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member of Freie Universität Berlin and Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany,
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ABSTRACT

MutationDistiller is a freely available online tool for
user-driven analyses of Whole Exome Sequencing
data. It offers a user-friendly interface aimed at clini-
cians and researchers, who are not necessarily bioin-
formaticians. MutationDistiller combines Mutation-
Taster’s pathogenicity predictions with a phenotype-
based approach. Phenotypic information is not lim-
ited to symptoms included in the Human Phenotype
Ontology (HPO), but may also comprise clinical diag-
noses and the suspected mode of inheritance. The
search can be restricted to lists of candidate genes
(e.g. virtual gene panels) and by tissue-specific gene
expression. The inclusion of GeneOntology (GO) and
metabolic pathways facilitates the discovery of hith-
erto unknown disease genes. In a novel approach,
we trained MutationDistiller’s HPO-based prioritiza-
tion on authentic genotype–phenotype sets obtained
from ClinVar and found it to match or outcompete
current prioritization tools in terms of accuracy. In
the output, the program provides a list of potential
disease mutations ordered by the likelihood of the
affected genes to cause the phenotype. MutationDis-
tiller provides links to gene-related information from
various resources. It has been extensively tested by
clinicians and their suggestions have been valued in
many iterative cycles of revisions. The tool, a com-
prehensive documentation and examples are freely
available at https://www.mutationdistiller.org/

INTRODUCTION

Next Generation Sequencing has led to a large advance in
the elucidation of monogenic diseases. With Whole Exome
Sequencing (WES), numerous causal mutations have been
found in the last decade. WES is now frequently used in re-
search and routine clinical diagnostics. It is currently con-
sidered the most cost-effective method of genetic analysis
(1).

With each WES run, tens of thousands of DNA variants
have to be sifted through––a task that cannot be achieved
without the aid of computer tools. The pathogenicity of a
variant within protein-coding transcripts can be assessed by
a number of tools, such as SIFT (2), PolyPhen2 (3) or Muta-
tionTaster (4). While the first are limited to analyzing non-
synonymous single nucleotide variants (SNVs), Mutation-
Taster also handles InDels and non-coding variants.

With an average specificity of the aforementioned tools
<90% and without additional clinical information, a typical
WES run produces many false positive predictions, even af-
ter filtering out common polymorphisms. In addition, most
humans carry several known disease mutations in heterozy-
gous state and even some in homozygous state (5,6).

The inclusion of further patient information allows to fo-
cus the search onto genes which are likely to be connected
with the patient’s symptoms. A number of tools for prioritis-
ing variants using phenotypic information exist. Phen-Gen
(7), eXtasy (8), PhenIX (9) and the Exomiser (10) are based
on the HPO (11) to describe the phenotype. Phevor (12) in-
cludes GO (13), the Mammalian Phenotype Ontology (14),
and others, whereas ANNOVAR (15) can take free disease-
related terms as input. Other tools, such as OVA (16), BiER-
app (17) or QueryOR (18) are web-based frameworks which
allow users to assess and re-assess in various steps and from
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different angles but are often not available without registra-
tion (BiERapp, QueryOR). Figure 1 gives an overview of
the features of current variant prioritisation tools.

Despite the abundance of available tools, only few have
found their way into routine clinical applications. Often,
they are too complex for routine clinical use or do not pro-
vide enough information for users to draw meaningful con-
clusions from their predictions. A recent paper by Shyr et al.
(19) stated the prime importance of usability and easy ac-
cess to software for the success of sequencing projects, a
need which is often not met by current tools: For instance,
most tools can only accept non-synonymous SNVs and are
limited to nuclear DNA, thereby excluding the mitochon-
drial DNA and a large number of variants from analysis.
This is especially problematic for small InDels given their
potential to induce frameshifts. Another major hurdle for
clinical use is file size restrictions, as many web-based appli-
cations cannot handle complete WES VCF files. Moreover,
missing details about a gene’s function or its role in diseases
or hyperlinks to external resources force the user to manu-
ally search the Internet for further information. While this
might seem trivial, it is time-consuming and potentially pre-
vents time-pressed clinicians and clinical geneticists from
adopting a useful software.

Responding to the request for user-friendly prioritisa-
tion software, we have developed MutationDistiller, a tool
for the analysis of WES data of patients with monogenic
disorders. MutationDistiller was developed in an iterative
process, taking the input of clinicians and researchers on
board and aiming at creating software which adapts to the
user, not vice versa. Recently, the tool has been used in
over 1000 analyses per month. It is freely available at https:
//www.mutationdistiller.org/. The source code will be made
available on request.

Data sources

MutationDistiller integrates and combines various data
sources to present the user with a list of candidate genes
and variants which are most fitting for their specific case.
The tool combines the pathogenicity predictions of Muta-
tionTaster (4) with the gene prioritisations of GeneDistiller
(20) in a user-friendly way. MutationDistiller is capable of
analyzing coding and non-coding intragenic alterations as
well as mtDNA variants. The output includes key features
of the predicted variant effect (such as nonsense-mediated
decay) and provides hyperlinks to MutationTaster’s detailed
analysis of the variant.

The data sources integrated into MutationDistiller allow
assessing a case from various angles, making the tool attrac-
tive to a variety of user groups: Clinical symptoms or diag-
noses can be entered via the widely used resources HPO (11),
OMIM (21) or Orphanet (22). In addition, genes known
to cause diseases in mice (MGD, (23)) can be marked for
highlighting and clinical symptom descriptions (HPO) of
patients can be added, removed, or refined in an iterative
process. Gene function specifications can be selected from
the Gene Ontology (GO) (13), or via the pathway resources
WikiPathways (24) or Reactome (25). In addition, users can
filter their variants using gene expression data obtained from
ExpressionAtlas (26), or via genetic regions, lists of candi-

date genes (e.g. in-house panels), or common virtual panels
(11,27), Genomics England PanelApp, (https://panelapp.
genomicsengland.co.uk/). MutationDistiller also contains
the ACMG SF v2.0 actionable genes panel, a list of genes
of medical relevance published by the American College of
Medical Genetics and Genomics (ACMG) (28). Disease-
causing mutations in these genes are considered to be ‘ac-
tionable’ and may be revealed to patients in case they had
opted to be informed about incidental findings.

Moreover, we integrated ClinVar (29) to allow the identi-
fication of known disease-causing mutations and data from
the Thousand Genomes Project (1000G) (30) as well as
ExAC (31) to filter for polymorphisms.

The MutationDistiller workflow

In a first step, users upload a VCF file and can give and
refine phenotypic patient information such as symptoms
or diagnoses to obtain a prioritised list of candidate vari-
ants. The uploaded variants can be filtered for genomic re-
gion, candidate genes, homozygosity, coverage and presence
in polymorphisms databases. The remaining alterations are
then analysed by MutationTaster for their effect on their
gene products and the results for each of them are perma-
nently stored in our database.

The upload of a typical WES VCF file with 50 000 vari-
ants takes ∼5 min or considerably less if the file contains a
high number of variants already known to our database. In
our database, we store the results for each variant perma-
nently but not the genotypes of a single sample (to comply
with privacy requirements). This approach saves run-time
for subsequent re-submission of the same variant in a later
project. Genotypes and coverage from a VCF file are stored
separately in a sample-specific table which can be deleted by
the user at any time.

In addition, upload filters (e.g. restriction to a certain ge-
nomic region or a list of candidate genes) can save upload
times. Upon completion of the upload, users get notified via
email (if provided) and are redirected to the analysis page.
Subsequent (re-)analyses require mere milliseconds of load-
ing time. Access to the project is only granted via a dedi-
cated access key in the URL. To account for data protec-
tion, all projects can be removed manually. If not deleted
by the user, data will be retained for at least 4 weeks.

As mentioned, users can process a wealth of patient in-
formation with MutationDistiller. In addition to the clini-
cal focus for detection of variants in known disease genes
(via OMIM, HPO, and Orphanet), inclusion of other do-
mains such as gene function (GO, molecular pathways) or
gene expression allow discovery of variants in hitherto un-
known genes. The focus on molecular pathways may be of
service in cases where laboratory results point towards dis-
rupted molecular pathways (e.g. a defect in �-oxidation, or
in TGF-� signalling), while expression data might be of in-
terest if a specific tissue is known to be affected (e.g. liver
dysfunction). Moreover, users can filter their data according
to variant type (e.g. splice-site variant vs. premature stop-
codon) and by the suspected mode of inheritance.

As the plethora of data entry options might be over-
whelming for first-time users, we provide a number of ded-
icated user modes for different interest groups, limiting the
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Figure 1. Feature comparison of current state-of-the-art prioritization tools. Blue fields indicate that the tool provides the feature.

amount of choices users are exposed to upon first access to
our web site.

From the submitted variants and data, MutationDistiller
presents a prioritized list of the most likely candidate vari-
ants and a wealth of information on the variants and their
genes. In addition, we provide hyperlinks to relevant re-
sources, saving users from having to search the Internet. To
prevent users from being flooded by too much information,
MutationDistiller displays a downloadable summary table
containing the most crucial data on the candidate variants
and their genes at the top of the output page, followed by
more detailed information for each gene below. Hyperlinks
to the result or personalised query pages can be generated
and shared to facilitate collaborative projects. To allow iter-
ative analyses, parameters can be updated and altered on-
the-fly at various stages. For instance, HPO terms can be
retrospectively added to or removed from analysis on the
result page to fine-tune the search.

MutationDistiller score

MutationDistiller bases its prioritization on a score rep-
resenting how well a variant and its gene match the user
criteria. The submitted variants are not scored by severity
as MutationTaster’s predictions are of Boolean nature. In-
stead, they are grouped into different classes according to
the severity of the predicted effect (e.g. frameshift versus
non-coding), allowing users to focus on certain types of al-
terations (e.g. stop-codon inducing).

For scoring, MutationDistiller balances the various data
domains against each other: Each of them enters into the
score with a weight representing its assumed biological rel-
evance. In addition to the user-defined domains, we also
score known disease-causing mutations (listed as pathogenic
in ClinVar). Due to the lack of available phenotypic data for
test mutations, such weights could not be optimised by sta-
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tistical analysis. For the HPO symptoms, however, we were
able to develop a dynamic weighted score.

In this scoring system, the base score of a HPO term is
determined by its information content (IC), one of the stan-
dard methods for ontologies (32). This IC is represented by
the negative logarithm of the number of genes annotated
with a given term divided by the total number of genes an-
notated with any HPO term (currently 2233). In addition,
we allocate different weights to direct HPO matches versus
ancestors or descendants to limit the impact of phenotyping
errors.

In a novel approach, we optimized these weights on a set
consisting of known disease mutations from ClinVar linked
with HPO terms: We obtained all pathogenic ClinVar en-
tries with at least two HPO terms; a total of 188 cases linked
with 142 different genes. Please refer to our web site for
this test set. We spiked these mutations into the HG00377
exome from the 1000 Genomes Project and sent them, to-
gether with the associated HPO terms, to MutationDistiller.
Subsequently, we iterated through a range of weight combi-
nations (245 combinations in total) for direct, ancestor and
descendant matches and compared the results. If the disease
mutation was found, we then observed the distribution of
the ranks given to the genes containing the disease mutation
across all weight combinations. We only regarded the first
100 ranks, denoting any cases beyond that as ‘not found’.
Genes with the exact same score were given the same rank.

For each of the various weight-combinations, a relatively
high number of cases (at least 20%) could not be solved, in-
dicating that the phenotypes entered into ClinVar are not
always identical with the phenotypes annotated with the
disease genes in the HPO, which corresponds to a real-life
situation in clinical diagnostics. We assessed the resulting
weight combinations to find a balanced solution that would
consistently rank the causative gene highly while showing a
low rate of unsolved cases; and after careful consideration
we settled for a weight of 5 for direct matches, 0.05 for de-
scendants and 2 for ancestor terms. We chose this approach
rather than dynamically searching for the optimal weight
distribution to avoid overfitting on this relatively small data
set. A summary of the tested weight combinations and their
results can be found on our web site.

Comparison with state-of-the-art tools

To validate MutationDistiller’s HPO-based prioritisations,
we compared it to other tools sharing similar properties: In
our test, we included widely used and freely available func-
tional state-of-the-art tools which do not require any lo-
cal software installation or user login, can work with single
patient VCF files and offer HPO-based prioritisations. We
found three different algorithms fulfilling these criteria: the
PhenIX (9) and HiPhive (33) algorithms incorporated into
Exomiser (34) (version exomiser-cli-10.0.1), and eXtasy (8).
(version 2013-07-04) For our analyses, we used default set-
tings for all algorithms, which is what an untrained user
would be expected to do. Despite our aim to only include
web-based software, we had to rely on locally installed ver-
sions as the online tools were not working reliably or fast
enough for our purposes.

We tested the software on a set of 101 solved patients
from the Charité who had given informed consent for re-
search use. These instances of rare, early-onset Mendelian
disorders were provided by clinicians and researchers work-
ing in the Department of Neuropediatrics and the Insti-
tute of Medical Genetics and Human Genetics. We used
newly found disease mutations which were not yet included
in ClinVar, together with the HPO symptoms assigned to
the patient and information on the expected mode of inher-
itance (if available). The set included a range of disorders
and various types of mutations as well as compound het-
erozygous cases. We spiked the known causative variant for
each case into the same 1000G exome VCF file used for op-
timization of MutationDistiller (HG00377).

We then sent the resulting VCF files, the HPO identi-
fiers, and mode of inheritance information submitted by the
clinicians to the different tools. For MutationDistiller, we
used the HPO weight settings determined in the optimiza-
tion procedure described above. The tools included into this
comparison do not provide a score for known pathogenic
variants, which is why we decided not to take into account
the MutationDistiller’s ClinVar score at this stage.

As in the optimization step, we recorded the ranks allo-
cated to the genes containing the index mutation, capping
at rank 100. For the four tools or algorithms, we then com-
pared the distribution of ranks for the index genes.

To assess the prioritization of Exomiser, we used its ‘Ex-
omiser gene pheno score’, which does not include the vari-
ant prediction but only the phenotypic assessment of the
gene. As the eXtasy algorithm is not capable of working
with all HPO terms, we removed for this tool the terms not
found in eXtasy’s database from our set. This limited our
set for eXtasy analysis to 88 cases. Moreover, eXtasy’s en-
try options are limited to 10 HPO symptoms per case. In the
7 cases with more than 10 HPO terms, we thus randomly
removed symptoms to reach only 10 terms. Moreover, for
eXtasy, we had to distinguish between cases in which only
one HPO term was used for analysis and cases with more
than one term. In cases with a single HPO term, we ranked
the files by the result score; in combined cases by the pro-
vided statistical score as the program outputs a result score
for each HPO term separately.

When comparing the cumulative ranks allocated to the
genes of interest, we found that eXtasy failed in many of
the provided cases: For reasons mentioned above, the anal-
ysis was limited to 88 of the 101 test cases. Of these, eX-
tasy listed less than 30% of the causative alterations within
the first 100 ranks, which might be due to the fact that the
program was last updated in 2013 and hence cannot profit
from large parts of the regularly updated HPO. HiPhive
and PhenIX detected the causative gene within the top
100 positions in the majority of cases. However, Muta-
tionDistiller was capable of solving considerably more cases
than the other tools (99.0% for MutationDistiller, 81.2 %
for PhenIX and HiPhive, 28.7% for eXtasy). The accuracy
for the first rank was slightly higher in PhenIX (44.5%)
than in MutationDistiller (38.6%) and HiPhive (24.7%) and
considerably higher than in eXtasy (6.9%). For the first
10 or 20 ranks, MutationDistiller’s accuracy clearly out-
performed the other tools (10 – MutationDistiller: 82.2%,
PhenIX: 68.3%, HiPhive: 63.3%, eXtasy: 11.9%; 20 – Mu-
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Figure 2. Cumulative rank distributions for the HPO-based detection of
known disease mutations in a set of 101 patient files for MutationDistiller
(black), PhenIX (orange), HiPhive (blue) and eXtasy (red). For each tool,
we depict the accuracy as the cumulative percentage of indicated disease
genes ranked within each rank group (top 1 to top 100).

tationDistiller: 94.1%, HiPhive: 73.3%, PhenIX: 70.3%, eX-
tasy: 14.9%). Figure 2 displays the cumulative rank distribu-
tions for the tested algorithms. A more in-depth description
of the comparison together with the results can be found on
our web site and in the supplement.

DISCUSSION AND OUTLOOK

MutationDistiller is a one-stop-shop for physicians, human
geneticists, and genetic counselors. It offers phenotype-
based WES analyses using diverse patient data. With our
tool, we put emphasis on adaptability and user-friendliness,
thus aiming to answer to the urgent request for user-focused
WES data analysis (19). During our development process,
we have focused on an iterative approach, taking clinicians’
and researchers’ needs into account at any stage.

A major problem in describing clinical phenotypes are er-
rors and gaps, which might depend on the experience of the
phenotyping clinician. During our optimisation and testing
procedures, we have noticed that in several cases, two clin-
icians would assign different HPO terms to the same pa-
tient. This may be due to their personal and independent
evaluation, or simply because they examined the patient at
different time points or under different circumstances. To
allow for these naturally occurring inconsistencies, we de-
cided to train and optimize our HPO score neither on arti-
ficial data sets, nor on HPO symptoms assigned to the gene
in databases or self-selected HPO symptoms, but on cu-
rated ClinVar phenotype collections. These were originally
derived from real patients in a clinical setting and enabled
us to base our prioritisations on authentic data.

Using this set, we developed a dynamic HPO scoring
system which can account for gaps and errors in the phe-

notype assignments by incorporating ancestor and descen-
dant terms. We demonstrated that this HPO score is capa-
ble of competing with state-of-the-art prioritization tools
when detecting causative mutations in routine clinical cases
(see Figure 2). In our comparison, we have restricted our-
selves to only use HPO and mode of inheritance informa-
tion to stay on the same level with the capabilities of the
other tools. This means that in real life, MutationDistiller
results can be expected to be even better for known disease
mutations. We believe that both the novel approach of using
of authentic training cases and the balancing of phenotype
gaps play a role in MutationDistiller’s prioritization suc-
cess. By mirroring a clinical setting, we were able to create a
tool which is well adjusted for use in real-life clinical cases.
While our training and testing sets are currently compara-
tively small due to the lack of openly available genotype–
phenotype connections, we are planning to train and test
our tool on larger sets as they arise in the future.

In addition to HPO-centered analyses, we decided to of-
fer a wide range of data entry and filtering options as this
opens the tool for users from various backgrounds. Besides,
this allows users to detect mutations located in hitherto un-
known disease genes, which is an advantage in comparison
to other tools. While we are presently not able to optimize
these features in a statistically sound way, we are planning
to change this as more data informative sets arise.

Similarly, we are planning to incorporate a number of fea-
tures if new fitting data resources are developed: As Mu-
tationDistiller bases its predictions on MutationTaster, it
can currently only detect variants located in protein-coding
transcripts. This includes both coding and non-coding al-
terations and is thus already more comprehensive than a
wide range of many other tools. The limitation is due to
the fact that so far only few disease mutations outside of
protein-coding genes are known. We expect this to change
in the future, with the advent of Whole Genome Sequenc-
ing and CRISPR/Cas9 for validation of the effect of extra-
genic variants. We are planning to update MutationDistiller
accordingly to prepare for the age of Whole Genome Se-
quencing.

In addition, we are currently working on a number of fur-
ther developments suggested by our users. For instance, we
are in the process of implementing compatibility for trio
or family VCF analyses, allowing users to compare an af-
fected patient’s variants to unaffected family members or
controls. Another feature proposed by our users is the adap-
tation of MutationTaster’s predictions to the ACMG guide-
lines for sequence variant interpretation (35). While Muta-
tionTaster’s predictions largely follow these suggestions, we
have not yet incorporated them explicitly. However, we in-
tend to update this in the near future, which would allow
MutationDistiller to also fulfill these criteria and facilitate
the authoring of clinical reports. Moreover and as suggested
by our users, the integration of data from gnomAD (31) to
recognize and filter polymorphisms is already under devel-
opment.

MutationDistiller is currently based on GRCh37 (hg19)
which is still the common genome build for WES, Thus far,
we have not received any requests for GRCh38 and decided
that offering parallel genome builds is not necessary at this
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stage. However, we are planning to implement this in the
future, should the need arise.

CONCLUSION

With MutationDistiller, we present a tool which provides
fast, convenient and reliable analyses of WES data is highly
adaptable to different users’ requirements. We optimized
and validated MutationDistiller’s HPO scoring system on
real-life clinical data and demonstrated that it can match
or outcompete similar approaches. With a total of >11 000
analyses and >1000 analyses per month, MutationDistiller
has already found its way into the clinic. With growing num-
bers of routine WES applications, we are convinced that its
user group will see further increases in the future.

SOFTWARE IMPLEMENTATION AND DATA INTEGRA-
TION

MutationDistiller runs on a 48-core system with 512 GB
RAM under Linux (CentOS 6). All data are physically in-
tegrated and stored in a PostgreSQL 9.5 database. Jobs are
scheduled by TORQUE (version 4.2). Program scripts are
written in Perl (5.10) and run in an Apache 2.2 web server.
All user interfaces are written in HTML with JavaScript
functions and are developed for the Firefox browser. Addi-
tional testing was conducted on Google Chrome and Safari.

The source code will be made available on request.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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