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Abstract: This paper suggests an adaptive funnel dynamic surface control method with a disturbance
observer for the permanent magnet synchronous motor with time delays. An improved prescribed
performance function is integrated with a modified funnel variable at the beginning of the controller
design to coordinate the permanent magnet synchronous motor with the output constrained into an
unconstrained one, which has a faster convergence rate than ordinary barrier Lyapunov functions.
Then, the specific controller is devised by the dynamic surface control technique with first-order filters
to the unconstrained system. Therein, a disturbance-observer and the radial basis function neural
networks are introduced to estimate unmatched disturbances and multiple unknown nonlinearities,
respectively. Several Lyapunov-Krasovskii functionals are constructed to make up for time delays,
enhancing control performance. The first-order filters are implemented to overcome the “complexity
explosion” caused by general backstepping methods. Additionally, the boundedness and binding
ranges of all the signals are ensured through the detailed stability analysis. Ultimately, simulation
results and comparison experiments confirm the superiority of the controller designed in this paper.

Keywords: disturbance observer; dynamic surface control; permanent magnetic synchronous motor;
funnel control; radial basis function neural networks

1. Introduction

The permanent magnet synchronous motor (PMSM) is a separately excited generator
composed of a stator and a rotator. In recent decades, PMSMs are widely used in aerospace,
defense, and other major fields due to the advantages of simple structure, small size, and
low noise [1,2]. With the purpose of environmental protection, PMSMs are currently also
used in the fields of new energy vehicles, and other major fields [3,4]. However, PMSMs
are systems with nonlinearities, strong coupling, and time-varying. Hence, there has been
considerable interest in the high-precision control of PMSMs, which is of great help to
enhance the aviation industry and ecological conservation for a nation.

The most classical method of controlling PMSMs is backstepping control. The back-
stepping method splits the n-order complicated system into n subsystems and realizes
the virtual control of every subsystem. In the former n− 1 steps, it will derive a virtual
controller in every step, significantly simplifying the computational process of the controller.
Nevertheless, the backstepping method also suffers from the “explosion of complexity”
caused by the repeated derivatives of the virtual controller, owing to its inherent properties
of it. To circumvent this obstacle, a first-order filter combined with the backstepping control
approach [5] is created by Swaroop, called dynamic surface control [6]. Despite dynamic
surface control methods [7–9], that can reduce computing efforts, various nonlinear factors
such as time delays, external disturbances, and physical constraints are ubiquitous in real
industrial scenarios [10,11], which may diminish the controlling precision of the PMSM
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systems. Researchers have proposed proportional integral derivative (PID) control [12],
neural network (NN) [5], time delay control [13,14], disturbance observer (DO) [15,16], and
constraint control [17,18] methods for different nonlinearities to reach satisfying control
results. Hence, the key point is how to design an effective controller to address the vari-
ous nonlinear uncertainties such as unknown functions, mismatched disturbance, state
constraints, and time delays.

For the unknown characteristics and uncertain disturbances, the NN-based adaptive
control that has superb evaluating abilities are employed to obtain the high-performance
control of nonlinear systems [19,20]. For instance, the authors in [19] design a radial basis
function NN (RBFNN) to estimate the error of the high-gain observer and the lumped
interference. The authors in [20] utilize a feedforward artificial NN to renew the training
parameters of the proportion integration differential controller, offering high dynamic
performance. Due to their advantages, RBFNNs are introduced in this paper to estimate
the unknown uncertainties. To achieve advanced transient and steady-state performance,
NNs still need to be combined with other control strategies.

For the uncertain load disturbances, considerable pioneering investigations based on
the DO have been frequently suggested to achieve the steady operation of the PMSM [21].
Based on the sliding mode control technology, a DO is proposed to attain desired anti-
load-disturbance capability [11]. A DO is fused into the super-twisting sliding mode
method to compensate for the lumped disturbance [22]. A second-order DO is utilized to
estimate the parameters perturbations, ensuring the accuracy of the PMSM system [16].
Though the DO-based schemes can effectively suppress the uncertain perturbations, the
transient performance that is significant for the robustness of the system is not negligible.
To reduce the calculation burdens and further enhance the transient performance, this
paper introduces a finite-time second-order command filter to approximate the matched
and mismatched disturbance in a finite time with the aid of these investigations.

The physical constraints complicate controller design process, proper strategies which
are proposed by researchers to improve the transient performance and stability of nonlinear
systems. They have introduced barrier Lyapunov functions [23], prescribed performance
functions (PPF) [24,25], and funnel control strategies. As the novel control methods de-
veloped, the barrier Lyapunov functions need to be modified to suit specific changing
situations, resulting in its non-universality. Likewise, the demand for precise initial values
limits the applications of PPF strategies. Based on these, the improved PPFs are applied
to further attain superior transient performance [26,27]. Compared with PPFs and barrier
Lyapunov functions, the funnel control method is considered a promising way to deal with
the constraints owing to its effectiveness for the output overshoot [28,29], and does not
need precise initial conditions. The funnel control method has been applied in vehicles [30],
and robots [31] because it can avoid the modification of the controllers. According to the
above investigations, this paper suggests a funnel controller for the output-constrained
PMSM system to achieve excellent control performance.

It is known that time delays harm the dynamic performance and the stability of
the PMSMs. The time delay control strategies that can strengthen both transient and
steady-state responses, recently, have been involved in many pioneering backstepping
investigations. The studies can be roughly divided into two groups namely Smith predictor
control tools [32,33] and Lyapunov-Krasovskii functional methods [34,35]. For example, a
smith predictor is combined with the speed controller to eliminate the time delays [32]. An
appropriate Lyapunov-Krasovskii functional is employed to ensure the asymptotic stability
of the delay-dependent PMSM system [34]. A hyperbolic function is utilized to deal with
the delay caused by the low-pass filter [36]. From these, a proper Lyapunov-Krasovskii
functional is designed in this paper to address the time delay issues, which enhances both
the transient and steady-state performances of PMSM.

Motivated by these discussions, a neural adaptive funnel dynamic surface control
(FDSC) scheme combined with the DO is designed in this article to address the output-



Entropy 2022, 24, 1028 3 of 24

restrained system with time delays and load interference. The primary contributions of
this paper are outlined as:

(a) The prescribed performance control method can ensure the tracking error converges to
a predefined arbitrary small residual set [24,25]. However, the transient performance
still needs to be improved. Upon this, a neural adaptive funnel control strategy with
advanced transient performance is proposed to restrict the output response of PMSM
into a certain funnel region. The simulation section compares the funnel control
method with neural dynamic surface control (NDSC) and PID methods, and the
funnel controller has smaller tracking error and better transient performance. The
advanced transient performance makes the devised controller more applicable.

(b) The constraint-considered controller can reasonably simulate the physical constraints
in the actual operating environment of the PMSM [23,25]. Nevertheless, there are
many other nonlinear factors in the actual industries that need to be taken into account.
The FDSC method considers output constraints, time delays, and mismatched external
load interference, which allows FDSC to simulate the actual situation more realistically.
The Lyapunov-Krasovskii functionals and DO are devised to suppress the time delays
and approximate the unmatched external load interference. The simulation section
shows that the FDSC method has smaller steady-state and transient errors, and the
robustness and dynamic performances are strengthened compared with the NDSC
and the PID schemes.

Notation: For any variable c,ĉ denotes the estimated value of c, c̃ = c− ĉ represents
the state error. ‖•‖ indicates the 2-norm of •.

2. System Formulation and Preliminaries
2.1. System Statement

Under the (d− q) coordinate frame, formulate the PMSM mathematical model as [7]:
.
θ = ω
.

ω = 3np/(2J)
[
(Ld − Lq)idiq + ϕiq

]
− Bω/J − TL/J

.
iq = −Rsiq/Lq − npLdidω/Lq − np ϕω/Lq + uq/Lq.
id = −Rsid/Ld + npLqiqω/Ld + ud/Ld ,

(1)

where uq and ud are control variables. The descriptions of PMSM parameters are exhibited
in Table 1.

Table 1. Parameters of PMSM.

Parameters Descriptions Units

θ Rotor angular rad
ω Rotor angular velocity,

.
θ rad/s

.
ω First-order derivative of rotor angular velocity rad/s2

id, iq Currents of d− q axis A
ud, uq Voltages of d− q axis V
Ld, Lq Stator inductances of d− q axis H

J Inertia rotor moment kg·m2

B Friction coefficient N·m/(rad/s)
ϕ Inertia magnet flux linkage Wb
Rs Armature resistance Ω
np Pole pairs
TL Load torque N·m

To simplify (1), define a1 = 3npϕ/2, a2 = 3np(Ld− Lq)/2, b1 = −Rs/Lq, b2 = −npLd/Lq,
b3 = −np ϕ/Lq, b4 = 1/Lq, c1 = −Rs/Ld, c2 = npLq/Ld, c3 = 1/Ld.
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Moreover, describe the states variables as:

x1 = θ, x2 = ω, x3 = iq, x4 = id. (2)

Considering time delays and asymmetric output constraints, the model (1) can be
reconstructed as:

.
x1 = x2 + ∆l1[x(t− τ1)]
.
x2 = a1

J x3 +
a2
J x3x4 − B

J x2 − TL
J + ∆l2[x(t− τ2)] + ∆E

.
x3 = b1x3 + b2x2x4 + b3x2 + b4uq + ∆l3[x(t− τ3)]
.
x4 = c1x4 + c2x2x3 + c3ud + ∆l4[x(t− τ4)],

(3)

where x = (x1, x2, x3, x4)
T ∈ R4, and the state variable x1 subjects to:

x1 ∈ Πx1 := {x1 ∈ R : xd(t)− f1(t) < x1(t) < xd(t) + f1(t)}. (4)

Remark 1. In the actual PMSM operating environment, there are plenty of unknown uncertainties,
such as time delays, physical constraints, and matched and mismatched disturbances. It is essential
to consider these limitations in the PMSM system to guarantee that the controller designed in
this paper approach reality. It is worth mentioning that for the PMSM systems, the unmatched
interference ∆E and the time delays ∆li(x(t− τi)), i = 1, · · · , 4 in (3) as well as the time-varying
symmetric output constraints in (4) are firstly considered simultaneously. Thereby, the controller
devised here based on (3) is more suitable for real industrial fields.

Based on the above observations, the control objective of this paper is to devise a
neural adaptive funnel dynamic surface controller based on DO for (3) to realize:

(a) The system output x1 tracks the desired signal xd, where the transient control behavior
of (3) can be retained by (4).

(b) The other signals in the resulting system are bounded.

To ensure these objectives, the following assumption and lemmas are provided.

Assumption 1 ([37]). The continuous desired signal xd(t) and its ith-order derivatives x(i)d (t),
(i = 0, . . . , 4) are bounded. The continuous state-constrained functions f1(t) as well as its jth-order
derivatives f (j)

1 (t), (j = 0, . . . , 4) are bounded.

Lemma 1 ([38]). For any f (η1, . . . , ηn) : Rmr × . . .× Rmn → R, there are smooth functions
ωi(ηi) > 0 : Rmi → R satisfying | f (η1, . . . , ηn)| ≤ ∑n

i=1 ωi(ηi). For the initial value
f (0, . . . , 0) = 0, ωi(0) = 0 fulfills | f (0, . . . , 0)| ≤ ∑n

i=1 ωi(0) as well.

Remark 2. According to Lemma 1, there are continuous positive functions ξik, i = 1, . . . , 4 re-
stricting the time-delay terms ∆li(x(t − τi)), i = 1, . . . , 4 in the system (3) as
∆li(x(t− τi))≤ ∑4

k=1 ξik(xk(t− τi)). With the aid of Young’s inequality, it leads to:

ei∆li[x(t− τi)] ≤ 1/2ne2
i + 1/2∑n

j=1 ξ2
ij(xj(t− τi)), i = 1, . . . , 4. (5)

Lemma 2 ([39,40]). For any real variables p, q, and the positive constants mi, i = 1, 2, 3, the
following inequality holds:

|a|m1 |b|m2 6
m1

m1 + m2
m3|a|m1+m2 +

m2

m1 + m2
m−m1/m2

3 |b|m1+m2 . (6)

Lemma 3 ([41]). For σ > 0, there exists the set Ωe := {e ∈ R : |e| ≤ 0.2554σ}. For e /∈ Ωe, the
inequality 1− 16tanh2(e/σ) < 0 holds.
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Thereafter, function arguments are sometimes dropped without confusion.

2.2. Neural Network Systems and Function Approximation

Since the RBFNNs can approximate the unknown hard-to-calculated functions that
are in a closed set at any precision [42,43], this paper introduces an RBFNN function to
estimate unknown functions W(X):

W(X) = ℘∗T P(X) + ψ(X), ∀X ∈ ΩX , (7)

where X = [x1, x2, · · · , xn]
T indicates the input vector, ψ(X) fulfills |ψ(X)| < ψM with a

bounded constant ψM. P(X) =[p1(x), p2(x), . . . , pl(x)]T is a vector of basis function, and
select pi(x) as the versatile Gaussian functions:

pi(x) = exp
[
−(x− νi)

T(x− νi)/χ2
i

]
, i = 1, 2, . . . , m. (8)

Construct the expected weight vector ℘∗ as:

℘∗ = arg min
℘∈ Rn

{
sup

X∈ DX

‖W(X)− ℘̂T P(X)‖
}

. (9)

The 2-norms of the variables are utilized to assess the weights allowing for a reduction
in the computational burden of RBFNN [42,43]. Consequently, it leads to:

βi = ‖℘i‖2 = ℘T
i ℘i , i = 1, . . . , 4. (10)

3. Design of Neural Adaptive Funnel Control

This section introduces the funnel controller designed in this paper. In Section 3.1,
a funnel-type variable with improved PPF is introduced to remove the output constraint
of the variable x1. In Section 3.2, a DO is proposed to approximate the matched and
mismatched disturbance that is utilized in step 2. In Section 3.3, four steps are listed to
show the whole design procedure of the funnel controller for the PMSM system.

3.1. Funnel Control with Improved Prescribed Performance Function

The core point of the funnel control is devising the given functions of the envelope as
the boundaries that restrict the tracking error s1(t), where s1(t) = x1 − xd. Based on this
idea, a funnel-type function is selected at the very beginning of the controller design as:

g(t) = Fk( f1(t), G(t), ‖s1(t)‖). (11)

A PPF f ∗(t) [44] is constructed to obtain both steady-state and transient performances
of s1(t):

f ∗(t) = ( f0 − f∞) exp(−πt) + f∞, (12)

where the design parameters 3 f0 > f∞ > 0 and the minimum convergence rate value
π > 0.

From [44], we can attain that the control objectives can be achieved when the following
condition satisfied:

|s1(t)| < ω f ∗(t), (13)

where the design constants ω > 0.
To obtain better steady performance, a funnel control with envelope boundaries is

introduced. An improved PPF based on (12) is proposed:

f1(t) = f0 exp(−πt) +
t

π(t + 1)
f∞, (14)
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where f∞/π represents the steady-state error.

Remark 3. The improved PPF f1(t) indicated by (14) has the same properties as (12). Moreover,
the improved PPF has a faster convergence speed and more outstanding transient performance
than the conventional PPF while choosing the same parameters values of f0, f∞, π. As an example,
Figure 1 gives the profiles of (14) and (12) with f0 = 1, f∞ = 0.05, π = 3, 5, 10.
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The gain function Fk(·) [31] can be regulated by:

Fk( f1(t), G(t), ‖s1(t)‖) = G(t)/( f1(t)− ‖s1(t)‖). (15)

It can be concluded from (15) that the value of Fk(·) decreases as f1(t) moves away
from ‖s1(t)‖ when G(t) is supposed to be fixed. Regrettably, the gain Fk(·) formulated by
(15) is not differentiable at the point of s1(t) = 0, which does not meet the using conditions
of backstepping.

To circumvent the obstacle, a modified funnel variable η1 by virtue of (14) and [31] is
first created as follows:

η1 = s2
1/( f 2

1 − s2
1). (16)

Remark 4. If f1 → s1 , the value of η1 will be infinite. For this reason, assuming that the starting
value of the tracking error s1(0) is limited by the funnel boundaries. Choosing a proper design
parameter f0 can effectively eliminate the infinite starting value.

Remark 5. Compared with prescribed performance control [45], the improved PPF-based funnel
control not only provides better transient performance but is also simpler and more efficient without
calculating inverse conversion errors, which is conducive to the stable operation of PMSM.

The time derivatives of ηi in (16) are obtained as:

.
η1 =

2s1 f 2
1(

f 2
1 − s2

1
)2

(
.
s1 − s1

.
f 1
f1

)
= Γ1

(
.
s1 − s1

.
f 1
f1

)
, (17)

where the variable Γ1 = 2s1 f 2
1 /( f 2

1 − s2
1)

2.
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3.2. Disturbance Observer

For the difficult-to-compute external disturbance, a DO is an effective utensil to observe
the matched and mismatched interference. Hence, introduce the intermediate variables
d, D, and conceive the DO as [46]:

.
x̂2 = a1/Jx3 + a2/Jx3x4 − B/Jx2 − TL/J + ∆l2(x(t− τ2)) + ∆E1

∆E1 = −κ1ι1/3
1 |x̂2 − x2|2/3sgn(x̂2 − x2) + ∆Ê2

∆
.
Ê2 = −κ1ι1/2

1

∣∣∆Ê2 − ∆E2
∣∣1/2sgn1/2(∆Ê2 − ∆E2) + ∆Ê

∆
.
Ê = −κ2ι1sgn(∆Ê− ∆

.
Ê2),

(18)

where coefficients κ1 > 0, κ2 > 0, ι1 > 0.
Describing variables as x̃2 = x̂2 − x2, ∆Ẽ = ∆Ê− ∆E, ∆Ẽ2 = ∆Ê2 − ∆E2, it leads to:

.
x̃2 = −κ1ι1/3

1 |x̂2 − x2|2/3sgn(x̂2 − x2) + ∆Ẽ

∆
.
Ẽ = −κ1ι1/2

1

∣∣∆Ê2 − ∆E2
∣∣1/2sgn(∆Ê2 − ∆E2) + (∆Ê− ∆E)

∆Ẽ ∈ −κ2ι1sgn(∆Ê− ∆
.
Ê2) + [−ι1, ι1].

(19)

Supposing a negligible rate of change for load disturbance ∆E2, then it is bounded.
According to ∆Ẽ2 = ∆Ê2 − ∆E2, it can be concluded that ∆Ẽ is bounded. Similarly, we can
attain that ∆Ê and x̂2 are limited to the small adjacency of ∆E and x2, respectively.

Remark 6. The interference error can be well estimated by the excellent DO (18). In other words,
we can select suitable parametersκ1, κ2 and ι1 to tackle the matched and unmatched load disturbance.
Moreover, the excellent DO can prevent the system tremors due to the symbolic function in the
classical sliding mode control method simultaneously [21].

3.3. Neural Adaptive Funnel Controller Design

This subsection will provide a dynamic surface controller by integrating the funnel
control technology. First of all, let us introduce the following coordinate conversion:

e1 = η1, e2 = x2 − u2c, e3 = x3 − u3c, e4 = x4. (20)

Define the first-order filters as:

λi
.
uic + uic = ui, uic(0) = ui(0), i = 2, 3, (21)

where λi are constants.

Remark 7. This paper introduces first-order filters to bypass the repeated derivatives of ui so
that the “explosion of complexity” can be eliminated by designing proper filters. However, there
exist filter errors that influence the control precision by introducing the first-order filters into the
controller design procedure. When choosing proper Lyapunov functions to devise the virtual and
actual controller, the filter errors need to be taken into account to improve the control accuracy.

Akin to (20), describe the filter errors φi as:

φi = uic − ui , i = 2, 3. (22)

Fusing (3) and (16) into (20), and take the derivatives of ei, i = 1, . . . , 4 in (20):
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

.
e1 = Γ1

{
e2 + φ2 + u2 −

.
xd + ∆l1[x(t− τ1)]− s1

.
f 1/ f1

}
.
e2 = e3 + φ3 + u3 +

(
a1
J − 1

)
x3 +

a2
J x3x4 − B

J x2 − TL
J −

.
u2c + ∆l2[x(t− τ2)] + ∆E

.
e3 = b1x3 + b2x2x4 + b3x2 + b4uq + ∆l3[x(t− τ3)]−

.
u3c

.
e4 = c1x4 + c2x2x3 + c3ud + ∆l4[x(t− τ4)].

(23)

This paper utilized RBFNNs to estimate the unknown functions, so there exist estima-
tion errors that need to be computed. Describe the approximated errors β̃i as:

β̃i = βi − β̂i, i = 1, . . . , 4. (24)

The next steps are further design procedures of the neural adaptive FDSC. The brief
structure of the control procedure is shown in Figure 2.
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This paper utilized RBFNNs to estimate the unknown functions, so there exist 
estimation errors that need to be computed. Describe the approximated errors βi  as: 

β β β− == ˆ , 1, ,4. i i i i   (24)

The next steps are further design procedures of the neural adaptive FDSC. The brief 
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Step 1. The design of the stunning control law u2 and the adaptive law
.
β̂1.

Taking the tracking error e1, filter error φ2, approximation error β̃1, and the Lyapunov–
Krasovskii functional VT into account, choose the Lyapunov function V1 as:

V1 = 1/2e2
1 + 1/2φ2

2 + 1/(2d1)β̃2
1 + VT , (25)

subject to the Lyapunov–Krasovskii functional VT as:

VT =
1
2

4

∑
i=1

4

∑
j=1

exp[−
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where the design constants d1 > 0,
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> 0, ξij are utilized to address the time delays below.

Remark 8. To further improve the precision of the controller designed later, the proper Lyapunov-
Krasovskii functional VT is utilized to compensate for the time-varying delays.
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Taking the derivative of VT in (26) obtains:

.
VT =

1
2
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∑
i=1

4

∑
j=1

exp[−
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Based on Remark 2 with  4n , the following inequality can be obtained: 
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Taking (30) into (29) derives: 

τi)ξ
2
ij(xj(t))). We can infer

that lime1→0(T(x)/e1)→ ∞ . Consequently, (16/e1)tanh2(e1/σ1)T is brought in (32) to
further eliminate the time delays. Then, rewrite (31) as:

.
V1 ≤ e1

[
Γ1e2 + Γ1φ2 + Γ1u2 +

16
e1

Ttanh2
(

e1
σ1

)
+ 2e1Γ2

1 − Γ1
.
xd − Γ1s1

.
f 1
f1

]
+φ2

.
φ2 −
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Based on Remark 2 with  4n , the following inequality can be obtained: 

  


           2 2 2
1

4

1 1 1
1
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2

) jj
j

e l x t e x t  (30)

Taking (30) into (29) derives: 

VT +
[
1− 16tanh2

(
e1
σ1

)]
T − 1

2

4
∑

i=2

4
∑

j=1
ξ2

ij
[
xj(t− τi)

]
− 1

d1
β̃1

.
β̂1.

(32)

Then this paper utilizes an unknown function W1(X1) to generalize the unknown
functions:

W1(X1) = 3e1Γ2
1 + e1 + 16/e1Ttanh2(e1/σ1)− Γ1

.
xd, (33)

where W1(X1) is an unknown function. According to (11), (16) and (20), it can be learned
that e1 is composed of a known desired signal xd and an unknown state x1, Γ1 consists of a
known desired signal xd, an assured function f1, and an unknown state x1. The RBFNN is
developed to estimate the unknown function W1(X1), then X1 = [x1, . . . , x4, xd,

.
xd]

T .
For the unknown and uncertain functions, RBFNN is considered as a promising tool

to approximate them at any precision. An RBFNN is designed to approximate W1(X1):

W1(X1) = ℘T
1 P1(X1) + ψ1(X1), |ψ1(X1)| 6 ψM, (34)

where ψM stands for the positive bounded constant.
As it can be seen from (33), (32) can be simplified by an RBFNN:
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.
V1 ≤ e1

(
Γ1e2 + Γ1φ2 + Γ1u2 + ℘T

1 P1(X1) + ψ1(X1)− Γ1s1

.
f 1
f1
− e1Γ2

1 − e1

)
− 1

d1
β̃1

.
β̂1

+
[
1− 16/e1Ttanh2(e1/σ1)

]
T + φ2

.
φ2 −
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Based on Remark 2 with  4n , the following inequality can be obtained: 
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Taking (30) into (29) derives: 

VT − 1
2

4
∑

i=2

4
∑

j=1
ξ2

ij
[
xj(t− τi)

]
.

(35)

According to (34) and Lemma 2 with m1 = m2 = m3 = 1, functions that are difficult to
compute can be deflated to: e1Γ1φ2 ≤ e2

1Γ2
1 +

1
4 φ2

2

e1W1(X1) = e1[℘
T
1 P1(X1) + ψ1(X1)] ≤ 1

4µ2
1

β1e2
1PT

1 P1 + µ2
1 +

ψ2
M
4 + e2

1,
(36)

where µ1 stands for the positive design constant.
Integrating (36) into (35) generates:

.
V1 ≤ e1

(
Γ1e2 + Γ1u2 − Γ1s1

.
f 1
f1

)
+
[
1− 16tanh2

(
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)]
T − 1
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∑

i=2

4
∑

j=1
ξ2

ij
[
xj(t− τi)

]
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β̃1

.
β̂1

−
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Taking (30) into (29) derives: 

VT + φ2
.
φ2 +

1
4µ2

1
e2

1β1PT
1 P1 +

1
4 φ2

2 +
ψ2

M
4 + µ2

1.
(37)

Devise the stunning control law u2 and the adaptive law
.
β̂1 as:

u2 = − ( f 2
1−s2
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2 f 2
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where the design constants k1 > 0, γ1 > 0.

Inserting the control law u2 and adaptive law
.
β̂1 in (38) into (37) derives:
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Taking (30) into (29) derives: 
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According to (21)–(24), and (38), differentiate the filter error φ2 in (22) as:

.
φ2 =

.
u2c −

.
u2 = −φ2

λ2
+ M2(e1, e2, φ2, β̂1, xd,

.
xd,

..
xd), (40)

where M2(e1, e2, φ2, β̂1, xd,
.
xd,

..
xd) is a smooth function.

In virtual of [47], we can infer that there exists an upper value M2(M2 ≥ 0) for
the original conditions to restrict M2(e1, e2, φ2, β̂1, xd,

.
xd,

..
xd) within the prescribed set,

it produces:
.
φ2 ≤ −

φ2

λ2
+ M2, (41)

where M2 >
∣∣M2(e1, e2, φ2, β̂1, xd,

.
xd,

..
xd)
∣∣.

Based on Lemma 2 with m1 = m2 = m3 = 1, consider a = φ2, b = M2. Then, the
hard-to-compute function is converted into:

φ2
.
φ2 = −φ2

2/λ2 + φ2M2 ≤ −(1/λ2 − 1/4)φ2
2 + M2

2. (42)

Substituting (42) into (39) generates:
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.
V1 ≤ −k1e2

1 − 1/2
4
∑

i=2

4
∑

j=1
ξ2

ij
[
xj(t− τi)

]
−
(

1
λ2
− 1

4

)
φ2

2 +
[
1− 16tanh2

(
e1
σ1

)]
T + γ1

d1
β̃1 β̂1

−
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   

                   (27)

With (24) and (27), deriving 1V  in (25) yields: 

       
   

                    2
4 4 4 4

2

1 1 1 1
2 21 1 1 1 1

1

1 1ˆ exp ( (
2 2

.) )1 i ij ij j Tj i
i j i j

e e t x t x t V
d

V  (28)

Fusing (23) into (28) generates: 

 

=

 

  

   



 

 

 

       

  

         
  

     





2
4 4

1 2
1

1 2 1
1 11

2

2 1 1

4

2
1 1

4

1
2

1

1 1

1( )
2

1 1 ˆ

(

exp ( )
2

)

.

  d ij i
i j

ij
i

j

i T
j

j

f
u x l x t s x t

f

V

e e

d
t x t

V


  






 (29)

Based on Remark 2 with  4n , the following inequality can be obtained: 

  


           2 2 2
1

4

1 1 1
1

11 11 (1( ) 2 .
2

) jj
j

e l x t e x t  (30)

Taking (30) into (29) derives: 

VT + Γ1e1e2 + M2
2 + ψ2

M/4 + µ2
1.

(43)

Step 2. The design of the stunning control law u3 and the adaptive law
.
β̂2.

Considering the state error e2, filter error φ3 and the approximation error β̃2, the
second Lyapunov function V2 is chosen as:

V2 = V1 + 1/2e2
2 + 1/2φ2

3 + 1/(2d2)β̃2
2, (44)

where d2 denotes the positive constants.
With (24), taking the derivative of V2 in (44) leads to:

.
V2 =

.
V1 + e2

.
e2 + φ3

.
φ3 − 1/d2 β̃2

.
β̂2. (45)

Integrating (23) and (43) into (45) produces:

.
V2 ≤ −k1e2

1 − 1/2
4
∑

i=2

4
∑

j=1
ξ2

ij
[
xj(t− τi)

]
−
(

1
λ2
− 1

4

)
φ2

2 +
[
1− 16tanh2

(
e1
σ1

)]
T + γ1

d1
β̃1 β̂1

+e2{e3 + φ3 + u3 + (a1/J − 1)x3 + a2/Jx3x4 − B/Jx2 − TL/J + ∆l2[x(t− τ2)]

− .
u2c + ∆E

}
−
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Fusing (23) into (28) generates: 

 
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 

 
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  

         
  

     


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2
4 4
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1

1 2 1
1 11
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4

2
1 1

4

1
2

1

1 1

1( )
2
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(

exp ( )
2

)

.

  d ij i
i j

ij
i

j

i T
j

j

f
u x l x t s x t

f

V

e e

d
t x t

V


  






 (29)

Based on Remark 2 with  4n , the following inequality can be obtained: 

  


           2 2 2
1

4

1 1 1
1

11 11 (1( ) 2 .
2

) jj
j

e l x t e x t  (30)

Taking (30) into (29) derives: 

VT + φ3
.
φ3 + Γ1e1e2 + M2

2 + µ2
1 + ψ2

M/4− 1/d2 β̃2

.
β̂2.

(46)

Resembling (30), define n = 4, then it derives:

e2∆l2[x(t− τ2)] ≤ 2e2
2 +

1
2

4

∑
j=1

ξ2
2j
[
xj(t− τ2)

]
. (47)

Assume that
∣∣∣∆Ê− ∆E = ∆Ẽ

∣∣∣ ≤ q1, and the constant q1 > 0. It is hard to determine

the positive and negative of e2, an inequality (∆Ê − ∆E)e2 ≤
∣∣∆Ê− ∆E

∣∣|e2| ≤ q1|e2| is
brought to ensure that the following inequality holds. Pouring (47) into (46) gets:

.
V2 ≤ −k1e2

1 −
1
2

4
∑

i=3

4
∑

j=1
ξ2

ij
[
xj(t− τi)

]
−
(

1
λ2
− 1

4

)
φ2

2 +
[
1− 16tanh2

(
e1
σ1

)]
T + γ1

d1
β̃1 β̂1

+e2
[
e3 + φ3 + ∆Ê + (a1/J − 1)x3 + u3 − B/Jx2 + a2/Jx3x4 − TL/J + 2e2 −

.
u2c

+Γ1e1]−
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Based on Remark 2 with  4n , the following inequality can be obtained: 

  


           2 2 2
1

4

1 1 1
1

11 11 (1( ) 2 .
2

) jj
j

e l x t e x t  (30)

Taking (30) into (29) derives: 

VT + φ3
.
φ3 + M2

2 + q1|e2|+ µ2
1 + ψ2

M/4− 1/d2 β̃2

.
β̂2.

(48)

Design F2(X2) as

F2(X2) =

(
a1

J
− 1
)

x3 +
a2

J
x3x4 −

B
J

x2 −
TL
J
+4e2 + Γ1e1, (49)

where e1 = x1− xd, e2 = x2− α2c, Γ1 is composed of a known desired signal xd, a given func-
tion f1, and an unknown state x1. Based on the structure of the uncertain function F2(X2),
X2 is composed of x1, x2, x3, x4, xd and u2c. Then it leads to X2 = [x1, . . . , x4, xd, u2c]

T .
A piecewise function W2(X2) is devised as:

W2(X2) =

{
F2(X2)− q1, e2 ≤ 0
F2(X2) + q1, e2 > 0,

(50)

where X2 = [x1, . . . , x4, xd, u2c]
T .

Integrating (50) into (48) generates:
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.
V2 ≤ −k1e2

1 −
1
2

4
∑

i=2

4
∑

j=1
ξ2

ij
[
xj(t− τi)

]
−
(

1
λ2
− 1

2

)
φ2

2 −
1
d2

β̃2

.
β̂2 +

[
1− 16tanh2

(
e1
σ1

)]
T + γ1

d1
β̃1 β̂1

+e2
[
e3 + φ3 + u3 + ∆Ê + W2(X2)− 2e2 −

.
u2c
]
−
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Based on Remark 2 with  4n , the following inequality can be obtained: 
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Taking (30) into (29) derives: 

VT + φ3
.
φ3 + M2

2 + µ2
1 +

ψ2
M
4 .

(51)

Akin to (34), the unknown function W2(X2) can be approximated by an RBFNN:

W2(X2) = ℘T
2 P2(X2) + ψ2(X2), |ψ2(X2)| < ψM. (52)

Re-express (51) as:

.
V2 ≤ −k1e2

1 −
1
2

4
∑

i=3

4
∑

j=1
ξ2

ij
[
xj(t− τi)

]
−
(

1
λ2
− 1

2

)
φ2

2 +
[
1− 16tanh2

(
e1
σ1

)]
T + γ1

d1
β̃1 β̂1

+e2
[
e3 + φ3 + u3 + ∆Ê + ℘T

2 P2(X2) + ψ2(X2)−
.
u2c − 2e2

]
−
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Based on Remark 2 with  4n , the following inequality can be obtained: 

  


           2 2 2
1

4

1 1 1
1

11 11 (1( ) 2 .
2

) jj
j

e l x t e x t  (30)

Taking (30) into (29) derives: 

VT + φ3
.
φ3 + M2

2

+µ2
1 + ψ2

M/4− 1/d2 β̃2

.
β̂2.

(53)

Similar to (36), the inequalities below can be obtained with m1 = m2 = m3 = 1:{
e2φ3 ≤ e2

2 +
1
4 φ2

3

e2W2(X2) = e2[℘
T
2 P2(X2) + ψ2(X2)] ≤ 1/(4µ2

2)β2e2
2PT

2 P2 + µ2
2 + ψ2

M/4 + e2
2,

(54)

where µ2 represents the positive design parameter.
Integrating (54) into (53) produces:

.
V2 ≤ −k1e2

1 −
1
2

4
∑

i=3

4
∑

j=1
ξ2

ij
[
xj(t− τi)

]
−
(

1
λ2
− 1

2

)
φ2

2 +
[
1− 16tanh2

(
e1
σ1

)]
T + γ1

d1
β̃1 β̂1

+e2
(
e3 + u3 + ∆Ê− .

u2c
)
−
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Based on Remark 2 with  4n , the following inequality can be obtained: 

  
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           2 2 2
1

4

1 1 1
1

11 11 (1( ) 2 .
2

) jj
j

e l x t e x t  (30)

Taking (30) into (29) derives: 

VT + φ3
.
φ3 + M2

2 +
2
∑

i=1
µ2

i ++
ψ2

M
2 +

φ2
3

4

+ 1
4µ2

2
e2

2β2PT
2 P2 − 1

d2
β̃2

.
β̂2 .

(55)

Analogous to (38), choose the stunning control law u3 and the adaptive law
.
β̂2 as:

u3 = −
(

k2e2 +
1

4µ2
2

β̂2e2PT
2 P2 + ∆Ê

)
+

.
u2c

.
β̂2 = d2

4µ2
2
e2

2PT
2 P2 − γ2 β̂2,

(56)

where the design parameters k2 > 0, γ2 > 0.

Remark 9. Up to this step, the external interference ∆E can be thoroughly approximated by the
DO (18) with the stunning controller (56), thus the stable operation of the controlled system is
further enhanced.

Pouring stunning control law u3 and the adaptive law
.
β̂2 in (56) into (55) leads to:

.
V2 ≤ −

2
∑

i=1
kie2

i −
1
2

4
∑

i=3

4
∑

j=1
ξ2

ij
[
xj(t− τi)

]
−
(

1
λ2
− 1

2

)
φ2

2 +
2
∑

i=1

γi
di

β̃i β̂i +
[
1− 16tanh2

(
e1
σ1

)]
T

−
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Based on Remark 2 with  4n , the following inequality can be obtained: 
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Taking (30) into (29) derives: 

VT + e2e3 + φ3
.
φ3 + M2

2 + ∑2
i=1 µ2

i + ψ2
M/2 + φ2

3/4.

(57)

Akin to (42), we can obtain:

φ3
.
φ3 ≤ −

(
1

λ3
− 1

4

)
φ2

3 + M2
3, (58)

where the function M3 > 0.
Substituting (58) into (57) produces:
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.
V2 ≤ −

2
∑

i=1
kie2

i −
1
2

4
∑

i=3

4
∑

j=1
ξ2

ij
[
xj(t− τi)

]
−

3
∑

i=2

(
1
λi
− 1

2

)
φ2

i +
2
∑

i=1

γi
di

β̃i β̂i +
[
1− 16tanh2

(
e1
σ1

)]
T

−

Entropy 2022, 24, x FOR PEER REVIEW 9 of 26 
 

 

 
Figure 2. Overview of the control architecture for the PMSM system. 

Step 1. The design of the stunning control law 2u  and the adaptive law 1ˆ . 

Taking the tracking error 1e , filter error 2 , approximation error 1
 , and the 

Lyapunov–Krasovskii functional TV  into account, choose the Lyapunov function 1 V  as: 

    2 2 2
1 1 2 1 11 2 1 2 1 (2 ) , TV e d V  (25)

subject to the Lyapunov–Krasovskii functional  TV  as: 

    d
4 4

2

1 1

1 exp exp ( ) ,
2

 
i

t

T iji t
i j

jV t x v vv


 


 

           (26)

where the design constants  1 0 0,d , ij  are utilized to address the time delays below. 

Remark 8. To further improve the precision of the controller designed later, the proper 
Lyapunov-Krasovskii functional  TV  is utilized to compensate for the time-varying delays. 

Taking the derivative of TV  in (26) obtains: 

  2
4 4 4 4

2

1 1 1 1
(1 1exp ( )

2 2
) . T ij ij i

i j i j
i j j TV t x t x t V   

   

                   (27)

With (24) and (27), deriving 1V  in (25) yields: 

       
   

                    2
4 4 4 4

2

1 1 1 1
2 21 1 1 1 1

1

1 1ˆ exp ( (
2 2

.) )1 i ij ij j Tj i
i j i j

e e t x t x t V
d

V  (28)

Fusing (23) into (28) generates: 

 

=

 

  

   



 

 

 

       

  

         
  

     





2
4 4

1 2
1

1 2 1
1 11

2

2 1 1

4

2
1 1

4

1
2

1

1 1

1( )
2

1 1 ˆ

(

exp ( )
2

)

.

  d ij i
i j

ij
i

j

i T
j

j

f
u x l x t s x t

f

V

e e

d
t x t

V


  






 (29)

Based on Remark 2 with  4n , the following inequality can be obtained: 
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Taking (30) into (29) derives: 
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i=1 µ2
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i=2 M2

i + ψ2
M/2.

(59)

Step 3. The design of the actual controller uq and the adaptive law
.
β̂3.

With the state error e3 and estimation error β̃3 considered, the third Lyapunov function
V3 is chosen as:

V3 = V2 +
1
2

e2
3 +

1
2d3

β̃2
3, (60)

where d3 stands for the known positive constant.
Based on (24), derive V3 in (60) as:
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V3 =
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Based on Remark 2 with  4n , the following inequality can be obtained: 
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) jj
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Taking (30) into (29) derives: 

VT + e3
{

b1x3 + b3x2 + b2x2x4 + b4uq + ∆l3[x(t− τ3)] + e2 −
.
u3c

}
+

2
∑

i=1
µ2

i +
3
∑

i=2
M2

i − 1
d3

β̃3

.
β̂3.

(62)

Analogous to (30), the following inequality holds with n = 4:

e3∆l3[x(t− τ3)] ≤ 2e2
3 +

1
2

4

∑
j=1

ξ2
3j
[
xj(t− τ3)

]
. (63)

Pouring (63) into (62) leads to:

.
V3 ≤ −

2
∑

i=1
kie2

i −
1
2

4
∑

j=1
ξ2

ij
[
xj(t− τi)

]
−

3
∑

i=2

(
1
λi
− 1

2

)
φ2

i +
2
∑

i=1

γi
di

β̃i β̂i +
[
1− 16tanh2

(
e1
σ1

)]
T +

ψ2
M
2

−

Entropy 2022, 24, x FOR PEER REVIEW 9 of 26 
 

 

 
Figure 2. Overview of the control architecture for the PMSM system. 

Step 1. The design of the stunning control law 2u  and the adaptive law 1ˆ . 

Taking the tracking error 1e , filter error 2 , approximation error 1
 , and the 

Lyapunov–Krasovskii functional TV  into account, choose the Lyapunov function 1 V  as: 

    2 2 2
1 1 2 1 11 2 1 2 1 (2 ) , TV e d V  (25)

subject to the Lyapunov–Krasovskii functional  TV  as: 

    d
4 4

2

1 1

1 exp exp ( ) ,
2

 
i

t

T iji t
i j

jV t x v vv


 


 

           (26)

where the design constants  1 0 0,d , ij  are utilized to address the time delays below. 

Remark 8. To further improve the precision of the controller designed later, the proper 
Lyapunov-Krasovskii functional  TV  is utilized to compensate for the time-varying delays. 

Taking the derivative of TV  in (26) obtains: 

  2
4 4 4 4

2

1 1 1 1
(1 1exp ( )

2 2
) . T ij ij i

i j i j
i j j TV t x t x t V   

   

                   (27)

With (24) and (27), deriving 1V  in (25) yields: 

       
   

                    2
4 4 4 4

2

1 1 1 1
2 21 1 1 1 1

1

1 1ˆ exp ( (
2 2

.) )1 i ij ij j Tj i
i j i j

e e t x t x t V
d

V  (28)
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Based on Remark 2 with  4n , the following inequality can be obtained: 
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Taking (30) into (29) derives: 

VT + e3
(
b1x3 + b3x2 + b2x2x4 + b4uq + e2 + 2e3 −

.
u3c

)
+

2
∑

i=1
µ2

i +
3
∑

i=2
M2

i − 1
d3

β̃3

.
β̂3.

(64)

Design the unknown function W3(X3) as:

W3(X3) = b1x3 + b2x2x4 + b3x2 + e2 + 3e3, (65)

where e2 = x2 − α2c, e3 = x3 − α3c. According to the composition of the unknown function
W3(X3), it can be derived that X3 consists of the unknown and uncertain states x2, x3, x4, α2c

and α3c. Then X3 = [x2, x3, x4, u2c, u3c]
T .

Consequently, rewrite (64) as:

.
V3 ≤ −

2
∑

i=1
kie2

i −
1
2

4
∑

j=1
ξ2

ij
[
xj(t− τi)

]
−

3
∑
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(
1
λi
− 1

2

)
φ2

i +
2
∑

i=1

γi
di

β̃i β̂i +
[
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(
e1
σ1

)]
T
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Based on Remark 2 with  4n , the following inequality can be obtained: 

  
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2
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e l x t e x t  (30)

Taking (30) into (29) derives: 

VT + e3[W3(X3) + b4uq −e3 −
.
u3c
]
+ ∑2

i=1 µ2
i + ∑3

i=2 M2
i + ψ2

M/2− 1/d3 β̃3

.
β̂3.

(66)

Utilize an RBFNN to approximate W3(X3):

W3(X3) = ℘T
3 P3(X3) + ψ3(X3), |ψ3(X3)| 6 ψM. (67)
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Resembling (36), it generates:

e3W3(X3) = e3

[
℘T

3 P3(X3) + ψ3(X3)
]
≤ 1

4µ2
3

β3e2
3PT

3 P3 + µ2
3 +

ψ2
M
4

+ e2
3, (68)

where µ3 represents the positive design parameter.
Then, reperform (66) as:

.
V3 ≤ −

2
∑

i=1
kie2

i −
1
2

4
∑

j=1
ξ2

ij
[
xj(t− τi)

]
−

3
∑

i=2

(
1
λi
− 1

2

)
φ2

i +
2
∑

i=1

γi
di

β̃i β̂i +
[
1− 16tanh2

(
e1
σ1

)]
T + 3

4 ψ2
M

−
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Based on Remark 2 with  4n , the following inequality can be obtained: 
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Taking (30) into (29) derives: 
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(69)

Design the real controller uq and the adaptive law
.
β̂3 as:

uq = − 1
b4

(
k3e3 +

1
4µ2

3
β̂3e3PT

3 P3 −
.
u3c

)
.
β̂3 = d3

4µ2
3
e2

3PT
3 P3 − γ3 β̂3,

(70)

where the design parameters k3 > 0, γ3 > 0.
At this point, the actual controller for the q-axis has been designed.

Inserting the real controller uq and the adaptive law
.
β̂3 in (70) into (69) derives:
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Step 4. The design of the actual controller ud and the adaptive law
.
β̂4.

Consider the state error e4 and the estimation error β̃4, then the Lyapunov function V4
is chosen as:

V4 = V3 + 1/2e2
4 + 1/(2d4)β̃2

4, (72)

where d4 represents the positive design parameter.
Combining (24), differentiate V4 in (72) produces:

.
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Integrating (23) and (71) into (73) yields:
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Based on Remark 2 with  4n , the following inequality can be obtained: 
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e l x t e x t  (30)

Taking (30) into (29) derives: 

VT + e4{c1x4 + c2x2x3 + ∆l4[x(t− τ4)] + c3ud}+ 3/4ψ2
M + ∑3

i=2 M2
i + ∑3

i=1 µ2
i

− 1
d4

β̃4

.
β̂4.

(74)

Analogous to (30), the following inequality holds with n = 4:

e4∆l4[x(t− τ4)] ≤ 2e2
4 +

1
2

4

∑
j=1

ξ2
4j
[
xj(t− τ4)

]
. (75)

Design the unknown function W4(X4) as:

W4(X4) = c1x4 + c2x2x3 + 3e4, (76)
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where e4 = x4, the uncertain function X4 consists of x2, x3 and x4. Then X4 = [x2, x3, x4]
T .

Then, (74) can be redrafted as:

.
V4 ≤ −

3
∑

i=1
kie2

i −
3
∑

i=2

(
1
λi
− 1

2

)
φ2

i +
3
∑

i=1

γi
di

β̃i β̂i +
[
1− 16tanh2

(
e1
σ1

)]
T +

3
∑

i=2
M2

i +
3
∑

i=3
µ2

i

−
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Taking (30) into (29) derives: 

VT + e4[W4(X4) + c3ud − e4] + 3/4ψ2
M − 1/d4 β̃4

.
β̂4.

(77)

Similarly, the unknown function W4(X4) can be estimated by an RBFNN:

W4(X4) = ℘T
4 P4(X4) + ψ4(X4), |ψ4(X4)| 6 ψM. (78)

Pouring (78) into (77) leads to:

.
V4 ≤ −

3
∑

i=1
kie2

i −
3
∑

i=2

(
1
λi
− 1

2

)
φ2

i −
1
d4

β̃4

.
β̂4 +

3
∑

i=2
M2

i +
3
∑

i=1

γi
di

β̃i β̂i +
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(
e1
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Taking (30) into (29) derives: 

VT + e4
[
−e4 + c3ud + ℘T

4 P4(X4) + ψ4(X4)
]
+ ∑3

i=1 µ2
i + 3/4ψ2

M.

(79)

Analogous to (36), it derives:

e4W4(X4) = e4

[
℘T

4 P4(X4) + ψ4(X4)
]
≤ 1

4µ2
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4 P4 + µ2
4 +

ψ2
M
4

+ e2
4, (80)

where µ4 stands for the positive design parameter.
Combining (80) with (79) generates:
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Taking (30) into (29) derives: 

VT + c3e4ud +
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∑

i=1
µ2

i + ψ2
M + 1

4µ2
4
e2

4β4PT
4 P4.

(81)

Devise the real controller ud and the adaptive law
.
β̂4 as:

ud = − 1
c3

[
k4e4 + 1/(4µ2

4)β̂4e4PT
4 P4

]
.
β̂4 = d4

4µ2
4
e2

4PT
4 P4 − γ4 β̂4,

(82)

where the design constants k4 > 0, γ4 > 0.

Fusing the real controller ud and the adaptive law
.
β̂4 in (82) into (81) produces:

.
V ≤ −∑4

i=1 kie2
i −∑3

i=2 (1/λi − 1/2)φ2
i + ∑3

i=2 M2
i + ∑4

i=1 γi/di β̃i β̂i

−
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Based on Remark 2 with  4n , the following inequality can be obtained: 

  


           2 2 2
1

4

1 1 1
1

11 11 (1( ) 2 .
2

) jj
j

e l x t e x t  (30)

Taking (30) into (29) derives: 

VT + ∑4
i=1 µ2

i + ψ2
M +

[
1− 16tanh2(e1/σ1)

]
T.

(83)

At the very beginning of this subsection, a funnel variable (16) based on modified PPF
is designed in this paper to guarantee that the tracking error narrows down to a prescribed
funnel type scope. The modified PPF avoids the demand for the precise initial value of the
output variable. Among these steps, RBFNNs are utilized to approximate the unknown
hard-to-compute functions (33), (50), (65) and (76) based on their infinite approximation
capability. The Lyapunov Krasovskii functional eliminates the time delays ∆li[x(t− τi)] in
(3) with the aid of Lemma 1 and Remark 2. A DO (18) is introduced in step 2 to observe the
uncertain matched and mismatched disturbance.

Up to this step, the design process of the FDSC with time delays and output constraints
is finished. The effectiveness of the controller and the boundedness of all the variables need
to be discussed in Section 4 and proved in Section 5.

4. Stability Analysis

For arbitrary predefined p > 0, the compact sets are described as:
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

Ω1 =
{(

e1, φ2, β̂1, ξ11, ξ12, . . . , ξ44
)

: 2 e2
1 + 2φ2

2 +
2
d1

β̃2
1 + 4VT ≤ 4p

}
Ω2 =

{(
e1, e2, φ2, φ3, β̂1, β̂2,
ξ11, ξ12, . . . , ξ44

)
: 2

2
∑

i=1
e2

i + 2
3
∑

i=2
φ2

i +
2
∑

i=1

2
di

β̃2
i + 4VT ≤ 4p

}
Ω3 =

{(
e1, e2, e3, φ2, φ3, β̂1, β̂2,
β̂3, ξ11, ξ12, . . . , ξ44

)
: 2

3
∑

i=1
e2

i + 2
3
∑

i=2
φ2

i +
3
∑

i=1

2
di

β̃2
i + 4VT ≤ 4p

}
Ω4 =

{(
e1, . . . , e4, φ2, φ3, β̂1, . . . ,
β̂4, ξ11, ξ12, . . . , ξ44

)
: 2

4
∑

i=1
e2

i + 2
3
∑

i=2
φ2

i +
4
∑

i=1

2
di

β̃2
i + 4VT ≤ 4p

}
.

(84)

Theorem 1. According to Assumption 1, the neural adaptive FDSC approach designed for the
PMSM system (3) in this paper includes four controllers u2, u3, uq, ud and four adaptive laws
.
β̂i, i = 1, . . . , 4. For the initial conditions, if Ωi, i = 1, . . . , 4,− f1(0) < s1(0) < f1(0) and
xd ∈ (−d, d) are fulfilled, the core purposes of this paper will be realized.

Proof of Theorem 1. This part proves the boundedness and the binding ranges of the
variables, demonstrating the effectiveness of the designed controller in this paper for the
PMSM system. �

4.1. Verification of the Boundedness for All Variables

Considering the state errors ei, i = 1, · · · , 4, the filter errors φi, i = 1, 2, and the
estimation errors β̃i, i = 1, · · · , 4, design the whole Lyapunov function V as:

V = V4 = 1/2
4

∑
i=1

e2
i + 1/2

3

∑
i=2

φ2
i +

4

∑
i=1

1/(2di)β̃2
i . (85)

Then, it can be taken from (83) the derivative of V in (85) as:

.
V ≤ −∑4

i=1 kie2
i −∑3

i=2 (1/λi − 1/2)φ2
i + ∑3

i=2 M2
i + ∑4

i=1 γi/di β̃i β̂i

−
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1 1ˆ exp ( (
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.) )1 i ij ij j Tj i
i j i j

e e t x t x t V
d

V  (28)

Fusing (23) into (28) generates: 

 

=

 

  

   



 

 

 

       

  

         
  

     





2
4 4

1 2
1

1 2 1
1 11

2

2 1 1

4

2
1 1

4

1
2

1

1 1

1( )
2

1 1 ˆ

(

exp ( )
2

)

.

  d ij i
i j

ij
i

j

i T
j

j

f
u x l x t s x t

f

V

e e

d
t x t

V


  






 (29)

Based on Remark 2 with  4n , the following inequality can be obtained: 

  


           2 2 2
1

4

1 1 1
1

11 11 (1( ) 2 .
2

) jj
j

e l x t e x t  (30)

Taking (30) into (29) derives: 

VT + ∑4
i=1 µ2

i + ψ2
M +

[
1− 16tanh2(e1/σ1)

]
T.

(86)

Reorganize (86) as:
.

V ≤ −b0V + ϕ0 + a1, (87)

where b0 = min{2k1, 2k2, 2k3, 2k4, 2γ1, 2γ2, 2γ3, 2γ4,
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Based on Remark 2 with  4n , the following inequality can be obtained: 
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11 11 (1( ) 2 .
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) jj
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e l x t e x t  (30)

Taking (30) into (29) derives: 

, (2/λ2 − 1), (2/λ3 − 1)}, ϕ0 =

∑4
i=1 µ2

i + ∑3
i=2 M2

i +ψ2
M, a1 = [1− 16tanh2(e1/σ1)]T.

To ensure every term in (87) satisfying the stability conditions, it needs to choose
proper design parameters that make up b0 to guarantee b0 > 0. With the aid of Lemma 3,
the value of a1 in (87) depends on two cases: (I) For e1 /∈ Ωe1 , we can deduce that a1 ≤ 0
due to T(x) ≥ 0; (II) For e1 ∈ Λ, it can be inferred that |e1| ≤ 0.2554σ1 and σ1 > 0. Based
on the above discussion, we can conclude that the boundedness of e1 and a1 are both
assured. Consequently, a constant ϕ1 > 0 can be chosen to fulfill | ϕ0 + a1| < ϕ1. Then
redraft (87) as:

.
V ≤ −b0V + ϕ1. (88)

Multiplying both sides by exp(b0t), then (88) becomes d(V(t) exp(b0t))/dt ≤ ϕ1 exp(b0t).
Integrating the inequality over [0, t], it leads to:

V(t) ≤
[

V(0)− ϕ1

b0

]
exp(b0t) +

ϕ1

b0
≤ V(0) +

ϕ1

b0
. (89)
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Especially, the following results can be derived from (89):

lim
t→∞
|ei| ≤

√
2ϕ1

b0
, i = 1, . . . , 4. (90)

It can be derived that ei, i = 1, . . . , 4 are bounded. Analogously, the boundedness
of φ2, φ3, and β̃i, i = 1, . . . , 4 are ensured with (85). From (24), it can be concluded that
β̂i, i = 1, . . . , 4 are bounded. We can know that s1 is bounded from (16). Furthermore, it can
be obtained that x1 is bounded according to s1 = x1 − xd and the boundedness of xd. Then,
the virtual controller u2 is bounded based on (38). Consequently, the boundedness of x2
can be ensured from (20) and (21). Similarly, it can be derived that u2, ud, uq, xi, i = 2, 3, 4
are also bounded. As a result, the designed controller demonstrates that all the signals of
the closed-loop are uniformly bounded.

4.2. Deduction of the Binding Ranges for Variables

According to (85), one derives:

e2
i ≤ 2

[
V(0)− ϕ1

b0

]
e−b0t +

2ϕ1

b0
, i = 2, 3, 4. (91)

Then we can get that |ei| ≤
√

2[V(0)− ϕ1/b0] exp(−b0t) + 2ϕ1/b0. |ei| ≤
√

2ϕ1/b0
when V(0) = ϕ1/b0. If V(0) 6= ϕ1/b0, for arbitrary known

√
2[V(0)− ϕ1/b0]exp(−b0t) + 2ϕ1/b0

> 2
√

ϕ1/b0, there exists T for each t > T, it produces
√

2[V(0)− ϕ1/b0] exp(−b0t) + 2ϕ1/b0.
When t→ ∞ , the transformation error |ei| ≤

√
2ϕ1/b0.

According to (16), η1 → ±∞ when and only when s1 → ± f1 , it means that if e1 → ± f1 ,
∆ fi will approach infinite. For the arbitrary starting value ∆ fi, it satisfies |s1(0)| < f1(0).
For arbitrary t > 0, it derives |s1(t)| < f1(t). According to s1 = x1 − xd, we can obtain
the arbitrary initial condition xd(0)− f1(0) < x1(0) < xd(0) + f1(0) and other conditions
x1 ∈ Πx1 := {x1 ∈ R : yd(t)− f1(t) < x1(t) < yd(t) + f1(t)} with t > 0.

Remark 10. The quality of the FDSC is judged by the value of e1. Hence, it is of great impor-
tance to choose parameters based on the selection principle. The value of e1 depends on ϕ1 and
b0. When ϕ1 decreases and b0 increases, e1will approach zero. Furthermore, we can increase
ψM, Γ1, ∑4

i=1 µi, ∑3
i=2 Mi and decrease
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Based on Remark 2 with  4n , the following inequality can be obtained: 

  

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e l x t e x t  (30)

Taking (30) into (29) derives: 

, ε2, 1/λ2, 1/λ3, ki, γi, i = 1, · · · , 4 in (87) to achieve
excellent control performance of the system.

5. Simulation and Comparison Results
5.1. Design of Controllers

To verify the effectiveness of the FDSC method, this subsection provides (3) with two
simulation cases: (I) The case 1 contains time delays; (II) The case 2 ignores time delays
(∆ fi = 0, i = 1, 2, 3, 4). PID and NDSC approaches are used as comparison substrates in
each case to more visually illustrate the superiority of the FDSC solution.

Select the inherent PMSM parameters as: J = 0.003798Kg·m2, B = 0.001158 N·m/(rad/s),
TL = 1.5, ϕ = 0.1245Wb, Ld = 0.00285H, np = 3, Lq = 0.00315H, Rs = 0.68 Ω. The
desired signal and the disturbance function are chosen as xd = 0.02 sin(2t) + 0.1 and
∆E = 40x2 sin(2t), respectively.

5.1.1. FDSC

Based on Remark 10 and trial and error, the detailed FDSC’s design parameters as
selected and shown in Table 2 to ensure the tracking error e1 small enough:
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Table 2. FDSC’s design parameters.

Parameters Values Parameters Values Parameters Values

u2c(0) 0 β̂1 (0) −0.05 d1 0.65
u3c(0) 0.5 β̂2 (0) 0 d2 0.95

ε2 0.1 β̂3 (0) −0.5 d3 0.75
ε3 0.01 β̂4 (0) 0 d4 35
k1 10 γ1 60 µ1 0.06
k2 20 γ2 4 µ2 0.3
k3 20 γ3 60 µ3 0.1
k4 1200 γ4 0.4 µ4 0.01

5.1.2. NDSC

By virtual of [48], select the following variables of NDSC:

e1 = x1 − xd e2 = x3 − ϑ3c e2 = x2 − ϑ2c e4 = x4.
u2c = 1/ε2(e2 − e2c)

.
u3c = 1/ε3(u3 − u3c)

u2 = −k1e1 +
.
xd u3 = J/a1(−k2`2 +

.
u2c − β̂T

2 P2(X2))

uq = 1/b4(−k3e3 +
.
ϑ3c − β̂T

3 P3(X3)) ud = J/c3(−k4e4 − β̂T
4 P4(X4)).

β̂2 = χ2

[
P2(X2)e2 − γ2 β̂2

] .
β̂3 = χ3

[
P3(X3)e3 − γ3 β̂3

]
.
β̂4 = χ4

[
P4(X4)e4 − γ4 β̂4

]
,

(92)

based on Remark 10 and trial and error, the design parameters are chosen to guarantee the tracking
error small enough: k1 = 30, k2 = k3 = k4 = 80, χ2 = χ3 = χ4 = 10, γ2 = γ3 = γ4 = 0.09,
λ2 =λ3 = 0.01.

5.1.3. PID

According to [12], the following PID controller was chosen with ud = 0:

uq = kps1 + ki

∫ t

0
s1dτ + kdd(s1)/dt, (93)

based on Remark 10 and trial and error, the design parameters are chosen to guarantee the
tracking error small enough: kp = 20, ki = 0.05, kd = 1.5.

Meanwhile, Table 3 lists three quantitative indicators to compare FDSC scheme with
the NDSC and PID methods.

(a) Integration over the absolute value of the error (IAE):

JIAE =
∫ t

0
|`(τ)|dτ. (94)

(b) Integration over time and the absolute value of the error (ITAE):

JITAE =
∫ t

0
τ|`(τ)|dτ. (95)

(c) Integration over squared error (ISE):

JISE =
∫ t

0
`2(τ)dτ. (96)
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Table 3. Comparative numerical results of performance indicators.

Indicators FDSC PID NDSC

Case 1
ISE 0.000661 0.079390 0.244500

ITAE 0.005941 8.171000 2.801000
IAE 0.012980 1.091000 0.978600

Case 2
ISE 0.000661 0.079010 0.247000

ITAE 0.005894 8.151000 2.764000
IAE 0.012980 1.089000 0.970700

Upon the above discussions, consider the two cases as:
Case 1: Select the time-delay terms as:

∆ f1(x(t− τ1)) = 10x4
1(t− τ1)x2(t− τ1)x3(t− τ1)x4(t− τ1)

∆ f2(x(t− τ2)) = 12x4
1(t− τ2)x4

2(t− τ2)x3(t− τ2)x4(t− τ2)
∆ f3(x(t− τ3)) = 14x4

1(t− τ3)x4
2(t− τ3)x4

3(t− τ3)x4(t− τ3)
∆ f4(x(t− τ4)) = 16x4

1(t− τ4)x4
2(t− τ4)x4

3(t− τ4)x4
4(t− τ4).

(97)

Design the time-varying funnel type boundaries as f1(t) = e−2t + 0.1t/(2t + 2), and
select the original values of the state variables as xi(0) = 0.01, i = 1, . . . , 4. Each RBFNN
consists of 11 nodes with the center positioned in the interval [−11, 11], and the width is 10.

Case 2: The time-delay terms are ∆ fi = 0, i = 1, 2, 3, 4. In other words, the time-delays
are not considered.

5.2. Simulation Comparison Results

The simulation comparison results are shown in Figures 3–7, every figure contains
two sub-figures: Case 1 and Case 2. The simulation results will prove the superiority of the
FDSC scheme, and justify whether the Lyapunov-Krasovskii functional is effective.
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It can be seen from Figure 3 that the FDSC method ensures the best convergence of
output signal x1 when compared with PID and NDSC methods no matter in Case 1 or
Case 2. And the output signal x1 based on the FDSC method is limited with the funnel
prescribed boundaries when the output signal x1 based on the NDSC method is out of the
boundary. The curve of output signal x1 in case 1 is almost the same as it in case 2, which
means that Lyapunov-Krasovskii functional can effectively address the time delays.

It is demonstrated from Figure 4 that the FDSC method has the smallest tracking error
s1 among three control schemes no matter in Case 1 or Case 2. And the tracking error s1
based on the FDSC method is limited by the funnel prescribed boundaries when compared
with the NDSC method. The curves of tracking error s1 are almost the same in the two
cases, showing the effectiveness of the Lyapunov-Krasovskii functional.

It is shown from Figure 5 that the curve of the state variable x2 in Case 1 is almost
the same as it in Case 2. It means that the Lyapunov-Krasovskii functional can effectively
address the time delays. The controller designed in is paper guarantees that the state
variable x2 in the closed-loop is controllable. The same conclusion can be drawn in Figure 6.

It can be seen from Figure 6 that the curves of the state variables id and iq in case 1
are almost the same as them in case 2. It means that the Lyapunov-Krasovskii functionals
can effectively address the time delays. The controller designed in is paper guarantees the
stable operation of the PMSM systems with time delays. And the d− axis current id and the
q− axis current iq in the closed-loop are controllable. The same conclusion can be drawn in
the Figure 7.

Within the funnel-type boundaries, Figure 3 gives the curves of output signal x1 and
ideal signal xd under three schemes (FDSC, PID, and NDSC). Figure 4 exhibits the curves
of tracking error s1 for different scenarios. It can be concluded from Figures 3 and 4 that
FDSC has a better convergency rate than NDSC, and the tracking error s1 of FDSC method
is minimal compared to the other two options without breaking through funnel-type
boundaries even considering the time delays. Figure 5 displays the curves of state x2 in the
FDSC approach. Figure 6 illustrates the trajectories of states id and iq, and Figure 7 shows
the curves of controllers ud and uq. According to Figures 3–7, the states of the FDSC have
extremely rapid response capability compared to NDSC and PID with time delays.

6. Conclusions

The FDSC with disturbance-observer has been investigated and suggested to resolve
the position tracking control challenge for the PMSM with time delays here. At the be-
ginning of this paper, an assumption and several lemmas are employed to uphold the
control thesis and the design procedure of the funnel controller. With the aid of them, the
inequalities in Section 3 can be simplified. Secondly, this paper introduces promising tools
to eliminate the nonlinear uncertainties in PMSMs. For instance, this paper introduces
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RBFNNs to estimate the unknown functions because they can approximate the unknown
hard-to-calculated functions that are in a closed set at any precision. For the unknown
mismatched and matched external disturbance, this paper utilizes a finite-time second-
order DO. The finite-time DO can approximate the unknown interference with a finite time
speed. To remove the limitations of the output variable, a funnel variable is designed in
this paper without the demand for precise initial values of the state variable. This paper
uses the first-order filters to filtrate the multiple derivatives of the virtual controllers so
that the “explosion of complexity” can be addressed. The Lyapunov-Krasovskii functionals
are devised in the controller design procedure of this paper to deal with time delays and
guarantee the stable operation of the PMSMs. Thirdly, with the aid of RBFNNs, the finite-
time DO, first-order filters, and the Lyapunov-Krasovskii functionals, the controller design
procedure can be finished based on the backstepping method. Despite that the devised
FDSC method can provide outstanding tracking performance shown in Figures 3–7 for
the output-constrained PMSM, the finite-time response rates need to be further improved
by combining it with finite-time stability theory. In further research later, we will further
study how to improve the finite time convergence of tracking error based on the FDSC
scheme. For PMSMs are widely applied in many significant fields, the neural adaptive
FDSC scheme can be extended to vehicles, electric elevators, and machine tools.
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Nomenclature

Acronyms
PMSM Permanent magnetic synchronous motor
SVPWM Space vector pulse width modulation
NN Neural network
RBFNN Radial basis function neural network
DO Disturbance observer
PPF Prescribed performance function
FDSC Funnel dynamic surface control
NDSC Neural dynamic surface control
PID Proportion integral differential
IAE Integration over the absolute value of the error
ITAE Integration over time and the absolute value of the error
ISE Integration over squared error
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Variables
xi, i = 1, · · · , 4 State variables
∆E External disturbance term
∆li(x(t− τi)), i = 1, · · · , 4 Time delay terms
℘∗ ∈ Rl Desired weight vector of RBFNN
℘̂ Updated weight vector
ψ(X) Estimation error
νi = [νi1, . . . , νim]

T Receptive field centers
βi, i = 1, · · · , 4 Unknown variables
uic, i = 2, 3 The output of first-order filters
ui Virtual controllers, the input of first-order filters
φi, i = 2, 3 First-order filter errors
η1 Modified funnel variable
Functions
f1(t) Positive funnel prescribed performance function
Fk(·) Gain function over time
G(t) Scaling function
ξij > 0 Smooth functions in Lyapunov–Krasovskii functional VT
Parameters
l > 1 Node numbers of RBFNN
χi Widths of the Gaussian functions
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