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Cell death mechanisms have been associated with the development of inflammatory bowel diseases in humans and mice. Recent
studies suggested that a complex crosstalk between autophagy/apoptosis, microbe sensing, and enhanced endoplasmic reticulum
stress in the epithelium could play a critical role in these diseases. In addition, necroptosis, a relatively novel programmed necrosis-
like pathway associated with TNF receptor activation, seems to be also present in the pathogenesis of Crohn’s disease and in
specific animal models for intestinal inflammation. This review attempts to cover new data related to cell death mechanisms and
inflammatory bowel diseases.

1. Introduction

1.1. Cell Death and Damage Control. The inflammatory pro-
cess aims to neutralize harmful stimuli as an effort of self-
protection [1]. There are basically two types of inflammation:
acute and chronic. Acute inflammation comprises the initial
response to eliminate the insulting cause without any residual
structural or functional damage. It is a temporary phe-
nomenon, which includes later regeneration and complete
healing of the involved area [1]. In contrast, when the initial
insult persists, the resulting chronic inflammation leads to
organ damage, preventing a complete return to homeostasis
[2]. In the inflamed gut, both in acute and in chronic inflam-
mation, an effectivemodulation of the immune responsewith
the subsequent downregulation of inflammation is critical to
reduce tissue damage and to promote mucosal healing [3].
In this sense, the programmed cell death machinery is key
for the homeostasis reestablishment after an acute or chronic
insult, limiting the propagation of the inflammatory stimuli
to prevent tissue’s loss of function [4].

In vitro studies have demonstrated resistance to apoptosis
in lamina propria T cells obtained from the intestinal mucosa

of patients with Crohn’s disease (CD) [6]. Additional evi-
dence has long supported the association of T cell resistance
to apoptosis with altered concentration ratios of Bcl-2 family
proteins [7, 8]. In fact, efficacy of anti-TNF-alpha antibodies
in inflammatory bowel diseases (IBD) has been associated
with apoptosis modulation in lamina propria mononuclear
cells, in particular T cells [9, 10], through the induction of
the intrinsic apoptotic pathway mediated by Bcl-2 family
proteins [11]. Recently, the defective apoptosis of lamina
propria T cells in CD was also shown to be related to
increased levels of survivin, a family member of the inhibitor
of apoptosis proteins (IAP), through the interaction with
the chaperone HSP90 [12]. Nevertheless, in the last decade,
research in IBD pathogenesis has undergone a progressive
shift from the effector arm of inflammation, namely, the
adaptive immune system, towards the innate immunity and
mechanisms involving the complex interactions between the
host and the microbiota.

In recent years, several genome-wide association studies
(GWAS) have been undertaken in IBD patients and healthy
controls providing an extraordinary new insight into the
pathogenesis of these conditions [13–15]. The combined
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genome-wide analysis of CD and ulcerative colitis (UC)
generated a more comprehensive analysis of disease speci-
ficity [16]. Currently, the total disease variance explained by
heritability in IBD ranges from 7.5% in UC to 13.6% in CD
with 110 of 163 loci associated with IBD being found in both
diseases [16].Most known susceptibility genes are involved in
autophagy, cellular stress regulation, and microbial pathogen
sensing, suggesting that cell death mechanisms might play a
key role in the pathogenesis of IBD.

1.2. Homeostasis of Intestinal Epithelium. The intestinal
epithelium constitutes a specialized single cell layer with
absorptive and secretory functions in the interface between
the body and the external environment [17]. In the epithe-
lium, enterocytes are responsible for the absorption of nutri-
ents, ions, vitamins, and water and are also involved in the
induction of immunological tolerance to ingested peptides
[18]. Paneth cells, goblet cells, and enteroendocrine cells com-
prise the secretory lineage of the intestinal epithelium, having
an important role in the intestinal defense against potentially
harmful bacteria and the coordination of intestinal functions
by hormone secretion [19–21]. In close contact with the
epithelium lies the lamina propria, a loose connective tissue
in which mesenchymal cells and mucosal immune cells are
located.

In the large and small intestine, differentiated enterocytes
are removed constantly and replaced by new cells originated
by undifferentiated adult intestinal stem cells, localized in the
third or fourth position counted from the base of the crypt
[22]. These new cells migrate from the base of the crypt to
the apical zone of the intestine undergoing maturation. In
the apical zone, these cells survive for about 4-5 days prior
to being shed into the gut lumen [23]. This single epithelial
layer displays a strict balance between cellular proliferation
and cell death in order to maintain the intestinal barrier
[24]. Importantly, if the epithelium cell death is not strictly
regulated, it might result in a barrier defect with subsequent
microbial invasion and inflammation. In this regard, previous
studies have shown that epithelial proliferation and turnover
are accelerated in IBD, with elevated levels of programmed
cell death being observed in patients with both CD and UC
[25, 26].

In IBD, all three types of programmed cell death are
observed: apoptosis, autophagy, and necrosis (Figure 1). The
exact programmed cell death pathway a cell undergoes
depends on several factors such as the abundance of nutri-
ents, the cell cycle stage, and the presence or absence
of reactive oxygen species (ROS), adenosine triphosphate
(ATP), autophagy protein 5 (ATG5), and nuclear factor kappa
B (NF𝜅B) activation, among others [27–31].

2. Apoptosis

2.1. Intracellular Machinery of Apoptosis. Even though cas-
pase-independent mechanisms mediated by the apoptosis-
inducing factor (AIF) have been described, the activation
of caspases is classically required to initiate the process of

apoptosis [32]. Caspases comprise a specialized protease
family, which contains a cysteine on the active site that cleaves
the targets on their specific aspartic acid. Caspases not only
participate in the progressive activation of other caspases
but can also contribute to other processes such as the
reduction of cell volume (pyknosis), chromatin condensa-
tion, nuclear fragmentation (karyorrhexis), and formation of
plasma-membrane blebs [33, 34]. All these processes lead
to alterations in cellular morphology resulting in cell and
nucleus shrinkage without leakage of cellular content to the
microenvironment. The intracellular machinery of apoptosis
involves extrinsic and intrinsic pathways.

The extrinsic pathway also known as death receptor
pathway involves the activation of death receptors, which
are triggered by APO3L, TNF-𝛼, FAS-L, and TNF-related
apoptosis-inducing ligand (TRAIL). These ligands bind to
their specific receptors such as APO3, TNF receptor (TNFR),
FAS, and DR4/DR5 [3]. The ligand-receptor interaction
initiates the destruction complex through the recruitment of
intracellular adapted proteins called Fas associatedwith death
domain (FADD) or TNF-𝛼 receptor-associated death domain
(TRADD) that enables the catalytic activity of caspase-8, the
central protease mediator of the extrinsic pathway [35].

The intrinsic pathway is observed when cells are under
conditions such as DNA damage or growth factors with-
drawal. In case of failure to repair the subsequent damage, the
intracellular machinery stimulates the transcription of p53
[36, 37]. This gene, known as the guardian of the genome,
stimulates other proteins such as p53 upregulated modulator
of apoptosis (PUMA), Bcl-2 interactingmediator of cell death
(BIM), and NOXA to initiate the cell death cascade [38–
40]. The family of proteins that control the intrinsic pathway
is known as Bcl-2. This family includes antiapoptotic and
proapoptotic members. The difference between them lies
in their homologous domains. The antiapoptotic members
have four Bcl-2 homology regions and the proapoptotic
members have three [41]. In addition, there is a third class
of proapoptotic Bcl-2 family members that displays only the
Bcl-2 homology 3 domain (“BH3-only”) [42].

In the intrinsic pathway, the balance between anti-
apoptotic and proapoptotic members is responsible for the
determination of either cell death or cell recovery. When
proapoptotic stimuli are prevalent, t-BID interacts with BAK
and BAX leading to increased mitochondrial permeability
and release of electron carrier protein cytochrome-c and
SMAC/DIABLO. This protein inhibits the IAP, which are
characterized by the blockage of caspase activity, while
interacting with apoptotic protease activating factor 1 (Apaf-
1) enabling the catalytic activity of caspase-9, the central
protease mediator of the intrinsic pathway. Owing to the
critical participation of mitochondria, this mechanism is also
known as the mitochondrial pathway [35].

The activation of extrinsic (mediated by caspase-8) and
intrinsic (mediated by caspase-9) pathways leads to activation
of caspase-3, caspase-6, and caspase-7, which favors the
cleavage of other proteins. A point of no return is achieved
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Figure 1:The three major pathways of cell death. Cells can be directed to different programmed cell death mechanisms depending on several
factors. In the left, the apoptosis pathway is represented with the characteristic cellular shrinkage and formation of the apoptotic bodies
without leakage of contents. In the middle, the necrotic pathway shows the cytosol and organelle swelling and rupture of plasma membrane
with subsequent leakage of cellular contents. In the right, autophagy is illustrated with the appearance of vacuoles, the autophagosome, and
its fusion with the lysosome, which ends in organelle digestion.

once the cell advances towards a critical state of destruction
that will end in cell death and give rise to structures called
apoptotic bodies.

2.2. Apoptosis in IBD. In the normal small intestine epithe-
lium, all cells but Paneth cells and intestinal stem cellsmigrate
from the base of the crypt to the villus tip where they are
shed into the lumen. Bullen et al. studied almost 15.000
villus sections to closely determine the exact mechanisms
behind cell shedding in the small intestine [43]. In this
study, apoptotic cells were identified using antibodies against
cleaved cytokeratin 18 and caspase-3. The authors found
that cells always underwent apoptosis before shedding and
that apoptotic bodies were never found in the epithelial
monolayer. Interestingly, Marchiando et al. observed that
morphologic changes typical of apoptosis were not apparent
until the nucleus of the shedding cell had moved above the
nuclei of adjacent cells, suggesting that, in the order of events,

shedding leads to apoptosis [44]. The authors also demon-
strated cleaved caspase-3 staining within the cytoplasm of
shedding cells, which was only detectable after cell shedding
was evident [44]. A broad-spectrum caspase inhibitor was
then used and it was shown that almost all shedding events
were blocked, indicating that caspase-3 cleavage is critical for
cell shedding to occur [44].

In contrast, it has been shown that mice lacking caspase-3
(and caspase-8 and FADD as well) display limited apoptotic
phenotype with no impact on gastrointestinal homeostasis
[45–48]. In this regard, the activity of caspase-independent
cell death pathways in the gut might be an important safe-
guard when caspase-mediated routes fail [32]. Interestingly,
the early event in the cell shedding process seems to be
the reorganization of ZO-1 and occludin which is accom-
panied by partial microvillus vesiculation and intracellular
organelle breakdown, progressing to complete vesiculation of
microvilli, nuclear condensation, and terminal contraction of
surrounding epithelia [44].
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Different from intestinal cell shedding, patterns of spon-
taneous apoptosis in the small and large intestine were
more extensively described mostly due to the enterprise of
the late Professor Christopher S. Potten [49]. Spontaneous
apoptotic cells are restricted to the stem cell region in the
small intestine and are seldom found in colonic crypts,
being distributed along the length of the crypt [50]. This
spontaneous apoptosis, which is p53-independent, has been
seen as part of the stem cell homeostasis [49]. In contrast,
Bcl-2 is minimally expressed in the small intestine, being
more strongly expressed at the base of colonic crypts [50].
Interestingly, differences in Bcl-2 expression and cell death
regulation can be accounted for the variability in tumor
prevalence between the small and large intestines [50].

In IBD, high levels of apoptosis have been observed in
the intestinal epithelium of patients. Our group investigated
apoptosis in distinct mucosal compartments and the expres-
sion of Fas/Fas ligand in the inflamed and noninflamed
intestinal mucosa of patients with IBD [51]. Colon specimens
from patients with UC and CD were analyzed for densities
and distribution of apoptotic cells determined by TUNEL
essay. Colonic epithelium from patients with UC showed
higher rates of apoptosis than controls, with no differences
regarding CD [51]. Iwamoto et al. also found that apoptotic
features were found in crypts of active UC, suggesting that
loss of epithelial cells occurs mainly by apoptosis in involved
intestine and also in adjacent uninvolved areas [52]. In
keeping with these findings, Hagiwara et al. observed that
the apoptotic indices in UC patients were significantly higher
than those in controls but similar to those in infectious
colitis patients [53]. Interestingly, apoptotic indices were
significantly higher in patients undergoing surgery compared
to those on medical treatment perhaps due to different
disease severities [53].

In proteomic analysis, data also point towards the asso-
ciation between apoptosis and IBD. In this regard, in a small
intestinal epithelial cell proteome study comparing CD, UC,
and controls, 47%of all changes in the epithelial cell proteome
were associated with signal transduction pathways, which
included proapoptotic mechanisms [54]. In this study, the
programmed cell death protein 8 (PDCD8) associated with
caspase-independent apoptosis was almost 8-fold upregu-
lated in inflamed versus noninflamed tissue regions in UC
patients, supporting that programmed cell deathmechanisms
contribute to conditions of chronic inflammation in the gut
[54]. As UC is mostly associated with a T helper type 2
(Th2) immune response, studies have suggested that Th2
cytokines might play a role in the enhanced apoptotic ratio
found in the intestinal epithelium of patients with UC. In
this regard, Rosen et al. observed that increased STAT6-
dependent levels of IL-13 in UC were associated with greater
epithelial cell apoptosis and barrier dysfunction and sug-
gested that inhibition of STAT6 might decrease apoptosis
in the epithelium of new-onset ulcerative colitis [55]. In
accordance with these findings, IL-13 had a dose-dependent
effect on transepithelial resistance of HT-29/B6 monolayers
due to an increased number of apoptotic cells with parallel
changes being observed in human samples [56].

Several animal studies further confirm the central role of
apoptosis in disease mechanisms in IBD. The knockout mice
for XBP1 (an endoplasmic reticulum (ER) stress-related tran-
scription factor), for instance, develop spontaneous enteritis
and are associated with Paneth cell dysfunction and subse-
quent apoptotic cell death [57].More importantly, in humans,
an association between UC and CD with XBP1 variants
was identified and replicated as susceptibility genetic factors
[57]. Likewise, NF-kappa B deficiency was shown to lead to
apoptosis of colonic epithelial cells with subsequent impaired
expression of antimicrobial peptides and translocation of
bacteria into the mucosa [58, 59]. Another example is the
conditional STAT3 knockout mice in intestinal epithelial
cells; these animals were found to be highly susceptible
to experimental colitis with important defects in epithelial
restitution and enhanced apoptosis [60]. It has been further
suggested that luminal nutrients and the microbiota can
also influence the apoptotic ratio in the intestinal epithelium
in mice. In this regard, luminal iron was shown to trigger
epithelial cell stress-associated apoptosis through changes
in microbial homeostasis [61]. In this study, in a CD-like
ileitis mouse model, mice developed severe inflammation of
the distal ileum with enhanced expression of proapoptotic
cleaved caspase-3. Interestingly, absence of luminal iron
sulfate reduced the expression of cleaved caspase-3 in the ileal
epithelium [61].

In CD, the percentage of apoptotic enterocytes was found
to be higher in involved compared to uninvolved areas and
normal intestine, with no significant difference being found
between uninvolved and normal mucosa [25].These findings
suggest that a greater apoptosis ratio in the intestinal epithe-
lium of CD is associated with intestinal inflammation, being
exclusively increased in inflamed areas [25]. Apoptosis was
also observed after infectionwith several intestinal pathogens
including Salmonella, Shigella, enteropathogenic Escherichia
coli, human immunodeficiency virus type 1, Helicobacter
pylori, and Cryptosporidium parvum [62]. In the case of
infectious involvement of the intestine, pyroptosis, another
form of cell death similar to apoptosis but less characterized,
was also observed [63, 64]. This type of cell death forms a
complex of proteins called inflammasome (or pyroptosome)
that requires caspase-1 and activates interleukin-1 beta (IL-
1𝛽) and IL-18, two types of proinflammatory cytokines, which
are predominant in T helper cells type 1 (Th1) immune
responses [65].

In the gut, inflammasome activation has been largely
associated with the nucleotide-binding-oligomerization-
domain- (NOD-) like receptors, which can sense bacterial
components and also noninfectious elements regarded as
damage-associated molecular pattern (DAMPS), molecules
that can initiate and perpetuate immune response (Figure 2)
[66]. In particular, NLRP3 is a NOD-like receptor that can
be triggered by bacterial constituents and also by synthetic
purine-like compounds, endogenous urate crystals, and
exogenous adenosine triphosphate (ATP) [67]. Furthermore,
it has been postulated that NLRP3 inflammasome activation
can be mediated by pannexin-1 and P2X

7
receptor, a member

of the ATP-activated P2X purinergic receptors family [68].
The P2X

7
receptors have been shown to function as danger
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Figure 2: Simplified cartoon of the integrated intestinal homeostatic mechanisms showing the interplay between cell death and innate
immunity in intestinal inflammation. Abnormal bacterial sensing throughNOD-like and TLR in epithelial cells and dendritic cells in addition
to Paneth cell dysfunction are greatly interrelatedwith the unfolded protein and autophagy pathways.The resulting production of chemokines
and cytokines and the activation of immune cells in the lamina propria determine further epithelial barrier defects, with additional exposure to
diverse intraluminal contents, enhanced by contact with damage-associatedmolecular patterns (DAMPs), in a self-perpetuating amplification
loop. Figure adapted from Nunes et al. [5].

sensors in immune cells and have been implicated in different
biological functions, including apoptosis and the production
and release of proinflammatory cytokines [69]. In addition,
ATP was shown to induce apoptosis and autophagy in
human epithelial cells, possibly via reactive oxygen species
production [27]. These data, in conjunction with recent
results from our group comprising experimental colitis [29]
and human IBD [28], support the involvement of P2X

7

receptors and the consequent inflammasome activation in
the pathogenesis of IBD.

When it comes to response to therapy, polymorphisms in
apoptosis genes were found to predict response to anti-TNF
therapy in luminal and fistulizing CD [70]. In a cohort of
287 consecutive patients treated with infliximab, Fas ligand
and caspase-9 genotypes predicted the outcomes after anti-
TNF therapy. Interestingly, concomitant thiopurine therapy
overcame the effect of unfavorable genotypes [70]. Regarding
the effects of anti-TNF therapy on epithelial cells apoptosis,
Zeissig et al. showed that, after anti-TNF treatment, a down-
regulation of epithelial apoptosis takes place in activeCD [71].
In this study, the epithelial apoptotic ratio was increased in
CD compared to controls and subsequently decreased after

anti-TNF was introduced [71]. Marini et al. observed that
anti-TNF therapy decreases the severity of murine CD-like
ileitis by abolition of intestinal epithelial cell apoptosis [72]. In
this study, a single injection of anti-TNF resulted in a marked
suppression of intestinal inflammation, with a significant
reduction in epithelial apoptosis. In contrast, an increase in
lamina propria mononuclear cell apoptosis was observed.
These results were confirmed in vivo by TUNEL staining,
demonstrating that anti-TNF therapy involves homeostatic
regulation of mucosal cell apoptosis [72].

3. Necrosis

3.1. Intracellular Machinery of Necrosis. Necrosis is derived
from the Greek word “nekros” and means corpse [73]. To
initiate the process of necrosis, the store of ATP is depleted by
PARP (an enzyme which participates in DNA repair), which
determines the shift from apoptotic to necrosis [74]. In the
necrotic process, cell and organelles swell and rupture with
subsequent leakage of cellular content to the microenviron-
ment causing an inflammatory response. Until recently, cells



6 BioMed Research International

were believed to passively undergo necrosis after external
environment changes such as intestinal ischemia, inflamma-
tion, significant alterations in temperature, pH, and mechan-
ical force [31, 75–77].

In the last two decades, however, several groups demon-
strated that cells could undergo a necrosis-like cell death
after TNF incubation [78–80]. Additional work described
that this particular form of programmed cell death was
triggered by death receptors and stimulated by caspase-
8 inhibition [81, 82]. Because of its fine regulation, this
cell death mechanism was posteriorly called necroptosis or
programmed necrosis [83]. Necroptosis is characterized by
the same morphologic features of necrosis as cell swelling,
mitochondria dysfunction, membrane permeabilization, and
release of cytoplasmic content, being also associated with
high mitochondrial reactive oxygen species (ROS) produc-
tion and it does not involve DNA fragmentation [84].

Necroptosis can be activated by lipopolysaccharides
(LPS), physical-chemical stress, ionizing radiation, calcium
overload, anticancer drugs, and DNA damage among other
stimuli [84]. Signaling can be initiated through activation of
members of the tumor necrosis factor (TNF) family and this
pathway has been shown to be mediated by kinases receptor-
interacting protein 1 (RIP1) and receptor-interacting protein
3 (RIP3) [47]. Upon induction of necrosis, RIP3 is recruited
to RIP1 to establish a necroptosis inducing protein complex
[47].

3.2. Necrosis in IBD. Cytotoxic bacteriawere shown to induce
necrosis in intestinal epithelial cells, which indicates that this
cellular death process has an important role in infectious
gastrointestinal diseases [85]. In CD, necrosis had been
observed in electron and light microscopic of the intestinal
epithelium [86]. In this study, samples from patients with
CD,UC, and controlswere evaluated. Patchy necrosiswithout
acute inflammation was observed exclusively in patients with
CD, indicating that this finding could have developed prior
to inflammation [86].

Recently, two independent groups assessed the role of
the programmed necrosis in IBD. Christoph Becker’s group
demonstrated the role of Caspase-8 in the regulation of
necroptosis in the intestinal epithelium [47]. In this study,
mice with a conditional deletion of caspase-8 in the intestinal
epithelium spontaneously developed terminal ileitis andwere
highly susceptible to DSS colitis [47]. These mice also lacked
Paneth cells, indicating dysregulated antimicrobial immune
cell functions in the intestinal epithelium. In addition, epithe-
lial cell death was induced by TNF-𝛼 and was associated
with increased expression of RIP3 [47].More importantly, the
authors identified high levels of RIP3 in human Paneth cells
and increased necroptosis in the terminal ileum of patients
with CD, suggesting a potential role of necroptosis in the
pathogenesis of this disease. In the other study, Welz et al.
showed that knockout mice for FADD in intestinal epithelial
cells spontaneously develop epithelial cell necrosis with loss
of Paneth cells and small and large bowel inflammation [48].
In addition, MYD88 deficiency or elimination of microbiota
prevented colon inflammation, indicating that toll-like recep-
tor signaling drives the pathology in these animals [48].

4. Autophagy

4.1. Intracellular Machinery of Autophagy. Autophagy is
derived from the Greek word that means “self-eating” [87].
This process ismainly known as the cellmechanism to recycle
its own nonessential organelles, which can be activated by
the lack of nutrients and growth factors in the extracellu-
lar microenvironment [88]. The characteristic structures of
autophagy are the vacuoles, slight chromatin condensation,
and the autophagosome, which fuses with lysosomes to digest
material into substrates [87, 89]. The autophagosome is best
visualized by electron microscopy and is composed of a dou-
ble membrane lysosomal-derived vesicle that catabolizes the
nonessentials or damaged particles and organelles [90]. The
intracellular machinery of autophagy is composed of a com-
plex of proteins formed by the class III phosphatidylinositol-
3-kinase (PI3K), also known as Vps34, and the Bcl-2 inter-
acting BH3 domain protein, Beclin-1 (BECN1). Both proteins
are required for the autophagosome formation [91]. Signaling
can be initiated through the mammalian target of rapamycin
(mTOR) pathway, a serine/threonine kinase that participates
in several mechanisms involved in cell survival.

Autophagy constitutes a self-degradation process, repre-
senting a critical mechanism for cytoprotection of eukaryotic
cells. However, in the context of cancer, autophagy appears
to play an ambiguous role. In association with apoptosis,
autophagy can act as a tumor suppressor. On the other hand,
defects in autophagy, in concert with abnormal apoptosis,
may trigger tumorigenesis and also therapeutic resistance
[92, 93].

4.2. Autophagy in IBD

4.2.1. ATG16L1. A link between IBD and autophagy was first
established when an association between CD and a single-
nucleotide polymorphism (SNP) in the autophagy-related 16-
like 1 gene (ATG16L1) was first reported by Hampe et al.
[94] and later replicated by the same group [95]. This SNP
(rs2241880) resulted in a threonine-to-alanine substitution
at the amino acid position 300 of the protein (T300A)
[94]. ATG16L1 is a central adaptor in the autophagosome
formation. The rs2241880 variant is commonly found in the
population, with 45–50% of healthy subjects carrying the
polymorphism [96].

In the first study by Hampe et al., using haplotype and
regression analysis, the authors found that the rs2241880 SNP
carried all disease risk exerted by the ATG16L1 locus asso-
ciated with CD in 3 European cohorts of CD patients [94].
Importantly, this association was not observed in a German
cohort of UC cases, suggesting that the underlying biological
process was specific to CD [94]. In their second study, the
authors found that only individuals who were homozygous
for the T300A-encoding variant of ATG16L1 were under
higher risk to develop CD, suggesting a recessive model for
the action of ATG16L1 [95]. In addition, a higher frequency
of the rs2241880 allele was found in patients with ileum
involvement, being the association with small bowel disease
still significant even after adjustment for CARD15/NOD2
mutations [95]. This association with ileal involvement was
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confirmed by some [97] and could not be replicated by others
[98]. A highest frequency of the rs2241880 SNP was also
observed in individuals with childhood-onset CD [95] but
others argue that these differences are driven by variations in
disease location between late- and early-onset CD [97].

After the association between ATG16L1 polymorphisms
with the development of CD was established, efforts were
made to determine disease-related mechanisms, which could
explain this specific susceptibility. Saitoh et al. gener-
ated ATG16L1 mutant mice and examined its function in
autophagosome formation and the regulation of immune
responses [99]. ATG16L1 mutant mice expressed deleted
forms of the protein lacking the entire coiled-coil domain
[99]. Most ATG16L1-deficient mice died within 1 day, indi-
cating that the protein was required for neonatal survival
[99]. In addition, in mouse embryonic fibroblasts (MEF)
from ATG16L1-deficient mice, formation of autophagosomes
under starved conditions was not observed, suggesting that
ATG16L1 was essentially required for autophagy [99]. Fur-
thermore, the authors examined the impact of ATG16L1 on
cytokine production in response to lipopolysaccharide (LPS),
showing that IL-1𝛽 and IL-18 were highly upregulated in
ATG16L1-deficient cells compared with wild-type after toll-
like receptor stimulus [99]. Cleaved caspase-1, an activated
form that mediates processing of IL-1𝛽, IL-18, and apop-
tosis, was also detected in the supernatants of ATG16L1-
deficient macrophages following LPS stimulation. Impor-
tantly, these results indicated that toll-like receptor signaling
is only associated with the formation of autophagosomes in
nutrient-deprivedmacrophages [99]. In vivo, Saitoh et al. also
observed that ATG16L1-deficiency exacerbates inflammation
in DSS-induced colitis [99]. Chimeric mice with ATG16L1-
deficient hematopoietic cells died due to acuteweight loss and
severe inflammation in the distal colon [99]. In these mice,
serum levels of the proinflammatory cytokines IL-1𝛽 and IL-
18 were significantly elevated and their mortality rate was
improved after injection of neutralizing antibodies for these
cytokines, indicating that autophagy might play a protective
role in massive inflammation during acute colitis [99].

Cadwell et al. were the first to show that the ATFG16L1
protein was critical for the biology of Paneth cells [100]. In
mice, ATG16L1- and ATG5-deficient Paneth cells exhibited
notable abnormalities in the exocytosis pathway. In addition,
ATG16L1-deficient Paneth cells had increased expression
of genes involved in the lipid metabolism of acute phase
reactants and adipocytokines [100]. In addition, CD patients
who were homozygous for the ATG16L1 risk allele dis-
played Paneth cell abnormalities similar to those observed
in ATFG16L1-deficient mice and expressed also increased
levels of leptin [100]. Later, the same group also showed
that ATFG16L1 deficiency alone was not enough for the
development of Paneth cell abnormalities [101]. In this regard,
mice housed at an enhanced barrier facility were similar to
wild-type controls, failing to display the aberrant phenotype
[101]. These results suggest that Paneth cell abnormalities
associated with ATFG16L1 deficiency require an exogenous
factor displayed in the microbiota of mice sitting at conven-
tional animal facilities [101]. In the intestine, further studies
also suggested that defects in the ATFG16L1 autophagy

pathway are important in the presence of bacteria. Cooney
et al. observed that NOD2 triggering induces autophagy in
dendritic cells, which required ATG16L1, and that NOD2-
mediated autophagywas necessary for CD4+T cell responses
in dendritic cells [102]. The relationship between NOD2
and ATG16L1 is not solely related to autophagy. Sorbara
et al. have shown that knockdown of ATG16L1 expression
specifically enhances NOD-driven cytokine production and
that these findings also occurred in cells with an autophagy-
incompetent truncated form of ATG16L1 [103].

Others also suggested that the impact of the ATG16L1
risk allele on CD might not be exclusively related to
abnormalities in autophagy. Fujita et al., for instance,
have shown that the T300A mutant has little impact on
autophagy against Salmonella, proposing that this variant
is differentially involved in CD and canonical autophagy
[104]. In keeping with these findings, Messer el al. found that
ATG16L1-deficient cells were resistant to cellular invasion
by Salmonella [105]. Conway et al., however, demonstrated
that autophagy was induced in small intestine and cecum of
mice after Salmonella infection and this required ATG16L1
[106]. In this study, Salmonella colocalized with microtubule-
associated protein 1 light chain 3𝛽 in the intestinal epithelium
of control mice but not in mice lacking ATG16L1 in epithelial
cells [106]. Consistent with these findings, these transgenic
mice had increased inflammation and systemic translocation
of bacteria compared with control animals. In this regard,
autophagy is important for the maintenance of cellular
homeostasis after infection, participating in the clearance of
pathogens found in the ileum of CD patients [107].

Murthy et al. filled the gaps between autophagy,
apoptosis, and inflammation, suggesting that the T300A
variant causes sensitization to caspase-3-mediated cleavage
of ATF16L1 [108]. The authors demonstrated that caspase-3
activation leads to accelerated degradation of ATG16L1 in the
presence of the T300A variant. They propose that, in healthy
intestine, the turnover of ATG16L1 is dependent on basal
caspase-3 activity; in the presence of T300A, however, the
persistence of apoptotic stimuli enhances ATG16L1 cleavage,
triggering cytokine production and inflammation [108].
More recently, an association between autophagy and the
ER stress response gene Xbp1 was shown to synergistically
prevent ileal inflammation [109]. In this regard, Arthur
Kaser’s group has shown that Xbp1 loss in intestinal epithelial
cells induced autophagy, most notably in Paneth cells, as a
compensatory mechanism in intestinal epithelial cells upon
sustained ER stress [109]. Mice with impaired ER stress sig-
naling and autophagy developed transmural inflammation,
characterized by acute and chronic inflammation extending
to the muscularis propria and serosa, as fistulizing CD. This
phenotype displays the important role of autophagy in the
defense against ER stress in the intestinal epithelium [109].
This model is in keeping with recent data showing that
ATG16L1 T300A polymorphisms define a specific subtype of
patients with CD, characterized by Paneth cell ER stress even
during quiescent disease [110].

4.2.2. IRGM. Genome-wide association studies identified the
autophagy gene IRGM on chromosome 5q33.1 to be strongly
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associated with CD [16] and to a lesser extent with UC [15,
111].The IRGM gene belongs to immunity-related GTPases, a
family of genes inmammalian species induced by interferons,
though the human form seems to lack interferon-responsive
elements [112, 113]. Two polymorphisms of IRGM have been
strongly associatedwithCD, a silent tag-SNP variationwithin
the coding region (c.313C>T) and a 20 kb deletion upstream
of the IRGM gene [113–116]. In this regard, the coding-
sequence variation was not thought to be the source of this
association due to the absence of changes in IRGM protein
structure [114, 115].

Brest et al. subsequently suggested that this synonymous
variant (c.313C>T) was responsible for a disruption in a
miRNA-binding site in individuals with the risk haplo-
type (T), resulting in lack of miRNA regulation in these
patients [117]. In this regard, in subjects with CD, colonic
epithelial cells have striking decreased IRGM levels only
in patients homozygous for the protective IRGM haplotype
(C), being the expression more reduced in inflamed tissue
compared to involved mucosa in remission [117, 118]. These
data suggest that lack of miRNA regulation and consequent
overexpression of IRGM secondary to the risk allele (T)
contribute to the association of this region with CD [118].
Importantly, overexpression of IRGM was associated with
lower autophagy efficacy [117]. The other polymorphism, the
20 kb deletion upstream of IRGM, was first identified by
McCarroll et al. in perfect linkage disequilibrium with the
most strongly CD-associated SNP causing IRGM to segre-
gate in a risk sequence (deletion present) and a protective
sequence (deletion not present) [114]. Functionally, in this
study, cells lacking IRGM have decreased proportion of
internalized bacteria by autophagosome and overexpression
of thismolecule causes an increase in autophagy activity [114].
In summary, the current evidence suggests that differences
in miRNA regulation or presence/absence of the upstream
deletion sequence can affect IRGM expression leading to
autophagy dysfunction.

Several studies tried to correlate variants in the IRGM
gene with specific CD clinical features. In this regard, a large
German study assessed the influence of the IRGM SNPs on
disease phenotype, also evaluating interactions with other
IBD susceptibility genes, particularly ATG16L1 [119]. In this
study, based on theMontreal classification of IBD, none of the
IRGMSNPs investigatedwere associatedwith specific disease
features in CD or UC. In contrast, other studies found some
associations between IRGM SNPs and clinical outcomes.
Accordingly, IRGM SNPs were associated with fistulizing
CD and perianal fistulas in a large cohort of Italian patients
[120], with ileal involvement in subjects in New Zealand
[121] and in Portugal [122] and with ileocolonic resection in
a small cohort of American patients [123]. In addition, the
IRGM CD risk variant was also associated with increased
antiflagellin seropositivity [124] and a positive response to
biologic therapy [122].

5. Conclusion

The representation of the different cell death pathways as
individual and isolated mechanisms is entirely schematic

and it does not reflect reality. A large and growing body of
evidence has demonstrated that there is a dynamic crosstalk
and much redundancy among different types of cell death
mechanisms [125–127]. In this regard, it has been shown, for
instance, that TNF-𝛼 treatment can induce either apoptosis or
necrosis depending on the targeted cell type, environmental
conditions, and magnitude of the cellular insult [125]. In
addition, the death receptors FAS, TNFR2, TRAILR1, and
TRAILR2, which are characteristically associated with apop-
tosis, might also induce necroptosis after caspase blockage
or starvation [125]. Even the induction of p53 transcription
and the Bcl-2 family of proteins have been associated with
necrosis, being BAX and BAK required for mitochondrial
dysfunction in response to necroptotic agonists [128]. As
another example of this complex interplay among cell death
pathways, studies have shown that apoptosis and autophagy
are activated in response to metabolic stress and that both
autophagy and apoptosis are induced in response to ER stress,
with the increase in autophagy being a contributing factor to
ER-induced apoptosis [129].

In the IBD field, nevertheless, most studies evaluate these
pathways in the context of bowel inflammation as isolated
cell death mechanisms. In the case of autophagy, at least
two different genes were found to be related to IBD through
genome-wide association studies [16]. In mechanistic studies
in vivo (both humans and mice) and in vitro, with extensive
use of novel animal models, potential roles for apoptosis and
necroptosis in the pathogenesis of these diseases have been
also suggested. Recent studies point towards the existence of
a complex crosstalk between autophagy/apoptosis, microbe
sensing, and enhanced ER stress in the epithelium in the
pathogenesis of CD [108]. Exciting new data indicate that the
ileal involvement in CD might be related to a disturbance
in Paneth cell function, establishing a link between innate
immunity, ER stress, and cell death [108, 109]. In addition,
necroptosis, a relatively novel programmed necrosis-like
pathway associated with TNF receptor activation, also seems
to play a role in the pathogenesis of CD and in specific
experimental models of intestinal inflammation [47, 48].
Moreover, a stress-inflammation amplification loopmediated
by DAMPs has been directly associated with cell death in the
intestinal mucosa in both experimental models and human
IBD [28, 29]. The cell death history in IBD seems to be an
interesting example of data coming from huge hypothesis-
free GWAS studies leading to hypothesis-driven mechanistic
discoveries.
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“Association of ATG16L1 and IRGMgenes polymorphisms with
inflammatory bowel disease: a meta-analysis approach,” Genes
and Immunity, vol. 10, no. 4, pp. 356–364, 2009.

[112] S. B. Singh, A. S. Davis, G. A. Taylor, and V. Deretic, “Human
IRGM induces autophagy to eliminate intracellular mycobacte-
ria,” Science, vol. 313, no. 5792, pp. 1438–1441, 2006.

[113] H. T. T. Nguyen, P. Lapaquette, M. Bringer, and A. Darfeuille-
Michaud, “Autophagy and crohn’s disease,” Journal of Innate
Immunity, vol. 5, no. 5, pp. 434–443, 2013.

[114] S. A. McCarroll, A. Huett, P. Kuballa et al., “Deletion poly-
morphism upstream of IRGM associated with altered IRGM
expression and Crohn’s disease,” Nature Genetics, vol. 40, no. 9,
pp. 1107–1112, 2008.

[115] M. Parkes, J. C. Barrett, N. J. Prescott et al., “Sequence variants
in the autophagy gene IRGM andmultiple other replicating loci
contribute to Crohn’s disease susceptibility,” Nature Genetics,
vol. 39, no. 7, pp. 830–832, 2007.

[116] P. Brest, P. Lapaquette, B. Mograbi, A. Darfeuille-Michaud, and
P. Hofman, “Risk predisposition for Crohn disease: a “ménage
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