).

the LUTsyn’s limit of 5th order are not accounted for resulting in
uncaptured non-linear pulse interactions, and thus, higher error.

Performance in Large-Scale Simulations
To evaluate the efficiency of each method in large-scale neuronal
networks, the runtime was measured when each synapse model
was placed into a large-scale setting. The large-scale simulations
consisted of entorhinal cortex projections to the dentate gyrus
of a rat hippocampus, as described and developed in Yu et al.
(2018), with 500 ms of simulated time and fixed timesteps of
0.1 ms. The simulations contained approximately a thousandth

TABLE 2 | Number of synapses simulated for each input firing rate in NEURON for
measuring spike synchrony.

Input firing rate (Hz) Number of synapses

2 6,000

4 3,000

6 2,000

8 1,500

10 1,400

12 1,300

14 1,400

of the number of connections in a single hemisphere of a rat’s
entorhinal-dentate system, which contained 46,000 cells from the
lateral entorhinal cortex, 66,000 cells from the medial entorhinal
cortex, and 1,200 granule cells of the dentate gyrus resulting
in a total of 3,417,600 synapses. Again, the granule cells were
reduced to models containing four compartments as described
in the previous section and carried out in Yu et al. (2019).
The University of Southern California’s Center for Advanced
Research Computing (CARC) was used for carrying out the large-
scale simulations. Parallelization of the simulation was performed
using 48 processing cores, each with 3 GB of allocated RAM.
Each CPU was an Intel Xeon 4116 Processor with a clock
frequency of 2.10 GHz. Figure 8A compares the large-scale
simulation runtimes when every synapse instantiation is changed
to either the kinetic, LVN, LUTsyn, or exponential synapse
models. Runtimes were measured in three cases: only AMPAr
synapses, only NMDAr synapses, and synapses containing both
AMPAr and NMDAr. The results show the extreme slowdown of
the kinetic models, which took over 2 h to simulate AMPAr and
NMDAr individually and over 4 h to simulate them together. The
LVN synapse model had a considerable speed-up with runtimes
ranging from ∼10 to ∼27 min. The LUTsyn method provided
a vast speed advantage over the kinetic and LVN models with
runtimes ranging from ∼2.4 to ∼5.6 min. Furthermore, these
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FIGURE 7 | Comparison of spike synchrony. Spike synchrony was assessed and compared for each synaptic model over multiple 20 s simulations over multiple
input firing rates. The van Rossum Distance (VRD) was used as the metric for quantifying spike synchrony, which uses the kinetic models’ spike times as reference.
A low VRD score reflects pairs of spike trains that are temporally similar (i.e., high spike synchrony). The VRD scores shown above reflect average scores over five
unique trials (i.e., five different random seeds). (A) The average VRD for simulations only containing AMPAr models are compared. (B) The average VRD for
simulations containing both AMPAr and NMDAr models are compared. (C) An example trial of spike times, simulated at 10 Hz with only AMPAr synapses, is shown
as an aid for spike time-VRD score visualization.

speeds were similar to those of the exponential models with
runtimes that were around a minute longer in the individual
receptor cases. Accuracy at the level of the large-scale network
was also evaluated (Figure 8B). Spike synchrony (VRD) and
somatic voltage (NRMSE) were compared (averaged over 1,200
granule cells) between the exponential models and LUTsyn
models in reference to the kinetic models (when both AMPAr
and NMDAr were simulated simultaneously) with input firing
rates of 10 Hz. The LUTsyn models demonstrated significantly
superior results in both metrics over the exponential models:
average VRD of 0.19 vs. 0.74 and average NRMSE of 0.21 vs.
0.81. It should be noted that the values of VRD obtained in this
section were considerably smaller than those found in Figure 7
due to the simulations being much shorter (500 ms vs. 20 s). The
longer simulated time in the previous section allowed for more
desynchronization of spike times, allowing errors to propagate

and become more apparent as time progressed, and thus,
produced a larger VRD value. These results in runtime efficiency
and network-level accuracy indicate that the LUTsyn model
maintains the predictive power of the kinetic synapse models
while greatly reducing their complexity and computational load.

DISCUSSION

Multi-scale and large-scale models of the nervous system
have great potential in revealing insights on how micro-level
interactions may lead to emergent effects observed at the
neuronal network level, and how network level dynamics affect
subcellular molecular pathways. Utilization of such models would
have powerful implications in healthcare as they would enable
in silico investigations of neurological disorders and facilitate

Frontiers in Computational Neuroscience | www.frontiersin.org 12 October 2021 | Volume 15 | Article 733155

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles


fncom-15-733155 September 29, 2021 Time: 13:35 # 13

Pham et al. Look-Up Table Synapse Model

FIGURE 8 | Comparison of large-scale simulations. (A) Runtimes were averaged and compared over 10 trials. AMPAr (left) and NMDAr (center) models were first ran
individually from each other. Then, both receptors were ran together (right). The kinetic models took about 2 h (receptors simulated individually) to 4 h (receptors
simulated together) while the LVN, exponential, and LUTsyn models took minutes. The simulations containing both AMPAr and NMDAr have runtimes that are
roughly the sum of their individual constituents. (B) Network-level accuracy was compared over 1,200 granule cells by measuring spike synchrony (VRD) and
somatic voltage (NRMSE) in reference to kinetic synapses. AMPAr and NMDAr were simulated simultaneously with a 10 Hz input firing rate.

identification and development of novel therapeutics, offering
an inexpensive and efficient complement to animal models.
Currently, the limits of large-scale modeling over multiple
hierarchies are broadly constrained by the computational power
of today’s technology and the computational load that is imposed
by the model itself. In this report, we addressed the latter by
circumventing model complexity with simple memory access.

From a scientific perspective, mechanistic approaches
are excellent investigative tools that provide highly accurate
representations of biological systems, which lead to an improved
understanding of them. As discussed, kinetic state models are
utilized to depict synaptic dynamics with high fidelity. However,
from an engineering perspective, such approaches become
increasingly impractical in large-scale settings as the number
of synapses becomes large and due to the large number of
differential equations used in kinetic models, which lead to
significant computational complexity. In this study, we proposed
an efficient look-up table approach that replicates kinetic model
properties while reducing computational load, thereby bridging
hierarchical gaps in multi-scale and large-scale modeling.

We have shown that the LUTsyn model can successfully
reproduce the kinetic model properties in a highly parsimonious

fashion. At the molecular/conductance level, we compared our
LUTsyn model’s accuracy against the accuracy of our previous
LVN and linear exponential synapse models over 2 and 10 Hz
random pulse trains. We have found that the LUTsyn models
performed with similar accuracy as the LVN models, and in
one instance, had a slight improvement over them. As expected,
the exponential synapse models performed poorly in replicating
kinetic level non-linearity, resulting in high error. Additionally,
we measured and compared the average spike synchrony of
the synapse models which demonstrated that higher/cellular
level spike timings were preserved using the LUTsyn model.
Finally, we assessed how well the LUTsyn model facilitates
simulations in large-scale neuronal networks by measuring its
runtime and comparing it to other synapse models. The results
showed that the kinetic models were remarkably slower than
the other methodologies. Although the LVN models had a
large speed advantage over the kinetic models, the LUTsyn
and exponential models yielded the fastest runtimes overall.
Despite the marginal decrease in accuracy when compared to the
predecessor LVN model, the gain in speed makes the LUTsyn
model a powerful middle-ground alternative in enabling large-
scale simulations.
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Our LUTsyn model is an input-output approach that aims to
circumvent computationally slow calculations with comparably
fast memory access. The simplicity of the look-up table approach
makes it a highly generalizable method that can be utilized
across other non-linear time-variant systems; its advantages are
maximized in applications that require many identical model
instantiations to be simulated. Any biological system that shares
a common waveform as its output with varying amplitudes
depending on the precise timings of past stimuli could be
simplified to a look-up table model to alleviate computational
load. As an input-output model, the look-up table approach is
only concerned with the outcomes of the system and not its
working details, making it invariant to complexity. Despite the
LUTsyn model’s ability to drastically reduce model complexity,
it is important to note its current limitations. First, multi-scale
models that incorporate synapses using the LUTsyn model will
not capture any biophysical changes that result from signal
cascades outside of the receptor (i.e., LUTsyn instantiations will
have a fixed behavior). This limits the ability to investigate
feedback mechanisms that may affect synaptic strength (e.g.,
long-term potentiation and depression) and their subsequent
impacts on higher levels in the hierarchical chain. Another
shortcoming of the LUTsyn model is that a new look-up table
must be generated and loaded into memory for every different
type (or configuration) of synapse that must be simulated. Two
obvious examples would be in the modeling of neurological
perturbations and/or drug interactions which would result in
changes in synaptic behavior. These would consequently lead
to the elaboration of additional look-up tables. For simulations
involving many types of synapses, computer memory may
become an issue due to the amount of data that must be loaded
for all the different look-up tables. Furthermore, the assumptions
that underlie the LUTsyn model may lead to inaccuracies in
higher firing rate simulations. For example, the order (N) of the
model determines the maximum number of past pulses that will
be considered when predicting the present output response. It
is possible in higher firing rate situations that the non-linear
effects emerging from pulses, which are not accounted for, are not
captured. One way to address this problem would be to increase
the model’s order; however, doing so would greatly increase the
size of the look-up table by an amount that is similar to increasing
the dimension of a multi-dimensional array. Moreover, the
LUTsyn model imposes the simplifying assumption that the
normalized output waveform for each response order has an
identical shape. In general, this is not the case, which may
lead to further errors propagating in situations that contain
a large variety of non-linear interactions and variations in
waveform dynamics.

Regardless of the limitations described above, its underlying
approach successfully highlights the advantages taken from both
mechanistic (biological realism) and input-output modeling (fast
runtimes). It has demonstrated the ability to preserve synaptic
dynamics while drastically reducing complexity by implicitly
abstracting non-linearity in the form of look-up tables. We have
demonstrated its powerful capabilities in replicating complex
mechanistic synapse dynamics at remarkable speeds with a low
computational cost. The LUTsyn model’s ability to reproduce

biologically realistic synapses while maintaining high parsimony
makes it a strong candidate in large-scale modeling of neuronal
networks that span multiple hierarchies.
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Supplementary Figure 1 | Schematic of AMPAr kinetic state model adapted
from Robert and Howe (2003).

Supplementary Figure 2 | Schematic of NMDAr kinetic state model adapted
from Schorge et al. (2005).

Supplementary Figure 3 | Effects of LUT granularity. (A) LUTsyn AMPAr
conductance error as a function of input firing rate is compared across multiple
look-up tables with varying granularities. NRMSE values are averaged over five
trials, each lasting 20 s long. Accuracy improvement is negligible when changing

from 1 to 0.5 ms granularities. (B) The amount of memory consumed from a
fourth-order look-up table (M = 300 ms) as a function of its granularity is shown.
The y-axis is shown in log scale. Although the accuracy change is negligible
between 1 and 0.5 ms granularities, the amount of memory consumed is about an
eightfold increase.

Supplementary Table 1 | Rate constants of AMPAr kinetic state model.

Supplementary Table 2 | Rate constants of NMDAr kinetic state model.
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