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Mesenchymal stem/progenitor cells (MSCs) are key players in regenerative medicine, relying principally on their
differentiation/regeneration potential, immunomodulatory properties, paracrine effects, and potent homing ability with
minimal if any ethical concerns. Even though multiple preclinical and clinical studies have demonstrated remarkable
properties for MSCs, the clinical applicability of MSC-based therapies is still questionable. Several challenges exist that
critically hinder a successful clinical translation of MSC-based therapies, including but not limited to heterogeneity of their
populations, variability in their quality and quantity, donor-related factors, discrepancies in protocols for isolation, in vitro
expansion and premodification, and variability in methods of cell delivery, dosing, and cell homing. Alterations of MSC
viability, proliferation, properties, and/or function are also affected by various drugs and chemicals. Moreover, significant
safety concerns exist due to possible teratogenic/neoplastic potential and transmission of infectious diseases. Through the
current review, we aim to highlight the major challenges facing MSCs’ human clinical translation and shed light on the
undergoing strategies to overcome them.

1. Introduction

Tissue engineering combines stem/progenitor cells with
proper signaling molecules to be seeded on biocompatible
scaffolds in the presence of physical stimuli to function in
place of or to support regeneration of specific tissues or
organs [1–3]. Mesenchymal stem/progenitor cells (MSCs)
are key players in regenerative medicine, owing to their
remarkable differentiation and regeneration potentials in
addition to their immunomodulatory properties, paracrine
effect [4, 5], and potent homing ability with no ethical con-
cerns [6–8]. MSCs are multipotent cells, hallmarked by their
ability to differentiate into a variety of cell types upon stimu-
lation. They should at least express clusters of differentiation
(CD) CD105, CD90, and CD73 and lack the expression of

CD11b, CD79a, CD19, and human leukocyte antigen-DR
isotype (HLA-DR) [9]. Interestingly, MSCs uniquely display
low immunogenicity, lack the expression of the major histo-
compatibility complex- (MHC-) II, express low levels of
MHC-I, and are not inductive to lymphocytes, which reduces
their chances of eliciting an immune response upon trans-
plantation [10]. MSCs have been successfully isolated from
most tissues of the body, including bone marrow, dental tis-
sues, adipose tissues, skin, liver, lung, umbilical cord, cord
blood, and placenta [11–18]. Even though clinical studies
have demonstrated remarkable properties for MSCs [19,
20], reproducible, cost-efficient, standardized, and mass pro-
duction of these cells and minimization of their populations’
heterogeneity are important issues that are yet to be
addressed, to allow for a human clinical translational therapy
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[21]. Through the current review, we aim to highlight the
major obstacles facing MSCs’ human clinical translation
and how they can be overcome.

2. Donor-Related Factors

MSCs’ quality, quantity, and characteristics rely upon a vari-
ety of donor-related factors [22], including body mass index
[23, 24], age [25, 26], gender [27], and systemic and autoim-
mune diseases [28–30]. The variability of MSC markers’
expression in correlation with their tissue source is presented
in Table 1.

2.1. Donor’s Obesity and MSCs. Obesity could impact MSCs’
characteristics and regenerative potential. Comparing adi-
pose stem/progenitor cells (ASCs) isolated from obese and
nonobese patients, a significant decrease in cellular prolifera-
tion [23, 31] and colony formation [23] of ASCs obtained
from obese patients was evident. Moreover, ASCs from obese
patients showed altered expression of cell surface markers,
with significantly decreased expression of CD54, CD66,
CD90 [23], and CD29 [31] and an increased expression of
CD106 and HLA II [31], in addition to significantly lower
osteogenic [23, 32] and adipogenic differentiation potentials
[23], as compared to ASCs obtained from nonobese patients.
This was attributed to the different microenvironment asso-
ciated with obesity, including adipose tissues’ hypoxia, which
results in increased expression of proinflammatory cyto-
kines. Obesity-associated adipose tissue inflammation could
influence ASC multilineage differentiation [23, 33]. More-
over, obesity can alter ASC stemness and expression of
stem/progenitor cell-related genes (Oct4, Sal4, Sox15, KLF4,
and BMI1), aside from influencing their senescence and
secretome profiles [18, 24]. Additionally, obesity could
diminish ASCs’ immunomodulatory properties [28]. ASCs
derived from obese patients were further associated with
upregulation in the expression of the inflammatory cytokines
interleukin- (IL-) 1β, IL-6, tumor necrosis factor-alpha
(TNF-α), and monocyte chemoattractant protein-1 (MCP-
1) as compared to ASCs acquired from nonobese patients
[28]. These alterations were hypothesized to be mediated
through activation of protein kinase C delta expression [24].

The therapeutic potential of ASCs acquired from obese
and nonobese patients was explored in mice with an experi-
mental autoimmune encephalomyelitis multiple sclerosis
model. ASCs from obese patients showed an increased
expression of proinflammatory cytokines as well as stimu-
lated the proliferation and differentiation of T-cells, resulting
in a failed improvement in the multiple sclerosis-associated
central nervous system inflammation disease model, indicat-
ing that obesity can negatively impact the anti-inflammatory
and immune-modulatory ability of ASCs [34]. ASCs from
obese patients further demonstrated significantly reduced
bone formation in vivo upon implantation in critical-size cal-
varial defects in mice, as compared to ASCs from nonobese
individuals [32].

2.2. Donor’s Age and MSCs. MSCs’ number and regenerative
potential are further proposed to be largely influenced by the

donor’s age. Rats demonstrated an age-related decrease in
bone marrow mesenchymal stem/progenitor cell (BMSC)
yield [26, 35] and proliferation rate as well as a significant
reduction in their osteogenic capacity in vitro [26] and
in vivo following subcutaneous implantation [36]. Likewise,
human BMSCs and ASCs displayed an age-related increase
in cellular senescence (apoptosis) and expression of p53 gene
[25] in addition to a decrease in the cellular proliferation rate
[25, 37] and osteogenic [25, 37–40] and chondrogenic differ-
entiation in vitro [37, 41], with an increase in adipogenic
potential, reflected clinically by an increased adipose deposi-
tion in the bone marrow [40]. Comparing human MSCs
acquired from young and old donors, an age-related decrease
in cellular proliferation and increased apoptosis, attributed to
p53/p21 and p53/BAX pathway activation, respectively, was
observed. In addition, an increase in cells positive for
senescence-associated β-galactosidase and a decrease in oste-
ogenic differentiation, alkaline phosphatase (ALP), Runt-
related transcription factor-2 (RUNX-2), Osterix, bone sialo-
protein, and osteocalcin expressions was observed. This was
attributed to an upregulation of p53 gene expression, which
negatively correlates with osteoblastogenesis [25].

Interestingly, nonadherent, less differentiated rodents’
BMSCs in suspension cultures appeared to be more resistant
to the effect of aging in vitro [42]. Nonadherent cells showed
elevated expression of pluripotency markers Nanog, Oct4,
and Sox2. Further, the generation of colonies by nonadherent
MSCs collected from old rats was not reduced as compared to
young rats [42].

In addition to epigenetic changes leading to cellular
senescence, aging of MSCs is believed to be further caused
by DNA damage, telomere shortening, and accumulation
of oxidative stress. All these events could in isolation or
combined lead to changes in MSC cellular functions includ-
ing proliferation and differentiation [43–46]. Reactive oxy-
gen species (ROS) accumulates intracellularly in MSCs
with age. Increasing levels of ROS subsequently cause
oxidation of cellular components, senescence, and DNA
damage, negatively influencing the differentiation ability
of MSCs [47, 48]. Aging is further associated with dysregu-
lation in micro-RNAs (miRNAs), the noncoding RNA
regulating gene expression [43]. In this context, aging
processes were observed to be accompanied by a decline
in miR-27a associated with osteogenic differentiation [49]
as well as an upregulation in miR-335 [50], miR-199b-5p
[51], miR-31a-5p [52], and miR-29c-3p [53] associated
with increased senescence, decreased proliferation, and
osteogenic differentiation [50–53].

Senescent MSCs display changes in expression of genes
associated with proliferation, signaling, function, and main-
tenance of MSCs, with an age-related loss in MSC response
to biological signals. In addition to age-related change in
DNAmethylation, a reduction in expression of the transcrip-
tion factors ALX1, PITX2, HOXB6, HOXB7, and IRF6 and
increased expression of TBX18 and FOXP2 involved in cellu-
lar senescence, disruption in mitochondrial function, and
reduction in differentiation ability of MSCs have been
reported [51]. As continuous shortening of the telomeres
results in reduced proliferation and differentiation, BMSCs
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transduced with telomerase gene maintained proliferation
and differentiation potentials in vitro [54].

The effect of aging on MSCs can also be ascribed to age-
associated inflammation, as levels of inflammatory cytokines
especially TNF-α tend to increase with age [55]. TNF-α at
high concentrations exhibited a capacity to induce MSC apo-
ptosis in a dose-dependent manner. Additionally, its amal-
gamation with IFN-γ considerably hastens this procedure,
by switching the signaling of an IFN-γ-activated nonapopto-
tic form of TNF receptor superfamily member 6 (Fas) to a
caspase-3- and caspase-8-associated proapoptotic cascade,
accompanied by a reduction in intracellular NF-κB levels,
apoptotic pathway activation, and culmination of cell death
[56]. Excessive inflammation therefore appears to drive cellu-
lar senescence.

Conversely, other studies concurred that the aging pro-
cess had an insignificant effect on ASC senescence and regen-
erative capacity [57, 58]. Intradonor comparison of ASCs
collected from different donors and cryopreserved for 7 to
12 years with ASCs isolated from the same donor at a later
time-point revealed a non-age-related decrease in the num-
ber of progenitor cells or proliferation rate. Additionally, cells
from different timelines were capable of adipogenic, osteo-
genic, and chondrogenic differentiation, further denoting
that the regenerative capacity of ASCs could be preserved
with age [57]. Interestingly, human dental pulp MSCs col-
lected from different age groups further displayed remarkable
proliferative and differentiation abilities into bone, endothe-
lial, glial, and neuronal cells during early passages in vitro
and a potent regenerative capacity upon loading on scaffolds
and implantation in rats’ calvarial defects in vivo [59].
However, periodontal ligament-derived MSCs showed an
age-related decrease in cell proliferation and adipogenic
and osteogenic differentiation [60].

Thus, ASCs [57, 58] and dental pulp MSCs [59] could
offer a convenient alternative to BMSCs for regenerative
purposes in aging patients. Still, MSCs’ banking from a
younger age population and allogenic MSC transplantation
could represent beneficial alternatives to overcome age-
associated depletion in the number and regenerative
capacity of MSCs [58, 61].

2.3. Donor’s Gender and MSCs. The effect of gender on MSC
regenerative abilities is still disputable. Female rats demon-
strated a lower number of bone marrow progenitor cells
and significantly decreased osteogenic and adipogenic poten-
tials as compared to male rats [35]. On the contrary, BMSCs
isolated from female rhesus monkeys demonstrated a higher
neurogenic potential as compared to those isolated from
male rhesus monkeys [27].

2.4. Donor’s Systemic Diseases and MSCs. MSCs from
patients with systemic diseases, including type II diabetes
mellitus [28, 62], rheumatoid arthritis [29], and osteoarthritis
[30], and from cows suffering from endometritis [63] have
demonstrated altered cellular functions.

ASCs acquired from obese donors with type II diabetes
mellitus showed a significant upregulation of their expression
of the immune modulators IL-1β, IL-6, TNF-α, and MCP-1

as well as inflammatory regulators, including NLRP1,
NLRP3, and caspase-1. They further demonstrated less abil-
ity to suppress T- and B-cell proliferation and were associ-
ated with diminished activation of the immunomodulatory
M2 macrophage phenotype, indicating that obesity and type
II diabetes are associated with a reduction in the immuno-
suppressive effect of ASCs [28]. Concomitantly, culturing
ASCs isolated from both diabetic and nondiabetic patients
at high glucose concentrations significantly decreased cellu-
lar proliferation, colony-forming abilities, and osteogenic
and chondrogenic differentiation as well as additionally
increased senescence, apoptosis, and adipogenic differentia-
tion, with a more pronounced effect observed on diabetic
ASCs [64]. Type II diabetes-associated alteration in MSCs
was attributed to diabetic hyperglycemia, chronic systemic
inflammation, increase in proinflammatory cytokines [65,
66], and accumulation of advanced glycation end products
(AGEs) [66]. Accumulation of AGEs results in ROS produc-
tion and increased oxidative stresses [65, 67].

Bone marrow MSCs isolated from patients with rheuma-
toid arthritis displayed a decreased proliferative and migra-
tion activity and a reduced ability to inhibit T-helper 17 cell
polarization, responsible for maintaining chronic inflamma-
tion [29]. Similarly, those isolated from patients with osteoar-
thritis showed reduced proliferative, chondrogenic, and
adipogenic potentials [30].

A significant improvement in cardiac functions with a
significant decrease in myocardial apoptosis was detected in
a coronary artery disease rat model following transplantation
of MSCs isolated from patients suffering from coronary
artery disease as compared to those isolated from patients
suffering from coronary artery disease and diabetes [62].
Endometrial MSCs isolated from cows with endometritis
showed a decrease in colony formation and adipogenic dif-
ferentiation. Additionally, healthy cows’ endometrial MSCs
exposed to inflammatory mediator prostaglandin E2
in vitro displayed alteration in expression of 1127 genes
related to cellular biological processes [63].

2.5. Inflammation and MSCs. MSCs have well-documented
immunomodulatory properties. Yet, MSCs derived from
chronic inflammatory environment could display different
altered immunological characteristics [68]. TNF-α impact on
MSCs depends upon dosage and exposure duration. Short-
term TNF-α treatment has displayed a dose-dependent effect
on murine MSCs in vitro. Lower doses increased osteogenic
differentiation while higher doses negatively impacted MSCs
and reduced osteogenic differentiation via the NF-κB signaling
pathway. On contrary, long-term treatment inhibited osteo-
genesis at both dosage regimens [69].

MSCs isolated from human calcified aortic aneurysm
with chronic inflammation displayed strong osteogenic
differentiation and mineralization in addition to pathologic
vasculogenesis. Short-term culturing of MSCs isolated from
a healthy aorta for 24 hours with TNF-α or IL-1β enhanced
their osteogenic differentiation in vitro [70]. Similarly, MSCs
injected into a mouse model of collagen-induced arthritis
exhibiting chronic inflammatory environment were associ-
ated with dysregulation in their immunomodulatory
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function. Additionally, MSC pretreatment with TNF-α
inhibited their ability to suppress T-cell proliferation
in vitro, demonstrating the ability of TNF-α to inhibit MSC
immunomodulation [71].

Periodontal ligament stem/progenitor cells derived from
inflamed tissues displayed altered characteristics, with higher
proliferation and migration tendency as compared to MSCs
derived from healthy periodontal ligaments. They further
displayed reduced immunomodulatory properties in addi-
tion to downregulation in osteogenesis-related genes (osteo-
calcin, RUNX-2, and ALP), while adipogenic differentiation
was maintained [72, 73]. Coculturing of periodontal ligament
stem/progenitor cells derived from inflamed tissues with
peripheral blood mononuclear cells showed reduced ability
to inhibit T-cell proliferation, T-helper 17 differentiation,
and IL-17 secretion [74]. Treatment of human periodontal
ligament stem/progenitor cells during osteogenic differentia-
tion with high doses of TNF-α was found to be associated
with downregulation in ALP, bone sialoprotein, osteocalcin,
and RUNX-2 expression. The indicated inhibition of osteo-
genic potential denotes the negative effect of inflammatory
cytokines in high concentration on osteogenic differentia-
tion. On the other hand, BMSCs were more resistant to the
inhibitory effect of TNF-α [75].

MSCs isolated from healthy buccal mucosa showed a
higher proliferation rate and higher ability to suppress T-
cell proliferation as compared to MSCs isolated from oral
lichen planus lesions. MSCs harvested from lichen planus
lesions further showed higher adipogenic tendency [76].

Stem/progenitor cells from healthy pulps showed a
higher initial proliferation rate, as well as stronger adipo-
genic, chondrogenic, and osteogenic potentials, than stem/-
progenitor cells from inflamed dental pulp tissues. They
also displayed higher expression of cell surface markers
CD73, CD90, and CD166 in addition to HLA-G, involved
in immunomodulation as well as stronger suppression of T-
cell proliferation as compared to dental MSCs derived from
inflamed pulp [77]. Further, T-lymphocytes cultured with
MSCs derived from inflamed dental pulps secreted a higher
amount of IL-2, TNF-α, and TNF-β [78].

Similarly, umbilical cord-MSCs treated with either inter-
feron gamma (IFN-γ), TNF-α, IL-1β, IL-2, or IL-6 for 3 or 7
days presented altered phenotype and function. INF-γ, TNF-
α, and IL-1β upregulated the expression of CD54, while
TNF-α upregulated CD106 expression. TNF-α and IL-1β
reduced the proliferation rate, while IL-6 stimulated cell
migration. All inflammatory cytokines were reported to
inhibit the adipogenic capacity, while chondrogenic and
osteogenic differentiation capacity was enhanced by TNF-α
and IL-1β coculture. Additionally, indoleamine 2,3 dioxy-
genase (IDO) was inhibited by TNF-α [79].

2.6. MSC Preactivation with Inflammatory Mediators. MSC
preactivation (licensing or preconditioning) involves pre-
treatment of MSCs with inflammatory mediators including
IFN-γ, IL-1β, and TNF-α to enhance their immunosuppres-
sive properties and therefore increase immune-tolerance,
following allogenic stem/progenitor cell transplantation
[80–82].

BMSCs preconditioned with IFN-γ for 48 hours showed
upregulated HLA-DR and IDO expression. Activation of
MSCs was associated with upregulation of HLA class II and
programmed death-ligand 1, which induces inhibition of T-
helper cells. Activated MSCs also inhibited HLA-
mismatched T-helper cell proliferation and demonstrated
the ability to take up and process antigens [83]. Equine
BMSCs exposed to inflammatory stimulation via precondi-
tioning with TNF-α, IFN-γ, or inflamed synovial fluid
revealed downregulated expression of migration-related
genes with upregulation in adhesion-related molecules and
MHC-I gene expression. TNF-α and IFN-γ were associated
with dose-dependently increased expression of immunoreg-
ulatory molecules responsible for T-cell suppression, includ-
ing cyclooxygenase 2, inducible nitric oxide synthase, IDO,
and IL-6, in addition to upregulation of MHC-II expression
[84]. Similarly, activation of ASCs with IFN-γ enhanced their
ability to inhibit T-cell proliferation.

However, pretreatment with TNF-α, IL-1β, IL-17, tis-
sue growth factor-β, or stromal cell-derived factor-1α did
not show similar effect [85]. Treatment of MSCs from
healthy buccal mucosa with IFN-γ was associated with
the initial increase in proliferation followed by reduction
in the rate of proliferation, following 12 days of IFN-γ
treatment. Furthermore, IFN-γ treatment promoted
MSC-mediated T-cell proliferation inhibition via IDO
activity [76]. Likewise, IDO expression was upregulated
upon stimulation of human periodontal ligament stem/-
progenitor cells by IFN-γ in vitro [86]. MSCs preactivated
with IFN-γ prior to cryopreservation effectively blocked T-
cell proliferation and secretion of T-helper cells promoting
cytokines [87].

Preconditioning of human MSCs with IL-17 [88], IL-1α,
or IL-1β [89] was also associated with a positive outcome.
IL-17 effectively enhanced MSC immunomodulatory func-
tions without increasing MHC-I or MHC-II [88]. Precon-
ditioning of human BMSCs with IL-1α or IL-1β for 24
hours demonstrated an increase in the secretion of granu-
locyte colony-stimulating factor, which was not observed
upon preconditioning with TNF-α or IFN-γ [89].

Thus, it can be concluded that the surrounding environ-
ment canmodulate characteristics and immune-related func-
tions of MSCs as it can either promote anti-inflammatory or
proinflammatory reaction of MSCs, implicating them in the
pathogenesis of multiple disorders and reducing their regen-
erative applications. The severity of inflammation, nature,
dose, and duration of the proinflammatory cytokines govern
and direct MSC reaction. Further, the differentiation capacity
of MSCs under inflammatory challenge is highly influenced
by the original tissue source and microenvironment of donor
tissue [90–96].

3. Cell Source

Heterogeneity of cell sources is a further challenge for
clinical applications of MSCs. Cell source heterogeneity is
related to the donor (whether autograft or allograft) and
the organ/tissue selected for MSC isolation [21].
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3.1. Autogenic versus Allogenic Cell Sources. MSCs can be
either acquired from the same recipient (autogenic graft) or
another donor within the same species (allogenic graft)
[97]. Autogenous grafting is a safe disease-free approach in
MSCs’ therapy [98]. However, many variables could affect
autogenous cell grafting, including donors’ age [25, 26], sex
[27], body mass index [23, 24], and systemic autoimmune
and inflammatory diseases [28–30] (discussed above), mak-
ing it difficult to obtain a sufficient number of healthy MSCs
without ex vivo expansion [99, 100]. The process of isolation
of autogenous MSCs can further be costly and time-consum-
ing, limiting its use in acute conditions.

Several studies endorse the utilization of allogenic
MSCs instead of autogenic ones for regenerative purposes
[101–103]. The low immunogenicity of MSCs encouraged
the use of allogenic MSCs as they are less likely to elicit
an immune reaction. MSCs are characterized by low
expression of MHC-I and lack of expression of MHC-II
as well as B- and T-cell stimulating antigens CD40,
CD80, CD86, B7-1, and B7-2 [104–106]. Loading-
induced cartilage defects in rabbits’ femoral condyles with
either allogenic or autogenic BMSCs were associated with
an effective repair of these defects [107]. Furthermore,
autogenous or allogenic ovine BMSCs loaded on scaffolds,
following osteogenic differentiation and implanted in an
ovine critical-size segmental defect model, showed positive
results in bone regeneration, with no significant differences
observed between them [108]. Similarly, positive results
were attained upon allogenic MSC intra-articular injection
in horses [109]. Transplantation of allogenic MSCs further
showed promising results in neurogenic regeneration in a
canine spinal cord injury model [110] and regeneration
in a muscular dystrophy hamster model [111]. Random-
ized clinical trials demonstrated a potent regenerative
potential of allogenic MSC administration on cardiac
[101, 102, 112], hepatic [103], and cartilage [113] tissues
with no adverse effects. Patients suffering from left ventric-
ular dysfunction were randomly assigned to receive either
autogenic or allogenic MSCs via transendocardial injec-
tion. Both treatments yielded equally positive outcomes
with no reported undesirable side effects [101, 102]. Addi-
tionally, upon administrating bone marrow, umbilical
cord, or cord blood allogenic MSCs to patients with
chronic hepatic failure via intravenous infusion, clinical
improvements were observed in all groups with no adverse
effects [103]. Promising results were also observed in car-
tilage regeneration in patients with osteoarthritis [113].

In this context, commercialized allograft can provide a
reproducible, readily available product with reduced cost
and production time, compatible with quality standards,
and good manufacturing practice (GMP), making it an
efficient alternative to autogenous stem/progenitor cell
therapy [99, 102]. Remestemcel-L (Prochymal) was one
of the first commercial cryopreserved allogenic BMSCs
used successfully for the management of graft versus host
disease to be approved in Canada [114, 115]. In Japan,
TEMCELL, allogenic BMSCs, was also approved for man-
agement of graft versus host disease [116]. Darvadstrocel
(Alofisel), a cryopreserved allogenic ASC and the first allo-

genic stem cell therapy to be approved in Europe, was fur-
ther used for the treatment of perianal fistulas caused by
Crohn’s disease [117].

However, results reported in literature regarding the
impact of cryopreservation on BMSC banking are controver-
sial. A systematic review that analyzed forty-one in vitro
studies concluded that cryopreservation does not affect
BMSCs’ morphology and surface markers, differentiation,
or proliferation potential. However, varied results exist
regarding its effect on colony-forming ability, viability,
attachment, migration, genomic stability, and paracrine
functions. This was primarily attributed to the vast variations
in the cryopreservation process and lack of standardized
assays [118].

Further, it was suggested that MSCs could be immune
evasive in vivo rather than being truly immune privileged
as previously thought and can trigger an adverse immune
response [119, 120]. Some studies demonstrated the pres-
ence of antibodies against allogenic MSCs with subsequent
rejection of administered allogenic MSCs in animal models
[80, 119, 121–123]. Inflammatory prestimulation of MSCs
in particular could induce a negative effect, as precondi-
tioning of MSCs was commonly associated with increased
MHC expression [83, 84], stimulating an elevated antibody
production, leading to subsequent adverse reactions and
heightening of the immune clearance, especially following
repeated allogenic stem cell transplantation. In the same
context, equine BMSCs primed with proinflammatory
cytokine displayed higher expression of MHC-I and
MHC-II. Following intra-articular injection in the osteoar-
thritis equine model, allogenic primed MSCs mediated
antibody production and primary humoral responses in
horses with equine leukocyte antigen expression, partially
compatible and incompatible with donor MSCs. Repeated
MSC injection was associated with secondary humoral
immune response. Although demonstrating less antibody
production, these antibodies easily targeted primed MSCs
because of their higher MHC expression and showed high
cytotoxicity toward allogenic MSCs as compared to
unprimed MSCs [124]. Thus, transplanted allogenic MSCs
should be subjected to extensive characterization, and their
immunogenicity should be thoroughly assessed prior to
implantation.

MSC secretome was further suggested as a novel cell-
free therapeutic product that recapitulates various cyto-
kines, growth factors, extracellular matrix (ECM) proteins,
and vesicles secreted by MSCs [18, 125–129]. MSC secre-
tome might represent a clinical alternative to treat patients
instantly, while overcoming the limitations and risks asso-
ciated with cell-based therapy [130, 131]. Although MSC
conditioned medium (CM) and extracellular vesicles have
demonstrated regenerative potential in treating diseases
and injuries of the nervous system, heart, lung, liver, peri-
odontium, and soft and hard tissues [18, 132–140], several
issues must be addressed before its successful clinical
application, including the elimination of any xenogenic
constitutions and the determination of the exact dosage,
frequency of administration, protein composition, and
mechanism of action [18, 131, 141].
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3.2. Donor Tissue Source. As previously mentioned, MSCs
have been isolated from multiple sources. Tissue of origin
can highly impact MSCs’ characteristics and differentiation
ability [11]. BMSCs have superior osteogenic and chondro-
genic potentials [142]. Yet, bone marrow harvesting is a
rather invasive procedure [143], the percentage of mesenchy-
mal progenitors in bone marrow is relatively low [144], and
BMSCs have lower proliferation rate as compared to MSCs
from other sources [145].

ASCs were originally described as a more convenient
alternative to BMSCs [146] with less invasive isolation proce-
dure [147], higher yield of progenitor cells [148, 149], and
greater proliferation rate [145, 150]. The density and proper-
ties of ASCs depend on the location of the adipose tissues
from which they were isolated [23, 151, 152]. ASCs isolated
from visceral adipose tissue showed reduced proliferation
and adipogenic and osteogenic differentiation as compared
to ASCs isolated from subcutaneous tissues of the same
donor [23]. Further, rats’ cervical brown fat showed signifi-
cantly higher MSCs’ yield as compared to other locations
[152]. Unfortunately, ASCs have a strong adipogenic differ-
entiation tendency [153, 154], in addition to decreased
proangiogenic factors and cytokine secretion as compared
to BMSCs [155, 156].

Dental tissues further represent a potent source of MSCs,
isolated via minimally invasive procedures [157, 158]. Dental
MSCs include dental pulp stem/progenitor cells isolated
from dental pulp tissues of permanent teeth, stem/progenitor
cells extracted from pulp tissues of human exfoliated decidu-
ous teeth (SHED), periodontal ligament stem/progenitor
cells isolated from periodontal tissues, dental follicle stem/-
progenitor cells isolated from dental follicle surrounding
the third molar, alveolar bone-derived stem/progenitor cells,
stem/progenitor cells isolated from apical papilla at the api-
ces of immature permanent teeth, tooth germ progenitor
cells isolated from late bell stage third molar’s tooth germs,
and gingival stem/progenitor cells isolated from gingival
tissues [18].

Dental stem/progenitor cells especially gingival and alve-
olar bone proper MSCs [157, 159, 160] can be isolated during
routine dental treatments [161] and possess higher prolifera-
tion rates, as compared to either BMSCs or ASCs [162, 163].
Additionally, they have high osteogenic, chondrogenic, adi-
pogenic, neurogenic, and angiogenic potentials [161, 164].
Even though dental stem/progenitor cells provide an appeal-
ing source for tissue regeneration, some types as gingival
stem/progenitor cells may be inaccessible while others as
SHED, dental follicle stem/progenitor cells, stem/progenitor
cells from apical papilla, and dental pulp stem/progenitor
cells may be difficult to isolate in sufficient amounts [165].

Perinatal MSCs isolated from the placenta, umbilical
cord, and umbilical cord blood were further suggested to
offer a noninvasive alternative source to adult MSCs. They
are easily acquired, possess higher proliferative rates, and
exhibit longer culture times, higher expansion, delayed
senescence, and high differentiation potentials. Additionally,
the placenta and umbilical cord provide a large number of
progenitors as compared to MSCs from other sources [61,
166–170]. Yet, the isolation and culture of MSCs from the

umbilical cord are difficult [171], while private banking of
the umbilical cord and umbilical cord blood is expensive
[171, 172] and lacks strict regulations [171, 173]. Moreover,
the effect of lifelong storage of umbilical tissue or umbilical
cord blood is still unstudied [171, 174, 175]. The major prob-
lem associated with the application of umbilical cord blood
remains to be the limited amount of cells extracted from each
donor as cord blood volume is limited [176], where a single
umbilical cord blood unit contains 50 to 200ml of blood
[177]. Umbilical cord blood yields a much lower amount of
MSCs as compared to BMSCs [178]. It also has slow engraft-
ment as compared to BMSCs [173]. Placental MSCs further
carry a safety hazard regarding possibility of contamination
during placenta collection and possible tumorigenic transfor-
mation [179].

4. MSCs’ Isolation Procedures

MSC isolation from different tissues is one of the most critical
steps prior to their ex vivo preparation, greatly impacting
their quality and quantity [61]. For clinical applications, great
attention should be given to the selection of the proper
method of isolation [180]. Challenges facing MSC isolation
are related to different factors, including the presence of
various isolation protocols, the diverse MSC sources, and
the fact that MSCs are usually present in very minute con-
centrations in their respective tissue sources [61, 150].
Although MSCs possess unique properties and have a
great potential for clinical application, up to date, no
exclusive set of markers exists for their identification and
isolation [181]. Hence, there is currently a mandatory
demand to increase the minimal criteria proposed by the
International Society for Cellular Therapy in 2006 for
MSC identification [9], to encompass the inclusion of
paracrine factors or immunomodulatory properties of
MSCs [182] as important predictors for their success dur-
ing clinical application [183]. Furthermore, discovering
unique markers for MSC isolation with high purity is a
prerequisite for developing reliable and reproducible pro-
tocols for clinical application [184, 185].

Currently, the different categories of available techniques
for MSC isolation from heterogeneous cell populations
depend on their unique cellular properties, including surface
charge and adhesion, cell size, density, morphology, and
physiology in addition to surface markers [186]. There are
various categories of cell isolation techniques, namely, enzy-
matic, mechanical, explant culture, and density-gradient cen-
trifugation methods [61] (Table 2).

The enzymatic method, one of the commonly used
approaches, digests the tissue especially their ECM using
one, two, or in some protocols three proteolytic enzymes.
The differences between the several protocols described for
this method include variations in the concentrations of the
used enzymes, number of washing steps, centrifugation
parameters, and filtration procedures [187, 188]. The effi-
ciency and viability of the cells acquired through the enzy-
matic method depend on the concentration and type of the
used enzyme [189–191]. Digestion periods over five minutes
can affect MSCs’ surface antigens [192] and cytoskeletal
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component, disrupt intramembranous particles, and
change cell surface topography [193], which negatively
affects the quality of the isolation process. Combining
the enzymatic method with mechanical dissociation
revealed a 70% increase in the cell yield as compared to
the enzymatic method alone [194]. To overcome the prob-
lems associated with the enzymatic method, mechanical
methods were introduced, using different forces such as
shear, radiation, centrifugation, and pressure. Although
great efforts were put into standardizing the mechanical
methods, these nonenzymatic methods are still variable
according to the used protocol [188].

The explant culture represents the earliest technique
for cell isolation and in vitro cultivation. The tissue is
cut into small fragments about few millimeters in size to
facilitate nutrient delivery to the cells, avoiding excessive
cutting, which may cause mechanical destruction to the
cells. Following dry adhesion to the plastic culture dishes,
cells start to migrate out of tissue fragments and adhere
to the culture substrate surface. Subsequently, tissue frag-
ments can be removed [11, 77, 90, 91, 158, 195–197].
The explant method demonstrates a more homogenous
cell population, higher cell viability, and increased cell
proliferation rates and avoids enzymatic damage as com-
pared to the enzymatic method [198–200], which could
be attributed to the gradual transition of cells from
in vivo to in vitro condition [180, 201]. Comparison
between ASCs isolated by either enzymatic or explant
methods reveled a simultaneous expression of surface
markers CD73, CD90, and CD105, as well as the absence
of CD14, CD31, CD34, and CD45, making ASCs isolated
by both techniques phenotypically and functionally equiv-
alent [202]. However, the explant method depends primar-
ily on the manual skills of the operator, which makes this
method difficult to be standardized, in addition to the risk
of contamination, which could affect the MSC clinical
application [61].

The density-gradient centrifugation method depends
on the physical and chemical parameters of the isolated
cells like size, density, and hydrophobic properties. In this
method, the cells move and accumulate in a position that
matches the density of the medium or at the interphase in
case of using two solutions with different densities [181].
Lack of high resolution in separating MSCs from other
cells remains the most important limitation of this method
as there is no absolute difference in size between cells
[203]. Consequently, this method is mainly used as a pri-
mary step for MSC enrichment and is followed by the
explant method or other higher resolution techniques such
as fluorescence-activated cell sorting (FACS) and
magnetic-activated cell sorting (MACS) [204, 205].

Cell isolation techniques based on antibody binding are
widely advocated for the purification of MSCs with high res-
olution. Among the most commonly used antibody-
mediated cell isolation techniques are FACS and MACS.
Both FACS and MACS basically share the same idea. In the
case of FACS, antibodies are linked to a fluorescent dye, while
in MACS they are linked to magnetic beads and only the
antibody bounded cells are separated [206, 207]. The greatest

challenge for these methods of isolation remains however to
be the lack of an exclusive marker of identifying MSCs [181].
Further limitations include the probability for cell contami-
nation during sorting procedures, physical stresses exerted
on the cells [208], and the dependence on adherent cell puri-
fication, where the use of enzymes for cell detachment can
cause proteolytic damage to cell surface proteins [61]. Some
of those concerns were postulated to be overcome with the
development of the CliniMACS Cell Isolation System, a
device that is currently clinically approved and takes advan-
tage of conjugating colloidal suspension of superparamag-
netic microbeads to a monoclonal anti-human antibody
that is capable of binding to its antigen in bone marrow,
umbilical cord blood products, and peripheral blood in a
sterile GMP system [209].

Recently, the emergence of different isolation methods
changed the typical pattern of adherent MSCs and provided
another source of MSCs known as “nonadherent cell popula-
tion” (NACP) [210, 211]. These NACP were obtained during
medium exchange of marrow MSC culture, where the
floating cells were centrifuged and replated in separate
flasks. Surprisingly, these cells revealed the same prolifera-
tion and differentiation potentials as the originally
attached MSCs in vitro [210]. Likewise, NACP isolated
from fat resources demonstrated similar proliferation and
differentiation potentials as MSCs [212]. These findings
demonstrated that NACP could be a simple method to
enrich MSCs’ number for clinical application.

Choosing the proper MSC isolation method depends
mainly on certain features that should be compared between
the different available techniques, including cell purity, cell
recovery rate, cell yield, and cell viability [186, 213]. More-
over, the selected technique should be minimally invasive,
rapid, and with high-resolution quality [214]. Therefore, for
successful clinical translation of MSCs, a well-established
method for cell isolation is a mandatory step to ensure the
quality of these cells.

5. Cell Culture Procedures

The first challenge following MSC isolation is that their
number in the primary culture without a subsequent
lengthy ex vivo expansion would usually be insufficient
for an immediate clinical application. Therefore, cell
expansion is essential to generate a clinically appropriate
number of MSCs, keeping in mind that the efficacy and
safety of clinically applied MSCs are dependent on such
bioprocessing procedures [215]. Thus, optimizing culture
conditions to generate MSCs that retain proliferation, dif-
ferentiation, and regenerative properties is one of the
greatest challenges that face MSC translation to clinical
application. Currently, several cell culture variables, such
as the number of passages, cell seeding density, culture
surface substrate, medium formulation, and the physio-
chemical environment in addition to different subculture
protocols, are being studied [216].

5.1. Cell Expansion. MSC expansion could be affected by the
age of MSC donors, where MSCs from young donors can
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undergo a higher number of population doublings in com-
parison to older MSCs before reaching replicative senescence
[217] (discussed above). Due to this phenomenon, during the
first two to three weeks of early passages, MSCs grow at a
constant rate, while with the increasing number of passages,
an increase in the cell doubling time until the growth stops
due to senescence is observed [218]. This “replicative senes-
cence” is caused by progressive shortening of telomere upon
cell passaging in vitro due to the absence of telomerase activ-
ity [54, 219]. Despite the fact that 70–80% confluence is the
recommended cellular density before passage, the decision
is operator-dependent [61]. It was found that upon prolong-
ing the MSC expansion for 43-77 days, cells demonstrated
senescence features, including abnormality in morphology,
arrested proliferation, decreased expression of cell surface
markers, loss of differentiation capacity [220], and decrease
in their capacity for migration [221]. Furthermore, pro-
longed cultivation of MSCs may cause chromosomal
changes, which could predispose for malignant transforma-
tion [222]. It has been reported that upon comparing human
umbilical cord-MSCs at passages 3, 6, and 15, the cells
showed similar morphology, biomarker expression, and

cytokine secretion. At passage 15, despite the fact that the
cells were still potent regarding adipogenic differentiation
and cytokine secretion such as IL-6 and VEGF, they revealed
inferior cell proliferation ability and less osteogenic and
chondrogenic differentiation potentials. Moreover, human
umbilical cord-MSCs at passage 15 revealed impaired hema-
tologic supporting effect in vitro and declined therapeutic
potential on a GVHD in vivo [223].

To overcome cellular senescence, MSCs could be geneti-
cally modified by a retroviral vector containing the gene for
the catalytic subunit of human telomerase reverse transcrip-
tase (TERT). Transduced cells (MSCs-TERT) demonstrated
telomerase activity, with the ability to undergo more than
260 population doublings, in contrast to nontransduced con-
trol cells, which underwent senescence-associated prolifera-
tion arrest after 26 population doublings [54]. Upon
subcutaneous implantation in immunodeficient mice,
MSCs-TERT formed more bone as compared to their con-
trols. However, in a further study, MSCs-TERT showed loss
of contact inhibition and anchorage independence and lead
to tumor formation in all mice [224]. Therefore, although
considering intermittent activation of the TERT gene may

Table 2: Overview of main cell isolation/purification techniques used for MSC separation.

Isolation method Isolation principle Isolation technique

Enzymatic [11, 188]
Digestion of the tissue extracellular
components by proteolytic enzymes

(1) Use of proteolytic enzymes such as collagenase and trypsin to digest
the extracellular matrix.
(2) After the extracellular matrix has dissolved, the released cells are
seeded into culture dishes in growth medium.

Explant culture [11, 195]
Cell surface charge and adhesion to

plastic surfaces

(1) The tissue is rinsed to remove blood cells.
(2) The tissue is cut into smaller pieces of no more than a few
millimeters in length.
(3) The pieces are placed in culture dishes or flasks with growth
medium.
(4) Cells start to migrate out of tissue and adhere to the culture surface,
and after several days, the tissue pieces can be removed.

Density-gradient
centrifugation methods
[567]

Cell size and/or density

(1) The sample is positioned on one or more layers having distinct
densities, which are intermediate between those of the cells that are to
be isolated and all other cells in the sample.
(2) After that, centrifugation of the sample at the appropriate speed
fractionates it into distinct phases between the different density layers.

Fluorescence-activated cell
sorting (FACS) [181, 568]

Fluorescently labeled antibodies bind
to surface or intracellular molecules

(1) Cells are labeled with a mixture of fluorescently conjugated
antibodies.
(2) The labeled cells pass aligned one by one through a nozzle which
vibrates to produce droplets containing individual cells at a defined
distance from the nozzle.
(3) As the cells pass through the light source, a computer registers their
individual light scatter and multiple fluorescent properties to detect
cells that meet the preestablished criteria for selection.
(4) A mild electrical charge is used to charge the drop where wanted
cells are present. When the charged droplets pass between the two
electrically charged metal plates, it deflects into a different collection
tube.

Magnetic-activated cell
sorting (MACS) [181, 567]

Magnetically labeled antibodies bind
to surface molecules

(1) Cells are labeled with antibodies conjugated to biodegradable iron-
based nanobeads.
(2) The labeled cells pass through a strong magnetic field.
(3) Cells conjugated with magnetic particles stay on the column, while
nonconjugated cells pass though.

10 Stem Cells International



be an interesting approach, it may be linked to dangers
related to tumorigenicity.

On the other hand, telomerase activation was found to
influence the MSC regulatory path, where ectopic expression
of the TERT gene in human postnatal BMSCs sustained their
osteogenic potential and upon xenogenic transplantation
formed more bone tissue with a normal structure as com-
pared to the control human postnatal BMSCs [225]. This
enhancement was attributed to the high expression of early
preosteogenic stem cell marker STRO-1, which revealed that
telomerase expression assists in maintaining the osteogenic
potential of MSCs during their expansion.

Moreover, the differentiation potential of an immortal
adipose stromal cell line (ATSC) transduced with a retroviral
vector expressing TERT was assessed in vitro [226]. ATSC-
TERT cells significantly accumulated calcium one week after
being cultured in osteogenic induction medium, while con-
trol ATSC cells began to accumulate it after three to four
weeks. Additionally, the expression of osteoblastic markers
(osteoblast-specific factor 2, chondroitin sulfate proteoglycan
4, and TNF receptor superfamily) was increased in ATSC-
TERT cells as compared to control ATSC. The insulin-like
growth factor (IGF) signaling pathway especially, IGF-
induced AKT phosphorylation, and ALP activity were postu-
lated to be involved in the mechanisms through which the
TERT gene enhances osteoblastic differentiation [227].

Another important factor to consider during MSC
expansion is the prior usage of proteolytic enzymes for cell
detachment during the expansion process. Proteomic
results revealed differential expression of 36 proteins in
trypsin-treated cells and an upregulation of the expression
of proteins related to apoptosis, with downregulation of
proteins related to cell growth, cell adhesion, regulation
of metabolism, and mitochondria electron transport
[228]. Three-dimensional (3D) culture systems may be
the solution to overcome all the limitations associated with
MSC expansion, as it could allow their propagation with-
out the use of proteolytic enzymes [229]. Consequently,
great attention should be given to 3D culture systems to
standardize their effect on MSCs.

5.2. Cell Seeding Density. Cell seeding density impacts cell
proliferation, differentiation, and ECM formation [230–
232]. BMSCs seeded at lower density (100 cells/cm2) pos-
sessed a faster proliferation rate than those seeded at
higher density (5000 cells/cm2) [233]. Moreover, high cell
seeding density of (106 cells/cm2) caused a minimal
increase in the cell number in comparison to lower seed-
ing density on 3D scaffolds [234]. The low growth rate
of MSCs seeded at high densities could be attributed to
contact inhibition, while a higher growth rate associated
with low seeding density could be attributed to the pres-
ence of the small and agranular cells (recycling stem cells)
in the log phase. Those cells are postulated to give rise to
large numbers of cells during the log phase of exponential
growth [235]. The log and exponential phases last for lon-
ger duration in cells seeded at low density, and therefore,
more population doublings occur [236]. Unfortunately,
there is a limitation of low initial seeding density as it

has been reported that BMSCs platted at 10-100 cells/cm2

did not expand effectively and the cells were senesced after
four to five passages [237]. Although low seeding densities
revealed higher proliferation rates, it is unrealistic for
large-scale clinical MSC production as the needed number
of culture flasks exceeds the manageable limit of practical
handling and cost-effectiveness [238].

The cell seeding density affects the stemness gene expres-
sion and senescence of MSCs, where lower density seeding
(200 cells/cm2) of ASCs caused upregulation of stemness
genes Oct4, Nanog, SRY-box 2, KLF4, c-Myc, and lin-28
homolog A, especially Nanog and c-Myc in comparison to
high-density seeding (5000 cells/cm2) [239]. Moreover, it
was reported that the optimal cell growth of BMSCs could
be achieved at a plating density of 200 cells/cm2, with no dif-
ferences observable in their differentiation potential at differ-
ent densities (20, 200, and 2000 cells/cm2) up to 5 passages
[236]. It was further demonstrated that high cellular seeding
density (5 × 106 cells/ml) of BMSCs on collagen micro-
spheres favored chondrogenic differentiation [240]. Compar-
ing dental pulp MSCs cultured under sparse (5 × 103
cells/cm2) and dense (1 × 105 cells/cm2) seeding conditions
for four days revealed observable enhancement in mineral-
ized nodule formation in densely plated dental pulp MSCs
[241]. In addition, densely plated dental pulp MSCs demon-
strated more pronounced mineralized tissue formation in
comparison to sparsely plated dental pulp MSCs when
implanted into mouse bone cavities [241].

These findings suggest that cell seeding density could
favor the differentiation of MSCs toward specific cell line-
ages. Determining the optimum cell seeding density designed
for maximum cell expansion is therefore of great significance
for clinical application, as it could shorten the cell culture
time and consequently decrease the risk of culture contami-
nation and alteration in the MSC characteristics [242].

5.3. Culture Media. Choosing a well-formulated culture
medium for expansion and therapeutic application of MSCs
is very crucial [243]. A typical culture medium is composed
of amino acids, vitamins, glucose, inorganic salts, and serum
[244]. Culture media can affect MSCs’ secretion profile. Stud-
ies deduced that cytokine and growth factor secretion is
donor-specific [125] and that cellular passaging does not sig-
nificantly influence MSCs’ secretome properties [18, 245],
while other investigations demonstrated that the cell culture
medium might affect the MSC secretory potential to varying
degrees [246, 247].

Among the commonly used basal medium formulations
for culturing of human MSCs are Dulbecco’s modified
Eagle’s medium (DMEM) and alpha minimal essential
medium (α-MEM). Although DMEM was widely used for
MSC expansion [248–252], later it was demonstrated that
α-MEM could show better performance in isolation, expan-
sion [253], and osteogenic induction of MSCs [233] as pri-
mary dental pulp MSCs [241]. MSC differentiation into
various cell types could be achieved by adding certain sub-
strates to the culture media. Osteogenic differentiation could
be mediated by β-glycerophosphate and ascorbate phos-
phate; adipogenic differentiation could be induced by
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isobutyl-methylxanthine and indomethacin, while chon-
drogenic medium usually contains transforming growth
factor-β (TGFβ1) and ascorbic acid [254, 255]. Neural dif-
ferentiation was achieved in media supplemented with
both epidermal growth factor (EGF) and fibroblast growth
factor- (FGF-) 2 [256, 257], while hepatic differentiation
occurred in media supplemented with hepatocyte growth
factor (HGF), bFGF, and oncostatin [255].

Basal media do not contain proteins or growth-
promoting agents and therefore require supplementation
with fetal bovine serum (FBS), typically 10% to 20% [61].
FBS is the most excessively used serum in cellular culture
procedures, as it provides important elements such as nutri-
ents, hormones, growth factors, and carrier proteins. These
carrier proteins encompass hormones, vitamins, attachment
and spreading factors, lipids, metals, protease inhibitors,
and buffering agents, whose cumulative function is to back
up cellular growth [258]. A number of successful clinical
trials were conducted utilizing MSCs expanded in FBS-
containing media [259, 260].

Yet, the usage of animal-derived serum is not the best
choice for clinical applications, due to the risk of the possible
transmission of nonhuman infectious pathogens such as
viruses, prions, mycoplasma, and endotoxins [261–270]. Fur-
thermore, the high content of xenogenic antigens in FBS
could elicit an immune response in recipients following
MSC transplantation [268, 269, 271, 272]. Moreover, lack
of uniformity in the composition of serum between different
companies and the high degree of lot-to-lot variation in
terms of growth factor concentrations [263, 273] contribute
to the heterogeneity of the results following MSC transplan-
tation [273, 274]. Thus, before utilization, regular testing
could be needed in order to ensure the quality of each batch,
an additional obstacle that hinders the fabrication of an
MSC-based standardized product [216].

The presence of serum in media may interfere with the
purification and expansion of cell culture products since it
could contain growth-inhibiting factors as fetuin (γ globulin)
and growth-promoting factors that occasionally could inhibit
cell growth depending on their concentration and the
stimulus-response decisions made by the stem/progenitor
cells [275]. These growth factors include but not limited to
platelet-derived growth factor (PDGF), IGF, and EGF [276]
in addition to TGFβ, which regulates the actions of many
other signaling molecules. TGFβ was documented to inhibit
the growth of mouse keratinocytes [277], while EGF was
reported to inhibit human epidermoid carcinoma cells
[278]. The diversity of these factors might lead to clinical
complication and data misinterpretation [244] (effects of dif-
ferent growth factors are discussed later inMSCs and Growth
Factors).

In order to consider MSCs as an advanced therapy
medicinal product, serum-free media have been proposed
to attain large-scale quality and relatively low-cost produc-
tion of clinical-grade MSCs [279, 280]. These medium for-
mulations incorporated defined quantities of binding
proteins (i.e., albumin and transferrin), additional nutrients
(i.e., lipids, vitamins, and amino acids), physiochemical
reagent (i.e., buffer), hormones (i.e., insulin), growth factors

(i.e., EGF, PDGF, and FGF), and attachment factors [281,
282], which are all usually provided by the serum. The opti-
mization of defined serum-free medium for a specific cell
type is very difficult and influenced by multiple variables
regarding cell characteristics, FDA-approved serum-free/-
xeno-free culture media as an example for such substitutes
[283–286].

An ideal FBS alternative for clinical GMP production
should possess a well-defined composition, a reduced degree
of contaminants, no risk of xenogenic compound transmis-
sion, low production costs, easy availability, and no ethical
issues [250]. Using autologous or allogenic serum, plasma,
or platelet lysates was further proposed for cultivating and
expanding human MSCs [280, 287], although it may be diffi-
cult to attain sufficient amounts from these substrates. More-
over, their beneficial effect may decrease with age, becoming
nonapplicable in elderly patients [61]. Furthermore, autolo-
gous or allogenic serum may not contain sufficient growth
factors to support the growth of MSCs [258].

Human platelet lysate (hPL), prepared by lysis of the
platelet membrane, was found to meet most of these
requirements and was suggested as a natural reservoir of
growth factors and cytokines such as basic FGF, EGF,
HGF, IGF-1, PDGF, TGFβ1, and vascular endothelial
growth factor (VEGF) [259, 288], which conjointly have
a positive influence on MSC proliferation and differentia-
tion [289]. Despite this growth factor-enriched milieu, it
has been reported that MSCs cultured with hPL did not
express differentiation markers and differentiation only
occurred upon induction [290], in contrast to media sup-
plemented with serum, where unplanned differentiation
might occur [279]. hPL can be easily obtained from autolo-
gous peripheral blood in large quantities and with minimal
donor site morbidity [291]. hPL has been successfully utilized
for MSC expansion in numerous in vitro studies [170, 292–
300] overcoming most of the challenges associated with
FBS. The composition variability, which is donor-related,
may be reduced by pooling harvests of fresh blood from
different donors [297, 301]. Despite its rare occurrence, the
possible transmission of human diseases caused by viruses,
as HIV-1 and HIV-2 or hepatitis C, can be hindered through
sterilization processes employing short-wave ultraviolet light
[302]. Several studies have been published evaluating the use
of hPL or other xeno-free supplements for MSC ex vivo
expansion, following GMP protocols [303–306]. The substi-
tution of FBS by hPL has been reported to increase cell
proliferation without affecting MSC immunophenotype,
immunomodulatory potential, differentiation potential, and
relative telomere length [306]. Similar results were attained
when comparing two serum-free (xeno-free) media (α-
MEM and DMEM) supplemented with 10% of hPL with
DMEM supplemented with 20% FBS and 10ng/ml bFGF.
The highest proliferation rate was detected in α-MEM sup-
plemented with 10% hPL [307]. It has been reported that
hPL and predefined serum-free media increased the prolifer-
ation of BMSCs and ASCs [249, 285, 296]. Human umbilical
cord-MSCs expanded in serum-free media propagated more
slowly and were different in growth rate, telomerase, and
gene expression profile from human umbilical cord-MSCs
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expanded in serum-containing media, yet they remained
their multipotency and their therapeutic potentials [308].
On the other hand, umbilical cord-MSC expanded in hPL
revealed enhanced proangiogenic and bone formation fea-
tures, upon implantation combined with collagen microbe-
ads in an immune-competent mouse model [309].

The high proliferation rate attained by hPL can reduce
the MSC manufacturing time and accelerate the production
of MSCs in therapeutic application. The effect of hPL on
the immunomodulatory attributes of MSCs remains contro-
versial and needs to be further evaluated, as some researchers
claimed that hPL-expanded MSCs exhibited diminished
immunosuppressive properties [292, 310], while others
reported that hPL maintain these immunosuppressive prop-
erties [250, 311]. These discrepancies could be attributed to
the differences in the hPL production assay.

In order to identify the effect of culture “micromilieu”
on the critical stemness properties that could influence
MSC clinical performance, dental pulp MSCs and alveolar
BMSCs were cultured in two commercially available
serum/xeno-free GMP culture systems (StemPro (Life
Technologies); StemMacs (Miltenyi Biotek)), in comparison
to conventional FBS supplemented media. Prolonged
expansion of both MSC types especially in the serum/-
xeno-free-expanded BMSCs resulted in downregulation of
CD146, CD105, Stro-1, SSEA-1, and SSEA-4, as well as in
an increase of SA-gal-positive cells, cell size, and granularity
and a decrease in telomere length. Moreover, expansion
under serum/xeno-free systems caused an upregulation of
osteogenic markers and elimination of chondrogenic and
adipogenic markers while only minor changes were
detected with serum-based media. Dental pulp MSCs in
serum-based and StemPro revealed a diminishing mineral-
ization potential with passaging, while with StemMacs, the
opposite occurred [312].

The development of a completely defined media that lack
any biological products from animals is the ultimate goal in
cell-based therapy. Although serum-free media containing
growth factors are postulated to maintain the main pheno-
typic and functional characteristics of MSCs, they are
currently still inferior to FBS-containing media. hPL, which
to date meets the GMP guidelines, could provide hope in this
perspective.

5.4. Two-Dimensional (2D) Culture Systems. Conventionally,
MSCs are propagated as a monolayer in two-dimensional
(2D) plastic culture plates. 2D culture techniques have been
developed for establishing primary cultures, cell lines, and
different analytical assays [313]. In addition, 2D cultures
are used for MSC differentiation into many specialized cells
[314, 315].

However, the 2D culture system possesses several limita-
tions. The first limitation of the 2D culture system is the need
for cell expansion to increase the cell numbers for clinical
applications. Expansion in 2D cultures is highly inefficient
and yields heterogeneous populations of MSCs [316]. More-
over, 2D culture systems cause changes in cell shape [317],
flattening of cells with alteration of the internal cytoskeleton
and the shape of the nucleus [318], which could subsequently

affect the gene expression [319, 320] and change the cell fate
as well as the differentiation potential [254, 321, 322]. Within
the 2D culture system, MSCs tend to undergo nonspecific
differentiation where MSCs may partially differentiate or
dedifferentiate with loss of functionality [316]. Besides, 2D
culture conditions fail to mimic the living physiology or the
in vivo MSC niche [323]. The 3D microenvironment is
responsible for determining MSC fate in vivo, where it allows
interactions between MSCs, ECM, and gradients of oxygen,
nutrients, and byproducts [324]. In order to overcome all of
these limitations, 3D culture systems have been developed
to mimic the ECM composition and stiffness in vitro to con-
trol MSCs’ fate [318, 324–326].

5.5. Three-Dimensional (3D) Culture Systems. In order to
imitate the in vivo MSCs’ niches, maintain the MSCs in their
undifferentiated stem/progenitor cellular status, induce their
differentiation into particular tissue for regenerative pur-
poses, or expand them for industrial usage; various 3D cul-
ture systems have been proposed and developed. 3D culture
systems vary from simple cellular aggregates (spheroids) to
complex systems using dynamic bioreactors with incorpo-
rated biomaterials (Figure 1).

The spheroids allow cell-cell and cell-ECM interactions
without any additional substrates [327]. These spheroids
could be prepared by different techniques, including hanging
drop, rotating culture, or low-adhesion culture plates in sus-
pension culture and microwells. Human amnion mesenchy-
mal stem cells (hAMSCs) were cultured in 2ml of culture
medium (5 × 105 cells/ml) in a suspended state in a 6-well
ultralow attachment plate to allow spheroid formation. The
viability, multipotency, and the secretory ability for angio-
genic and immunosuppressive factors were upregulated in
hAMSC spheroids kept in the 3D culture system as compared
to those maintained in 2D cultures. Moreover, an improved
paracrine effect was recorded in vitro in the form of an
increased capillary maturation as well as greater inhibition
of peripheral blood mononuclear cell proliferation in the
presence of 3D conditioned media as compared to both 2D
conditioned media and 2D exosomes [328].

Static culture plates (culture dishes, T-shaped flasks) that
are ordinarily used in 2D cultures can be modified to be
dynamic to allow spheroid formation. A scaffold-free 3D cul-
ture sphere was attained upon seeding periosteum-derived
progenitor cells on nonadhesive culture dishes and cultivat-
ing them at a rotation rate of 60 rpm using an orbital shaker.
The resultant spheres maintained their viability and prolifer-
ation ability. Expression levels of stemness genes and
proteins were upregulated in cells grown on 3D culture as
compared to 2D culture systems [329]. Being heterogeneous
in nature, spheroids are employed in studying cell differenti-
ation and cancer biology [327, 330]. Upon short-term cultur-
ing, spheroids improved the medicinal properties of MSCs
[331], while in long-term spheroids, culturing MSCs under-
went differentiation [332].

An upregulated expression of chondrogenic genes
(ACAN, COL2B, COL10, SOX9, and 18S) was recorded upon
in vitro 3D culturing of equine MSCs for 4 weeks in alginate,
fibrin 0.3% alginate (FA), and pellet culture systems
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(2:5 × 105 cells and 5 × 105 cells) [333]. Furthermore, the
immunomodulatory characteristics of MSCs cultured in 3D
culture systems constructed using collagen, chitosan, and
PLGA substrates were shown to be enhanced and affected
by the 3D geometry not the type of the substrate. MSCs
under 3D culture demonstrated a higher growth rate and
stemness and maintained their phenotype and an enhanced
immunosuppression effect [334].

Yet, the wide-range growth of MSCs using these methods
is challenging due to the incapability of controlling their size,
leading to cell death and suppression of cell propagation as a
result of a high degree of confluence and nutrient deprivation
[331]. Moreover, transport and removal of nutrients and
waste metabolites, respectively, from the scaffold upon 3D
expansion represent a crucial obstacle. The latter process
occurs in the 2D culture systems simply by diffusion [335].
While static bioreactors are limited by the demand for batch
medium changes, dynamic bioreactors can be highly govern-
able, permitting better homogenous media and cell spatial
distribution, despite the increase of the scaffold. Thus,
dynamic bioreactors can be utilized in tissue-engineering
applications to alleviate problems related to traditional static
culture conditions [336].

Incorporation of natural and synthetic biomaterials in the
culture could supply diverse biological signals and allow differ-
ent degrees of mechanical strength [337]. Biomaterials are
utilized in the 3D culturing for fabrication of microcarriers,
capsules, fibers, and scaffolds. Scaffold constructs provide the
ECM 3D organization and multicellular complexity [338,
339]. Yet, natural biomaterials are more difficult to control
in vitro as they often transduce uncontrollable biological sig-
nals to the cells. Moreover, the batch-to-batch variability and
the potential xenogenic origin might limit their usage [340].

Dynamic bioreactor culture systems, in which the culture
variables such as pH, temperature, oxygen, and carbon diox-
ide concentration are properly controlled and monitored, are
essential for in vitro cultivation and maturation of tissue-
engineering grafts [341]. These closed systems maintain a
homogeneous physicochemical environment required for
culturing cells and reduce the handling steps, hence reducing
contamination potential in accordance with GMP and qual-
ity standards [342]. The generated hydrodynamic stress on
the cells could be alleviated through utilizing biomaterials
in the form of microcapsules or microcarriers [316]. Micro-
carriers are small beads (100–300μm diameter) that provide
a surface for the cells to attach and grow while microcapsules
are semipermeable membranes within which the cells are
immobilized. Microcapsules allow the diffusion of nutrients,
oxygen, and growth factors essential for cellular growth
[316]. The selection of an appropriate biomaterial for the fab-
rication of either microcapsules or microcarriers as well as
harvesting cells from them is among the challenges in the
3D cultures.

A rotary cell culture system (RCCS) combined with 3D
culture was suggested to provide an effective means for
enhanced MSCs’ proliferation in vitro and to maintain a dif-
ferentiation potential required for tissue engineering. The
microarray analysis of BMSCs cultured in the RCCS-3D sys-
tem revealed an enhanced proliferation and colony forma-
tion, as well as maintained the differentiation potential
when compared with conventional static 2D and static 3D
culture conditions [343].

Dynamic bioreactors (fully reviewed in articles [341, 344,
345]) could be classified into mechanically driven bioreactors
that include stirred tank bioreactors, rocking bioreactors, and
rotating wall vessel bioreactor, as well as hydraulically driven
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Figure 1: Two-dimensional and three-dimensional culturing plates and bioreactors.
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bioreactors, which include parallel plate bioreactors, hollow
fiber bioreactors, and fixed-bed bioreactors that can be mod-
ified to perfusion and compression bioreactors widely used in
bone tissue engineering (reviewed in articles [341, 346]).

Spinner flasks and stirred tank bioreactors are the most
frequently used stirred systems. In these systems, impellers
are used to promote mixing, resulting in a homogeneous cul-
ture system with operation versatility (batch, fed-batch, and
perfusion). A large number of cells could be produced in just
one vessel, thereby avoiding vessel-to-vessel variability and
minimizing costs related to labor and consumables [280].
MSCs aggregated using static microwell plates prior to being
inoculated in the bioreactor environment preformed con-
trolled size aggregates possessing the ability to form large,
irregular super aggregates after a few days of suspension cul-
ture. On the contrary, single MSCs inoculated directly into
suspension bioreactors formed a more uniform population
of smaller aggregates after a definite culture period of eight
days. Both techniques showed initial deposition of ECM
within the aggregates [347].

A rocking (wave) bioreactor consists of a disposable plas-
tic bag placed on a platform whose agitated fluid motion
induces the formation of waves that subsequently provide
good nutrient distribution and excellent oxygen transfer with
moderate shear stress. It also presents a minimum risk of
contamination (closed system), scalability (up to 500 l), and
flexibility [344]. No difference in differentiation and immu-
nomodulatory capacity as well as no genetic aberrations
was displayed upon culturing MSCs in flasks, Scinus bioreac-
tor (rocking bioreactor), and spinner flasks. MSCs cultured
within the Scinus bioreactor system showed equality to
flask-expanded cells with respect to their immunomodula-
tory properties [348].

A hollow fiber bioreactor is advantageous in culturing
MSCs due to its relatively homogeneous culture environment
and low shear stress. The cells are inoculated within the fiber,
while the culture medium flows and wastes diffuse through
the pores of the fibers to the space between the cylinder and
the fibers [344]. The secretory products (exosomes) of MSCs
cultured using hollow fiber and their therapeutic efficacy in a
murine model of cisplatin-induced acute kidney injury (AKI)
in vivo and in vitro have been investigated. In vivo, both 2D-
and 3D-exosomes significantly alleviated cisplatin-induced
murine AKI evidenced by improved renal function, attenu-
ated pathological changes of renal tubules, reduced inflam-
matory factors, and repressed T-cell and macrophage
infiltration; however, the 3D-exosomes were superior to the
2D-exosomes. Furthermore, 3D-exosomes were efficiently
captured by tubular epithelial cells, thereby improving their
viability and inducing an upregulated anti-inflammatory
effect in vitro [349].

The rotating wall vessel (RWV) and a rotating bed biore-
actor (RBB) consist of a cylindrical vessel rotating horizon-
tally around its axis. This environment eliminates most of
the disruptive shear forces associated with a conventional
bioreactor, randomizing the gravitational forces acting on
the cell surface and allowing the combined culture of several
cell/scaffold constructs [341, 350]. Collision of scaffolds with
the bioreactor wall is a major disadvantage of the RWV sys-

tem and may damage the scaffolds and disrupt the seeded
cells. This can be alleviated by using the RBB concept, where
constructs are attached directly on the axis. Another crucial
disadvantage of this rotating system is that the mineralization
is confined to the outer part of the scaffold upon use in bone
tissue engineering and that the internal nutrient transport is
deficient [346]. Thus, rotating wall vessels are limited to the
small-sized constructs of flat bones or as bone patches for
restorative applications of the skeletal system [351].

In bone tissue engineering using MSCs, shear stress
caused by mixing or perfusion of the medium is crucial
for osteogenesis, as it exposes the cells to mechanical stim-
ulation. In vivo, mechanical stimulation increases the
production of prostaglandins, ALP, and collagen type I, cre-
ating a milieu required for osteoblastic proliferation and
mineralization [352]. Moreover, mechanical stimulation
encourages the cells to produce ECM in a shorter time
period in vitro and in a more homogeneous manner than
in static culture [353].

A fixed-bed bioreactor consists of a column (bed) holding
an immobilized scaffold, where the cells are incorporated. As
the cells remain immobilized on the carrier surface, this sys-
tem has an advantage of presenting a low shear stress envi-
ronment. Although this bioreactor allows 3D cell growth
and better imitation to in vivo conditions, spatial cell concen-
tration gradients may occur [354]. Modifying the fixed-bed
bioreactor has been performed to overcome the poor perfu-
sion of media through the center of the scaffold. Bioreactors
that use a pump system to perfuse media directly through a
scaffold are known as perfusion bioreactors [355]. Flow per-
fusion bioreactors have been shown to provide more homo-
geneous cell distribution throughout the scaffolds and
provide a uniform mixing of the media, enabling better con-
trol of the environment and better physical stimulation of the
cells particularly in the bone tissue [335, 356]. The major
challenges in these systems are the design of the perfusion
chamber and optimization of the flow rate, which depends
on the composition, porosity, and geometry of the scaffold
[335]. Despite the fact that the increase in the flow rate leads
to an increase in the deposition of the mineralized matrix, it
seems that the optimal flow rate values have an enhanced
positive effect on osteoblastic differentiation, ECM deposi-
tion, and distribution range from 0.2 to 1ml/min [335].
Yet, perfusion bioreactor is suggested to be the ideal ex vivo
culturing system for growing large bone grafts [357].

Compression bioreactors that provide mechanical load-
ing, combined with flow perfusion, can also promote sur-
vival and functional cellular differentiation within the
scaffold. Short-term mechanical stimulation enhanced the
expression of several osteogenic genes, including RUNX-2,
osteopontin, integrin-β1, TGFβR1, SMAD5, annexin-V,
and PDGFα [351]. The compression bioreactors provide a
promising tool for bone fracture tissue engineering [341].

Overall from the previous section, it could be deduced
that although the 3D culturing maintained or even improved
the therapeutic potential of the MSCs, the complexity and the
diversity of these systems in terms of selecting the appropri-
ate biomaterial to be used and bioreactor design make them
additional challenges in cell-based therapy.
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5.6. Mimicking the Biological Interactions in the Human
Body.Mimicking the in vivo microenvironment to attain effi-
cient proliferation and secretion of soluble paracrine factors
and extracellular vesicles could be further achieved by hyp-
oxia (2% O2) that enhances stemness in MSCs, without
affecting their multipotent differentiation potential [358].
Hypoxic preconditioning (2% O2) of adipose-derived MSCs
upregulated the proliferative ability of MSCs by enhancing
the expression of normal cellular prion protein and inhibited
oxidative stress-induced apoptosis via inactivation of cleaved
caspase-3 in vitro. Similar results were attained upon treating
a murine hindlimb ischemia model with hypoxic adipose-
derived MSCs. Enhanced functional recovery of the ischemic
tissue, including limb salvage, neovascularization, and the
ratio of blood flow perfusion, was reported [359]. Moreover,
BMSC hypoxic pretreatment enhanced significantly cell
survival and promoted angiogenesis in the lower limb of
ischemic diabetic rats through increasing autophagy and
significantly decreasing apoptosis [360]. Additionally, hyp-
oxic conditions increased the release of MSC exosomes that
effectively enhanced the regeneration of cardiac tissues in a
myocardial infarction mouse model [361].

Coculturing of MSCs with other cells could provide a
promising aspect in regenerative medicine, through provid-
ing the signaling molecules, including growth factors and
cytokines involved in the cross-talk between cells. In a recent
study using hybrid human umbilical vein endothelial cell/rat
MSC cocultures, the role of each cell type on the genes and
proteins regulating angiogenesis, including VEGF, PDGF,
and TGFβ, was investigated. It has been reported that MSCs
inhibited the expression of angiogenic factors in endothelial
cells early in cocultures due to juxtacrine signaling-
mediated suppression of cell proliferation, while later on, a
shift occurred, where the restrained action of MSCs reverts
to a stimulatory one by paracrine signaling. The ratio 3 : 1
endothelial cells/MSCs induced the strongest upregulation
of the angiogenesis pathway [362]. Additionally, provision
of inflammatory milieu responsible for certain diseases was
demonstrated to induce the cells to secrete regenerative
factors. Intravenous infusion of human MSCs improved the
cardiac function and decreased scarring in a mouse model
of myocardial infarction. In the presence of a high level of
inflammatory cytokines, human MSCs secreted excessive
amounts of anti-inflammatory cytokine TNF-α-stimulated
gene/protein 6 (TSG-6) that enhanced tissue regeneration
[363]. Despite the fact that coculturing and direct cell-cell
contact between MSCs and endothelial progenitor cells
induced MSC differentiation toward a pericyte-like pheno-
type [44], it was demonstrated that intravenous administra-
tion of MSCs inhibited angiogenesis and endothelial cell
proliferation, induced by cell-cell contact through modula-
tion of the VE-Cadherin/β-catenin signaling pathways [364].

6. MSCs and Growth Factors

Growth factors are molecules that cause several biological
effects, such as changes in motility, proliferation, morpho-
genesis, and survival of the cell [15, 365]. Various growth fac-
tors affect MSC properties (Table 3).

In mammals, three isotypes of TGFβ are present: TGFβ1,
TGFβ2, and TGFβ3 [366]. The three isotypes are well-known
inducer of MSC chondrogenesis that lead to proteoglycan
and collagen type II deposition when applied as single factors
[367, 368]. TGFβ influences the proliferation and chondro-
genic differentiation of MSCs [368–372]. TGFβ plays a role
through all phases of chondrogenesis, promoting mesenchy-
mal condensation, chondrocyte proliferation, and ECM
deposition and inhibiting terminal differentiation [373–
375]. Moreover, TGFβ1 has been reported to switch the
human MSC fate from adipogenic to osteogenic when added
under adipogenic culture differentiation conditions [376].
On the other hand, TGFβ1 decreased the number of osteo-
progenitor cells during the in vitro expansion of human
BMSCs and downregulated ALP and STRO-1 expression
[377]. These results suggest that TGFβ1 effect could depend
on the commitment state of the MSCs.

Bone morphogenetic proteins (BMPs) that belong to the
TGFβ superfamily play an essential role in regulating MSCs’
proliferation and lineage-specific differentiation [378, 379].
BMP2, BMP4, BMP6, BMP7, and BMP9 induce osteoblastic
differentiation of MSCs [380, 381]. MSCs exposed to these
osteogenic BMPs increased the expression of ALP, osteocal-
cin as well as osteopontin, connective tissue growth factor,
inhibitor of DNA binding, and Cbfa1/RUNX-2 [380–386].
BMP9 is considered as one of the most potent BMPs to
induce MSC osteogenic differentiation [387–389]. Even
though BMP2, BMP4, BMP6, BMP7, and BMP9 revealed
the ability to induce adipogenic differentiation of MSCs
[382], BMP2 [390], BMP4 [391], and BMP6 [392] promoted
chondrogenesis only when applied in combination with
TGFβ. Although BMP3 stimulated MSC proliferation, it
did not promote their adipogenic differentiation [393].

VEGF is known as a potent angiogenic factor that has
been reported to increase prosurvival factors, phosphory-
lated-Akt, and Bcl-xL expression besides enhancing MSC
proliferation in vitro [394]. Furthermore, VEGF favors
MSC osteoblastic differentiation at the expense of adipogenic
differentiation through regulating RUNX-2 and PPARγ2
[395]. Additionally, in the presence of VEGF-A, MSCs differ-
entiated into endothelial cells both in vitro and in vivo [396,
397]. Intracellular blockage of VEGF signaling by retroviral
transduction of human MSCs to express a decoy soluble
VEGF receptor-2 that sequesters endogenous VEGF in vivo
resulted in spontaneous chondrogenic differentiation.
Implanting transduced MSCs seeded on collagen sponges
subcutaneously in nude mice activated TGFβ signaling by
blocking of angiogenesis and generation of a hypoxic envi-
ronment that led to hyaline cartilage formation [398]. VEGF
coinjection with BMSCs into a myocardial infarction heart
mouse model led to increased cell engraftment and improve-
ment of cardiac function as compared to injection of BMSCs
or VEGF alone [394]. The proangiogenic effects of intramyo-
cardial injection of FGF2 (bFGF) as well as intramyocardial
and intravenous VEGF in a porcine model of chronic hiber-
nating myocardium were further evaluated. The myocardial
blood flow increased significantly only by the intramyocar-
dial injection, which could be attributed to the diffusion of
the factors from the point of injection and their ability to
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initiate the migration of cells [399]. FGF2 increased the
migratory activity of MSCs through activation of the Akt/-
protein kinase B pathway [400]. These results were con-
firmed by analyzing the orientation of the cytoskeleton,
where actin filaments acquired a parallelized pattern that
was strongly correlated with the FGF2 gradient. Remark-
ably, FGF2 influence was confined not only to attracting
MSCs but also in routing them as it has been revealed that
low concentrations of FGF2 led to MSC attraction, while
higher concentrations resulted in repulsion.

The FGF family includes members that affect MSC
proliferation as well as differentiation where FGF2 and
FGF4 increased proliferation potentials of BMSCs [401,
402]. FGF2 induced neuronal differentiation of human
dental pulp MSCs [403] and stimulated chondrogenic dif-
ferentiation of human MSCs [404, 405] and adipogenic
differentiation of rat MSCs [406]. FGF2 promoted osteo-
genic differentiation of MSCs by inducing osteocalcin gene
expression and enhancing calcium deposition [407, 408].
Additionally, a low dose of FGF2 enhanced the in vitro
osteogenic differentiation of MSCs induced by BMP6 as
well as bone formation in vivo [409]. However, there are
contradictions in the literature about the exact role of
FGF on MSCs. FGF2 was reported to inhibit mouse
MSC differentiation by upregulation of Twist2 and Spry4
and the suppression of extracellular signal-regulated kinase
1/2 activation [410]. Moreover, FGF1 and FGF2 inhibited
adipogenic and osteogenic differentiation of human
BMSCs [411, 412]. FGF2 was also reported to inhibit oste-
ogenic differentiation of mouse BMSCs at the early stage,

promoted it in the medium phase, and maintained it in
the later stage during osteogenic induction [413].

PDGFs are known to enhance cell proliferation and
migration. There are four types of PDGFs (AA, BB, CC,
and DD) [414]. PDGF-AA was reported to promote
MSC migration and osteogenic differentiation [415].
PDGF-BB protected MSCs derived from immune throm-
bocytopenia patients against apoptosis and senescence,
where PDGF-BB decreased p53 and p21 expression, while
increasing the surviving markers’ expression [416]. The
combination of PDGF-BB, FGF-2, and TGFβ1 led to syn-
ergistic enhancement of human MSC propagation with
retained phenotypic, differentiation, and colony-forming
unit potential [417].

Collectively, growth factors offer a promising approach
to enhance MSC proliferation, differentiation, survival, and
expansion. Choosing the proper growth factor is governed
by three major criteria. First is the ability of the growth fac-
tor/s to prolong the proliferation in order to generate a suffi-
cient number of MSC differentiation into the desired cell
type. Second is the ability to replace the animal serum or
xenographic substances. Finally is utilizing the properly
localized and controlled method for delivering growth factors
in vivo to take the benefit of their sustained release without
inducing MSC uncontrolled proliferation and subsequent
tumor formation [365]. Although using a single growth fac-
tor has advantages in increasing MSC proliferation, differen-
tiation, and migration, combined growth factor treatment
could provide more benefits due to possible synergistic effects
on MSCs.

Table 3: Various growth factors and their effects on MSCs.

Growth factor
family

Growth
factor

Effect on MSC

TGFβ

TGFβ1 Increase proliferation & induce chondrogenic differentiation [369, 370].

TGFβ2 Induce chondrogenic differentiation [368, 372].

TGFβ3 Induce chondrogenic differentiation [371, 372].

BMP2
Promote chondrogenesis [390], induce osteogenic differentiation [380–382], & induced adipogenic

differentiation [382].

BMP3 Stimulate proliferation [393].

BMP4
Promote chondrogenesis [391], induce osteogenic differentiation [380–382], & induced adipogenic

differentiation [382].

BMP6
Promote chondrogenesis [392], induce osteogenic differentiation [380–382], & induced adipogenic

differentiation [382].

BMP7 Induce osteogenic differentiation [380–382] & induced adipogenic differentiation [382].

BMP9 Induce osteogenic differentiation [380–382] & induced adipogenic differentiation [382].

VDGF VDGF
Increase proliferation [394], favor osteogenic differentiation [395], differentiate into endothelial cells [396,

397], & induce chondrogenic differentiation [398].

FGF
FGF2

Increases migration [400], increases proliferation [401, 402], induces neuronal differentiation [403], and
stimulates chondrogenic differentiation [404, 405], adipogenic differentiation [406], & osteogenic

differentiation [407–409].

FGF4 Increase proliferation [401, 402].

PDGF
PDGF-AA Increases migration & osteogenic differentiation [415].

PDGF-BB Protect against apoptosis and senescence [416].
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7. Risk of Tumorigenicity (Figure 2)

Every medical therapy carries some risk to the patients, and a
careful weighing of the probable risks against the provided
benefits should be carried out. Although the risk of tumorige-
nicity is far less with adult cells, with little evidence of tumor
formation [418], it should never be neglected.

Stem/progenitor cells and cancer cells share some fea-
tures suggesting a link between these two populations of
cells, including long life spans, relative apoptotic resis-
tance, and an ability to replicate for extended periods of
time. Moreover, both share the same growth regulators and
cell maintenance control mechanisms [419]. Stem/progeni-
tor cell trafficking pathways seem to be further utilized by
cancer cells for metastasis [420]. Stromal cell-derived factor-
(SDF-) 1 impinges cancer cell behavior and migration and at
the same time plays a role in stem/progenitor cell homing
[421–423]. Also, CXCR2 and 4 receptors found on both
stem/progenitor and cancer cells can influence both stem/-
progenitor cells’ homing and cancer cells’ invasion/metas-
tases [419]. In addition, cancer and stem/progenitor cells
have an inherent ability to evade host immune recognition
[424]. Therefore, the malignant transformation of MSCs
used in cell-based therapy might take place in the following
circumstances: first during in vitro expansion of MSCs and
second during genetic manipulation of MSCs.

7.1. In Vitro Malignant Transformation. In vitro expansion
and culture of MSCs prior to cell administration may result
in changes in their characteristics due to intracellular and
extracellular influences. Harmful mutations during cell divi-
sion as well as failure to correct these alterations may occur,
causing tumorigenic transformation [425]. Some studies
suggested that the tumorigenicity of MSCs increases propor-
tionally with the length of in vitro culturing duration [426].
MSCs from different animals such as rat [427–429], rabbit
[430], and cynomolgus [431] undergo spontaneous transfor-
mation during long-term in vitro culture. Moreover, these
spontaneously transformed MSCs were found to be highly
tumorigenic when inserted into immunodeficient mice
[432, 433]. Spontaneous malignant transformation of mouse
neural precursor cells was detected following ten in vitro pas-
sages, producing tumors in rodent brains [434].

An investigation studied the characteristics of the
transformed MSCs (tMSCs) obtained from long-term cul-
turing of rat MSCs. They revealed that tMSCs maintained
typical MSC surface markers. Meanwhile, they exhibited a
high proliferation rate with very limited senescence, lost
contact inhibition property and mesodermal lineage potency,
and subsequently acquired the ability for anchorage-
independent growth [435]. The authors attributed the results
to the increased levels of mutant p53 in the tMSCs that led
to a significant upregulated expression of survivin, the main
factor for the unlimited proliferation of transformed MSCs,
and undetectable expression levels of the key senescence regu-
lator p16 [435]. Moreover, silencing of the key regulator genes
for cellular senescence such as p21 [436] and p16 [437], in
addition to unscheduled epigenetic alterations, may be further
key reasons for the cell to initiate this transformation [428].

Furthermore, long-term culture (exceeding five weeks) of
human bone marrow- and liver-derived MSCs was evaluated
for transformed cells. Four out of 46 batches had transformed
cells that were able to induce sarcoma-like tumors in immu-
nodeficient mice. High-resolution genome-wide DNA array
and short tandem repeat profiling excluded the possibility
of cell line contamination. Fortunately, the authors identified
a gene expression signature using gene and microRNA
expression arrays that may help to screen cultures for signs
of early malignant transformation events. These genes
include CKMT1A that was elevated over 10,000-fold and
miR-182 and miR-378 that were upregulated nearly 500-
and 100-fold, respectively, in transformed MSCs [438].

In contrast, several articles verified the absence of tumor-
igenic potential of cultured MSCs originating from different
tissues even at advanced in vitro culture times [439–441].
Human MSCs from bone marrow, chorionic villi, and amni-
otic fluid were found to be nonprone to malignant transfor-
mation, following extensive in vitro expansion [442].
Moreover, human umbilical cord-MSCs were not susceptible
to spontaneous malignant transformation during long-term
in vitro culturing. Human umbilical cord-MSCs exhibited
positive expression of human telomerase reverse transcrip-
tase and did not exhibit shortening of the relative telomere
length. Nevertheless, malignant transformation could still
be prompted by chemical carcinogens as 3-MCA [443].

A systematic review that enrolled seven studies compris-
ing 593 patients, 334 treated with MSCs and 259 as a control
group without treatment, reported safe cell infusion with no
oncogenesis in the follow-up period of 10 to 60 months
[444]. Another systematic review reported no association
between MSC implantation and tumor formation. The
reported malignancies occurring in patients following
implantation was related to ongoing or previous ones with
no de novo formation [445]. On the other hand, evidence
of tumor formation was noticed four years following fetal
neural stem cell transplantation into the brain and the fluid
surrounding it of a boy with ataxia-telangiectasia. By genetic
typing, it was demonstrated that the tumor cells were of
donor origin [446]. Similarly, eight-year postintraspinal
olfactory mucosal cell autoimplantation for treating spinal
cord injury, a young patient developed a spinal cord tumor
mass autograft-derived. Seemingly, autologous treatment
strategies could be more hazardous contradicting the expec-
tation to be less immunogenic and more long-lasting than
allogenic ones [447].

The in vitro potential tumorigenicity of MSCs could be
related to genomic instability, accumulation of DNA damage,
and loss of cell cycle regulation during long-term culture. The
absence of transformation potential must be demonstrated
before clinical use. Therefore, it is beneficial to decide during
preclinical development whether the manufacturing process
leads to chromosomal abnormalities using various assess-
ment techniques for genetic stability [448].

7.2. MSC Malignant Transformation due to Genetic
Modification. Genetic modification is the process of modify-
ing or inserting new genetic materials (transgene) into spe-
cific cells to generate a therapeutic effect by correcting an
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existing abnormality or providing the cells with a new func-
tion into a cell [449].

MSCs can be genetically modified by viral and nonviral
methods. These techniques have been proven to be a very sig-
nificant advancement in treating various diseases such as
neurological, blood, vascular, and musculoskeletal disorders
and cancer (reviewed in [450]). Nonviral vectors comprise
physical and chemical methods of gene transfer that can
deliver more transgenes than viral methods and possess less
stimulating effect on the immune system; however, their
main drawback is the low transfection efficiency and tran-
sient gene expression [451, 452].

Viral vectors include retrovirus, adenovirus, adeno-
associated virus, and lentivirus [453]. Viral vector genomes
are modified by deleting some areas of their genomes so that
their replication becomes deranged; therefore, they are consid-
ered to be safer. Yet, there are some limitations, including their
confined transgenic capacity size and their marked immunoge-
nicity that can prompt the inflammatory system causing
degeneration of transduced tissue and insertional mutagenesis
[454, 455]. “Insertional genotoxicity” is a key factor that should
be considered when choosing a vector type and design for cell
therapy. Insertions may cause dominant gain-of-function
mutations (such as activation of protooncogenes flanking an
insertion site) mediated by either enhancer and/or promoter
elements in the vector or by aberrant splicing from the vector
transcript. This is favored by the genetic structure of the retro-
viruses and the frequently used transfection agents. Since the
experiments that monitored the insertional mutagenesis are
often performed in rodents with relatively short life spans, the
truemutagenic risk cannot be determined on the basis of vector
choice and the total integration load in the transplanted cells
alone; therefore, the true risk remains ill-defined. Primate ani-
mal models that are able to tolerate a larger number of trans-
planted MSCs and with longer life spans where transient
transfections could be proposed [456] were used.

Yet, it should be clearly noted that any therapy involving
genetic manipulations may result in MSC malignant trans-
formation through either tumorigenic transformation of the
transgene or disruption of the MSC’s genome by the inserted
transgenes, causing MSC subsequent transformation [457].
Stricter control and safety measures are required in the pro-
duction of MSCs for cell-based therapy, taking into consider-
ation that MSCs can further turn malignant as a result of
long-term culture and due to genetic manipulation. Govern-
ing the cell handling procedures in order to minimize the risk
of malignant transformation is ultimately needed. Unfortu-
nately, studying cancer development is a long process and
requires a long follow-up of treated patients to verify safety
in this context.

8. Cell Delivery

8.1. Delivery Route. Among the challenges that hinder the
clinical translation of stem/progenitor cell-based therapies
is the uncertainty in the therapeutic efficacy of MSCs. This
could be attributed to the paradoxical results obtained
from both animal studies and clinical trials, showing con-
troversial effectiveness, partly due to the method of MSC
delivery [61, 458].

In general, cells could be introduced locally or systemi-
cally into the tissues. The optimal delivery method depends
mainly on two factors, namely, whether the targeted disease
is local or systemic [61] and the mechanism of action of the
used cells [458]. Whether or not MSC optimal performance
is achieved when present at the target site of injury/inflam-
mation is hereby an important question. If MSCs should
exert their function mainly through secretion of cytokines
and growth factors in the circulation, i.e., having paracrine
and autocrine effects or through regulating the local immune
response [459–461], the presence of MSCs in the target site
would not be necessary and systemic effects could be
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achieved using a cell reservoir [61]. But if the presence of
MSCs at the target site is mandatory, for example, by differ-
entiating into replacement cells [462], or through the local
production of angiogenic or antiapoptotic factors [459], then
the delivery route must place the cells at the target site or
facilitate their migration to the site of interest [61].

Tissue defects are preferably treated with either local
injection, for example, intramuscular, intramyocardial, or
injection at the injury site of the spinal cord [463], or implan-
tation of cell-loaded scaffolds [464]. Local cell delivery is cur-
rently the most promising in tissue-engineering applications,
where cell-loaded scaffolds are locally transplanted at the
target site. The use of 3D synthetic or natural scaffold bio-
materials was shown to protect the cells from the aggres-
sive in vivo environment, protect against substantial cell
loss following systemic delivery due to the pulmonary
“first-pass” effect, enhance MSC homing [61, 465], and
promote functional integration and regeneration of the
damaged tissues [466]. The local delivery of MSCs, applied
in conjunction with or without biomaterials, has shown vast
therapeutic efficacy in musculoskeletal regeneration for repair
of osteochondrogenic diseases/disorders, including rheuma-
toid arthritis, osteoporosis, osteogenesis imperfecta, osteoar-
thritis, nonunion bone fracture, and craniosynostosis in
preclinical and some clinical settings [464, 467]. In addition,
direct surgical intramyocardial injection of MSCs and
catheter-based transendocardial injection have been investi-
gated in preclinical and clinical studies for the treatment of
cardiovascular diseases, showing promising efficacy and safety
[468–474], through allowing for higher cell retention rates and
providing a targeted delivery route without requiring the avail-
ability of chemotactic factors [475]. Although local MSC deliv-
ery may be desirable and promising in specific applications,
the need for certain procedures and/or surgery could be asso-
ciated with some risks [476].

Systemic delivery of MSCs is adopted when the target
disease is systemic or the need to regenerate several damaged
tissues is present. Intravascular injection benefits form wider
distribution of cells throughout the body and are being
minimally invasive. Systemic delivery is divided based on
the vascular route into intravenous (IV) or intra-arterial (IA).

The most commonly investigated method for delivering
MSCs is the IV route [458]. Significant entrapment of the
IV-delivered cells in the lungs results in a significant reduc-
tion in the numbers of cells reaching the organ of interest
due to pulmonary “first-pass” effect [477, 478]. MSCs have
an estimated diameter of 20–30μm [477, 479], and experi-
ments with microspheres have demonstrated that most parti-
cles of this size are filtered out by the lungs [477]. Yet, the
number of entrapped cells in the lungs could be decreased
with the administration of a vasodilator [478, 479]. Aside
from the effect of cell size, adhesion to the pulmonary vascu-
lar endothelium may also contribute to pulmonary cell trap-
ping as was evident from IV delivery of MSCs in a rat model
[477]. Thus, lung entrapment may explain the low engraft-
ment of IV-delivered cells in clinical trials [458, 480].

IA delivery of MSCs in animals enhanced the engraft-
ment of injected cells through bypassing the pulmonary
entrapment [481–483]. In a rat model of transient ischemic

stroke, IA injection of allogenic MSCs into the internal carotid
artery showed the ability of the IA-transplanted cells to migrate
into the ischemic brain, resulting in improved neurological
function and reduction of the infarct volumes [484]. In addi-
tion, IA delivery of MSCs reduced the expression of calcineurin
(CaN), a serine/threonine phosphatase which mediates neuro-
nal homeostasis, after ischemic stroke in a rat model. CaN
hyperactivation following ischemic stroke triggers apoptotic sig-
naling. Thus, significant improvement in functional activity and
normalized oxidative parameters were evident in rats receiving
IA MSC treatment as compared to the stroke group [485].
Renal IA delivery of MSCs in a porcine renal ischemia-
reperfusion model resulted in MSC distribution throughout
the kidney, mostly in the renal cortex, particularly inside glo-
meruli, thus limiting off-target delivery. In addition, MSC via-
bility in the kidney eight hours following IA infusion ranged
between 70% and 80%, which could permit more efficient inter-
action with injured tissue and enhanced regenerative effect
[486]. In a clinical trial investigating subjects with subacute spi-
nal cord injury, IA delivery (via the vertebralis artery) of BMSCs
resulted in greater functional improvement as compared to the
IV route [487]. However, a careful balance between achieving
high cellular engraftment without compromising blood flow
due to arterial occlusion is mandatory [482].

In the treatment of cardiovascular diseases, intracoronary
infusion of stem/progenitor cells is a relatively less complex
technique. Still, the possibility of myocardial necrosis resulting
from microvascular obstruction by the infused cells greatly
questions the safety of this route [474]. A meta-analysis inves-
tigated the efficacy of four different routes of MSC delivery in
acute myocardial infarction in swine and in clinical trials. The
investigated routes of delivery included transendocardial
injection, intramyocardial injection, IV infusion, and intracor-
onary infusion. Results showed the superiority of the transen-
docardial injection route due to both reduction in infarct size
and improvement in left ventricular ejection fraction in
preclinical and clinical trials [488].

Other routes of administrations are available for specific
therapeutic applications [476]. Notably, the intranasal deliv-
ery route is proposed as an efficient and noninvasive route to
the brain and for systemic administration to the central ner-
vous system, demonstrating enhanced cellular retention and
several improved neurological/psychiatric outcomes [489].
The intranasal delivery route depends on the ability of cells
to bypass the cribriform plate through various routes, such
as the olfactory bulb or the cerebrospinal fluid [490]. A study
demonstrated that MSCs administrated via the intranasal
route have the ability to migrate toward the injured cortex
in a mouse model of traumatic brain injury. The authors
employed superparamagnetic iron oxide tagged with a fluo-
rescein isothiocyanate fluorophore as a noninvasive magnetic
resonance imaging probe for MSC labeling and tracking
[491]. In a rat model of Parkinson’s disease, intranasal deliv-
ery of MSCs resulted in the appearance of cells in the olfac-
tory bulb, cortex, hippocampus, striatum, cerebellum,
brainstem, and spinal cord [492]. However, more experimen-
tal studies on the safety and efficacy of the intranasal delivery
route of MSCs are needed; as to date, only few animal studies
and no clinical studies are available.
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A recently developed “cell spray”method [493] was inves-
tigated as a novel delivery method for transplantation of allo-
genic human ASCs in the porcine myocardial infarction
model. This new cell delivery method was reported to be safe,
feasible, and effective and resulted in successful transplanta-
tion of ASCs forming a graft-like gel film covering the infarct
myocardium, significantly improving cardiac function [493].

8.2. Dose.Administration of an optimal cell dose is an impor-
tant requirement to obtain therapeutic efficacy of MSCs’
transplantation [466, 475, 494]. The determination of the
pharmacologically optimally effective dose range is a critical
issue for clinical translation of stem/progenitor cell-based
therapies. Challenges in defining an optimal cell dose for spe-
cific therapeutic applications are related to the large variabil-
ities in MSC clinical trials, including different disease
categories, study design, target tissue/organs, types of MSCs
used, manufacturing protocols, routes of delivery, and dosing
employed [495, 496]. Thus, standardization of study design is
mandatory to allow for better evaluation and correlation of
results among similar clinical trials [496]. The variability in
the optimal dosing identified by the various trials is primarily
affected by the different routes of delivery employed. IV
injection is the most commonly used and investigated
method for delivering MSCs to the blood, being the least
invasive method. As discussed earlier, due to entrapment of
most injected MSCs in the lungs (pulmonary first-pass
effect), IV has the highest average MSC dose, compared to
cell doses employed with other routes of delivery. IA injec-
tion allows MSCs to bypass the pulmonary entrapment; thus,
clinical trials employing this route have significantly lower
average doses in a narrower range than IV. However, IA is
used in a smaller number of trials as it is more invasive than
IV. Consequently, local routes of delivery which locate the
cells in a target site require lower average cell doses than
the wider cell distribution in the body and faster wash-out
following IV injection [497].

It is assumed that the number of administered cells
should vary proportionally with the observed clinical efficacy.
However, the data that had arisen from preclinical studies
and clinical trials on the stem/progenitor cell dosage has
yielded contradictory results [474, 475]. Recently, multiple
dosing of stem/progenitor cells has been demonstrated to
be more effective than the administration of a single large
dose [498–500]. These studies show that the full benefits of
stem/progenitor cell-based therapies could be underesti-
mated or unnoticed if they are measured after a single dose.
These results suggest that although the optimal cell dose
remains indefinable, multiple dosing of stem/progenitor cells
may provide therapeutic superiority in cardiac repair [475,
498]. This could be explained by the fact that a single large
dose initially presents a high number of cells but soon gets
“washed out,” while multiple dosing could offer a more dura-
ble cell persistence and paracrine signal for tissue repair, by
replacing the cells that die after transplantation. Yet, repeated
dosing using invasive delivery routes such as intramyocardial
and intracoronary injections is considered unsafe. In such
situation, a systemic route of delivery such as IV administra-
tion should be proposed [501].

8.3. Homing and Functional Integration. A major concern in
systemic delivery of MSCs is that cells may become
entrapped within organs that filter the blood (first-pass
effect), for example, the liver, lungs, and spleen. To avoid this,
several strategies to minimize lung entrapment (as discussed
before) and to improve the homing of systemically intro-
duced cells are employed [466]. Although there are numer-
ous reports of stem/progenitor cells homing to injured
tissue, the exact mechanism is not yet clear. Among the pro-
posed factors were defective vascular architectures found in
tumors [502] or leaky vasculature in injured tissues due to
the effect of histamine and other inflammatory mediators
[503], resulting in passive entrapment in the interstitial
space; other biochemical and biomechanical factors could
also be involved.

Homing of MSCs depends primarily on the chemokine
receptor, C-X-C chemokine receptor type 4 (CXCR4), and
its binding partner SDF-1, also known as C-X-C motif che-
mokine 12 (CXCL12) [481]. SDF-1 chemokine is released by
the injured tissue and interacts with the chemokine recep-
tors (CXCR4 and CXCR7) leading to the migration of MSCs
to the injured tissue [481, 504]. Several other cytokines and
growth factors, including IL-1 to IL-6, PDGF, VEGF, and
BMP, are secreted by platelets, inflammatory cells, and mac-
rophages arriving at the site of injury which could promote
migration of MSCs [505]. Additionally, the released inflam-
matory cytokines TGFβ1, IL-1β, and TNF-α in injured/in-
flamed tissue enhance migration by upregulation of matrix
metalloproteases (MMPs) that cleave gelatin, laminin, and
type IV collagen, constituting the basement membrane of
blood vessels, promoting transendothelial migration of
MSCs [481, 506].

Biomechanical factors could also contribute to MSC
homing [507]. Intermittent hydrostatic pressure was shown
to promote the migration of MSCs in vitro, which could be
attributed to the increased concentration of SDF-1 released
from MSCs in culture medium with increased hydrostatic
pressure [507]. Mechanogrowth factor (MGF), an isoform
of IGF-1, is further generated by cells in response to mechan-
ical stimulation and plays a key role in regulating MSC func-
tion, including proliferation and migration [508]. Culturing
of rat MSCs with MGF increased cell migration in a
concentration-dependent manner by altering the mechanical
properties of MSCs and activating the extracellular signal-
regulated kinase (ERK) 1/2 signaling pathway in vitro.
MGF-induced MSCs’ migration increased the phosphoryla-
tion level of ERK 1/2, cell traction force, cell stiffness, and cell
fluidization as compared with the control (without MGF).
The activation of the ERK 1/2 signaling pathway and remod-
eling of the cytoskeletal structure to regulate rat MSC
mechanics suggest the potential biomechanical and biologi-
cal role of MGF in inducing MSC migration [508].

Migration of BMSCs is also affected by several chemical
and mechanical factors [509]. Mechanical factors include
hemodynamic forces applied to the walls of the blood ves-
sel, in the forms of cyclic mechanical strain and blood shear
stress, through focal adhesion kinase (FAK) and ERK 1/2
signals, SDF-1α/CXCR4, and c-Jun N-terminal kinase (JNK)
and p38 mitogen-activated protein kinase (MAPK) pathways.
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Also, the elastic modulus (stiffness) of the ECM transmits com-
plex biophysical signals that exert an important role in modu-
lating MSC behavior, including promoting cell migration. The
microgravity environment encountered during spaceflight was
also shown to affect MSC migration, where simulated micro-
gravity inhibited the migration of BMSCs via reorganizing or
decreasing the expression of F-actin, increasing cell stiffness,
and reducing SDF-1α [509].

Yet, any endogenous homing mechanism is insufficient,
with less than 1% of delivered cells found in target tissues
[458, 510]. Improving homing of the exogenous MSCs would
greatly improve the functional integration of the cells into the
target tissues [510]. Several different strategies for improving
exogenous cell homing to the target site have been investi-
gated (reviewed in [458, 510]). In brief, the different strate-
gies can be divided into two main categories: (1) methods
that increase the ability of stem/progenitor cells to respond
to the chemotactic, homing, and migratory stimuli and (2)
methods for modifying the target sites to enhance chemo-
taxis of stem/progenitor cells [510].

Stem/progenitor cell-based strategies include genetic mod-
ifications, priming of cells with growth factors and cytokines,
cell preconditioning with hypoxia, treatment with certain
chemical compounds that can trigger signaling pathways, and
coating of the cell surface with double affinity antibodies or
with homing ligands by streptavidin linkers and glycoengineer-
ing. Although different strategies have been introduced to
increase the ability of stem/progenitor cells to respond to
migratory stimuli, ex vivo expansion and manipulation may
alter cell properties, such as proliferative capacity, differentia-
tion potential, and genetic stability of cells, negatively affecting
their safety at the clinical level. Thus, some prefer to modify the
target sites, through designing more attractive environments to
enhance stem cell recruitment. Target tissue-based strategies
include direct transfection of target tissue with chemokine
encoding genes, direct injection of chemokines or injection of
ectopic chemokine expressing cells, the use of scaffolds as deliv-
ery vehicles, and application of electrical fields [510].

As discussed earlier, MSCs enhance tissue repair mainly
through differentiating into replacement cells and/or para-
crine effects [511], depending on therapeutic purposes of the
transplanted stem/progenitor cells they could be introduced
to act locally or systemically. For MSCs to achieve their
intended therapeutic effect at the target site, functional
engraftment of transplanted stem/progenitor cells is a prereq-
uisite for achieving efficient regeneration via MSC differentia-
tion to replace the damaged host cells. Even if cell therapy is
used to provide paracrine factors or exosomes locally to sup-
port tissue repair or activate endogenous regeneration, initial
engraftment of the transplanted cells to the target organ is nec-
essary [512]. For the cells to integrate/engraft into the target
tissue, cells need to adhere to the ECM of the tissues through
the SDF-1/CXCR4 axis, failure of such interaction might trig-
ger cell apoptosis in anchorage-dependent cells due to loss of
contact with ECM, a process termed anoikis [504].

The limited functional integration of either autologous or
allogenic stem/progenitor cell-based therapies remains a
major clinical challenge. Following tissue injury, as in the case
of myocardial infarction or cerebral stroke, the transplanted

cells must replace billons of host dead cells to restore organ
function, although the number of cells that actually home to
and survive in the target organ is considerably low (as dis-
cussed before) [512]. In addition, cell survival into ischemic
environment or inflamed tissue is quite low, due to lack of ade-
quate oxygenation and the presence of inflammatory cytokine
and ROS production after hypoxia and reoxygenation. Genetic
engineering of MSCs with antiapoptotic and prosurvival fac-
tors such as the kinase Pim-1 was shown to enhance the repair
of damaged myocardium in infarcted hearts [513].

Even in cases of physical engraftment of transplanted
MSCs in injured tissues, successful functional integration,
such as integration of transplanted cardiomyocytes with the
host myocardium to allow a synchronized beating of the heart,
is uncommon. Transplantation of more immature cells in a
progenitor state might enable better in vivo functional integra-
tion [512]; however, transplantation of more immature stem
cells caries the risk of tumorigenicity that could impair their
therapeutic safety. That risk is lower if they are differentiated
before transplantation, but differentiation results in increased
immune recognition marker expression, triggering unwanted
immune response. Thus, a balance between tumorigenicity
and immunogenicity must be achieved [514].

Collectively, for more efficient and predictable outcomes
of the transplanted MSCs, several important factors have to
be taken in consideration. Choosing the optimal delivery route
for each specific application, while carefully evaluating the
merits and demerits of each delivery method, is recom-
mended, based on the intended mechanism of action of the
transplanted cells and the characteristics of the target organ/-
tissue. The recommendations of the optimal cell dose for each
therapeutic application and delivery route are still not avail-
able, yet multiple dosing is suggested to offer enhanced and
more predictable therapeutic effect through providing a pro-
longed cell persistence and paracrine signal for tissue repair.
Adapting novel strategies to enhance the homing of exogenous
MSCs are greatly needed to improve the functional integration
of the cells into the target tissues, as any endogenous homing
mechanism is insufficient for efficient integration of the trans-
planted cells. In addition, integrated personalized therapeutic
approaches aimed at engineering the transplanted cells, to be
more resistant to harsh environments and to enhance their
survival and integration, might be necessary. Modification of
the target site, for example, by rejuvenation of the vasculature
and transplanting stem/progenitor cells together with bioac-
tive factors and cytokines with/without biomaterials or mural
cells, could aid in creation of a healthy paracrine environment,
enhancing the functionality of transplanted cells [512].

9. Application of Biomaterials

As discussed above, the use of biomaterial-based 3D scaffolds
for local delivery of MSCs could represent a promising and
effective approach for modifying the target tissue and pro-
tecting the cells against the harsh environment in the disease-
d/injured tissues, enhancing cellular retention and functional
integration. In addition, biomaterials can serve as carriers for
bioactive molecules and growth factors that boost the regen-
erative capacity of MSCs such as VEGF, bFGF, HGF, IGF-1,
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and TGFβ [465]. The optimal combinations of stem/pro-
genitor cells and biomaterials that best suite each tissue and
clinical therapeutic situation are still not clear. Significant
efforts are being made to optimize compatible biomaterials
with each stem/progenitor cell type for specific therapeutic
applications [515].

In ischemic heart diseases, the natural architecture, vas-
cularity, and metabolism of normal cardiac tissues are lost.
Thus, cardiac tissue engineering, through engineering stem/-
progenitor cells on scaffolds, has been the ultimate purpose
for cardiac repair [475, 516]. Hydrogels and/or bioactive
agents are suggested to act as injectable delivery vehicles for
MSCs to enhance the survival, retention, and efficacy of these
cells in the injured myocardium. In addition, 3D patch-based
systems are being widely investigated for myocardial repair
to improve the therapeutic efficacy of stem/progenitor cell
transplantation, while avoiding the risk associated with nee-
dle injection [465]. In a murine model of myocardial infarc-
tion, the application of BMSC-loaded poly(ɛ-caprolactone)
(PCL)/gelatin cardiac patch supported the repair of the
infarcted myocardium and enhanced the cardiac function.
The MSC-loaded PCL/gelatin patch promoted the regenera-
tion and angiogenesis of the injured myocardium, which may
be attributed to the protection of the cells against the harsh
hypoxic environment. In addition to the paracrine effect
offered by the transplanted MSCs, the cytokines released
enhanced the activation of the epicardium and recruited the
endogenous c-kit+ cells [517]. A study [518] investigated
the proangiogenic potential of cytokine-conjugated collagen
patches seeded with human MSCs in a rat model of myocar-
dial infarction. The investigated patches allowed prolonged
cytokine release in the target site, together with enhancing
cell infiltration and promoting functional neovessel forma-
tion, thus preserving cardiac function in the rat model.

There are many challenges facing the preparation of syn-
thetic scaffolds that could mimic the natural cell microenvi-
ronment, which has directed the research interest toward
utilizing naturally derived ECM itself, obtained through the
process of decellularization [519]. Decellularized tissue scaf-
folds attract great interest in bone tissue engineering due to
its natural 3D porous architecture and natural biochemical
component arrangement, providing osteoinductive proper-
ties [520, 521]. However, the clinical translation of decellular-
ized scaffolds is hindered by the challenge to balance between
the optimal decellularization methods, to maintain the struc-
tural proteins that should have a positive impact on cell func-
tions, while removing resident cells and genetic material that
could cause an immunogenic response [519, 521].

Hence, the use of biomaterials could offer great benefits in
enhancing the therapeutic outcomes, through supporting the
cell integration and function aside from protecting them from
the harsh in vivo environments of the injured/diseased tissues.

10. Effect of Antimicrobials, Local Anesthetics,
and Other Drugs on MSC Properties

Different drugs and chemicals administrated, although being
needed for specific therapeutic or prophylactic effects, could
exert adverse effects or alter the properties of the trans-

planted MSCs, thus compromising/altering the effectiveness
of MSC-based therapies.

10.1. Effect of Antimicrobials. The effect of several antimicro-
bial drugs, including antibiotics, antifungals, antivirals, anti-
malarials, natural peptides, and Chinese traditional drug
extracts, on the differentiation potential of BMSCs has been
reviewed in the literature [522]. Antibiotics or antimicrobials
are commonly used to supplement culture media to avoid
any bacterial contamination of the cell culture [523]. Isola-
tion and cultivation of ASCs or oral MSCs usually involve
the presence of the penicillin-streptomycin mixture [524].
Gentamycin is also commonly used. The use of amphotericin
B is also suggested due to its widespread antifungal activity, but
due to its cytotoxic effect on human cells, less toxic forms of
the amphotericin B are currently available including a complex
of amphotericin B with copper (II) ions (AmB-Cu2+) [525].
Unfortunately, antibiotics in a cell culture may change the
regenerative potential and other biologic properties in many
types of cells; for instance, penicillin-streptomycin mixture
and gentamycin negatively affected the growth rate and target
mRNA expression level of differentiating embryonic stem cells
[526]. A study [527] investigated the effects of a penicillin-
streptomycin mixture, amphotericin B, AmB-Cu2+, and their
combinations on the proliferation and differentiation of ASCs
in vitro. Data showed the effect of the investigated antibiotics
on modulating the differentiation process, which is influenced
by the duration of exposure and the combination of antibiotics
employed [527].

Various antimicrobial drugs, although having a crucial
role in the treatment of bone and joint infections and in pre-
vention of postoperative infections, could exert specific
effects on BMSC properties, specifically their differentiation
potential. Cefazolin, a first-generation cephalosporin com-
monly used in arthroplasty to prevent infection, showed an
irreversible negative effect on human BMSC migration and
proliferation, in a time- and dose-dependent manner [528].
Rifampicin is a potent antibiotic commonly used in combi-
nation with ciprofloxacin in controlling orthopedic infec-
tions. High rifampicin concentrations, particularly higher
than 16mg/ml, exerted inhibitory effects on the in vitro pro-
liferation and osteogenic differentiation of BMSCs [529].

10.2. Effect of Local Anesthetics. Intra-articular administra-
tion of amide-type local anesthetics is routinely performed
during arthroscopic joint surgery to alleviate pain. In ortho-
pedic cartilage repair operations, the delivery of human
MSCs is often required via intra-articular injection, and it is
common to introduce local anesthetics prior to, during, and
following this procedure [530].

Lidocaine is one of the most commonly used amide-type
local anesthetics due to its faster onset of action, superior
safety profile, low cost, and wide availability compared to
older local anesthetics. In vitro exposure of human ASCs to
increasing concentrations of lidocaine resulted in a decreas-
ing number of viable MSCs. Furthermore, reduction in cell
proliferation was evident with the increasing exposure time,
which suggests that lidocaine has a dose- and time-
dependent cytotoxic effect on MSCs. MSCs subjected to
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lidocaine at various dilutions (2mg/ml to 8mg/ml) and expo-
sure times (0.5 to 4 hours) showed upregulation of genes nor-
mally associated with responses to stress and cytoprotective
mechanisms, while higher concentration of lidocaine (8mg/ml
and more) resulted in a significant drop in gene expression.
Exposure of MSCs to high concentrations of lidocaine for pro-
longed periods was shown to negatively affect MSC viability,
proliferation, and/or functions [531]. A recent study investi-
gated the effect of lidocaine applied during tumescent local
anesthesia prior to liposuction. Abdominal subcutaneous fat
tissue was infiltrated with lidocaine-containing tumescent local
anesthesia on the left and non-lidocaine-containing on the
right side of the abdomen and harvested subsequently for cell
analysis. Lidocaine showed no adverse effects on the distribu-
tion, cell number, and viability of ASCs [532].

Bupivacaine, ropivacaine, and mepivacaine are the mem-
bers of the pipecoloxylidide group of amide local anesthetics,
which differ in their onset of action, analgesic duration, and
potency. Their analgesic potency increases in a ratio of
1 : 1.5 : 4 from mepivacaine to ropivacaine to bupivacaine,
respectively [533]. Lidocaine, bupivacaine, ropivacaine, and
mepivacaine were cytotoxic to rabbit ASCs during in vitro
early chondrogenic differentiation, as evident by decreased
viability and increased apoptotic rate of ASC monolayer cell
culture experiments in a dose- and drug type-dependent
manner. 1% lidocaine induced relatively lower cytotoxic
effects on ASCs, and 2% mepivacaine and 1% lidocaine
appeared to exhibit a less pronounced influence on
chondrogenesis-associated mRNA expression [530].

In addition, local anesthetics could alter MSC secretory
function, depending on the anesthetic dose and potency,
along with the existing inflammatory environment [534]. A
systematic review [535] evaluating the effect of various local
anesthetics on different types of MSCs concluded that all
amide-based local anesthetics exhibited cytotoxic effects on
MSCs, and these effects were dependent on the dose, expo-
sure time, and drug type. Cytotoxicity could also be cell
type-dependent; however, there is currently insufficient
evidence to support this hypothesis. Nevertheless, the study
suggested that ropivacaine could offer less cytotoxicity than
other types of local anesthetics and might be preferred for
use in MSC-based therapy [535].

Future in vivo studies are crucial to better understand the
interactions of these agents with MSCs in a more physiolog-
ical environment, in terms of anesthetics’ pharmacokinetics
and the in vivo response and recovery of MSCs, to provide
enough supporting evidence for future clinical trials [535].

10.3. Effect of Other Drugs. Heparin supplementation during
culturing of human BMSCs was found to alter the cell biolog-
ical properties, even at low doses, which warrants great
caution regarding the application of heparin as a culture sup-
plement for in vitro expansion of BMSCs. Also, heparin
showed variable effects on gene expression and proliferation
of human BMSCs in a donor-dependent manner, and MSCs
harvested from patients receiving chronic heparin therapy
could show altered properties [536].

MSCs have immunosuppressive properties (discussed
above), and the presence of immunosuppressive drugs could

offer synergistic effect, augmenting MSCs’ immunosuppres-
sive action [537, 538]. In vitro culturing of human BMSCs
and ASCs in the presence of clinical doses of six widely used
immunosuppressive drugs (cyclosporine A, mycophenolate
mofetil, rapamycin, glucocorticoids, prednisone, and dexa-
methasone) was conducted to investigate their effect on
immunosuppressive properties of MSCs. ASCs were less sen-
sitive to the presence of immunosuppressive drugs than
BMSCs. Glucocorticoids, especially dexamethasone, exerted
the most prominent effects on both types of MSCs and
suppressed the expression of the majority of the immunosup-
pressive factors tested [539].

Duloxetine (a serotonin and norepinephrine reuptake
inhibitor) and fluoxetine (a selective serotonin reuptake
inhibitor) are commonly used antidepressants for the
management of major depressive disorders. Daily nontoxic
concentration of both drugs exerted time-dependent effects
on ASCs in vitro. In short-term exposure, both drugs influ-
enced the proliferation and stemness properties of noncom-
mitted ASCs, while following after 21 days of daily drug
treatments, both cell proliferation and mesenchymal stromal
cell marker expression were comparable to cells cultured in
basal medium. Treatment with fluoxetine did not lead to
morphological alterations during adipogenic or osteogenic
differentiation of committed cells. Treatment with duloxetine
resulted in slowing down lipid accumulation [540], which
contradicts weight gain documented in patients treated for
long durations [541] and increased mineral deposition,
which could be correlated with the upregulation in gene
expression of early and late osteogenic markers in ASCs
treated with duloxetine [540].

Nonsteroidal anti-inflammatory drugs showed no inter-
ference with BMSC potential to proliferate and differentiate
into osteogenic lineage in vitro, while inhibiting their chon-
drogenic potential [542].

In summary, it is evident that various drugs and chemi-
cals used during MSC in vitro culturing and ex vivo expan-
sion or during MSC transplantation could alter the cell
viability, proliferation, properties, and/or function. The exact
mechanism or consequences of each drug are still not clear,
based on the currently available evidence in literature, and
further future standardized in vitro studies, in vivo animal
investigations, and clinical trials are greatly needed to care-
fully evaluate the effects of different drugs and chemicals
used/needed during MSC-based therapies.

11. Conclusion

The results of MSCs’ clinical applications are mixed and con-
tradictory, preventing the advancement of MSCs into cell-
based therapy. Although a considerable number of studies
have proved the regenerative capacity of MSCs, significant
limitations still exist hindering their usage as a clinically safe
and efficient therapeutic approach.

Stem/progenitor cell-based therapy compromises varia-
tions related to the donor, their isolation, and expansion, as
well as to the wide range of used media and their constituents
and finally related to the recipients. All these variabilities sug-
gest the need for developing a biological database, following
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reviewing the literature for the growth factors and cytokines
associated with age, gender, health status, and immune
response. Such biological map could enable the therapists
to design a personalized protocol for each patient, consider-
ing the donor- and the recipient-related variations. Further,
limiting and overcoming donor-related variations entail
using standardized allogenic MSC transplantation following
rigorous characterization and immunophenotyping [58, 61,
100]. Alternative cell sources as ASCs [57, 58], dental pulp
MSCs [59], and stem/progenitor cell banking [61] should
be considered for therapeutic use in aged patients instead of
BMSCs.

Standardizing the materials used and the protocols uti-
lized during fabrication is mandatory to alleviate the discrep-
ancies during MSC fabrication. A chairside characterization
facility should exist to examine the autogenous products

from the patients (autoserum, for example) in order to over-
come the immunogenicity and the time consumption associ-
ated with other alternatives. Moreover, the cell dose or cell
delivery must be optimized according to the type and state
of illness, utilized MSC predefined criteria, and condition of
the patient. In addition, various drugs and chemicals used
during MSC in vitro culturing and ex vivo expansion or
duringMSC transplantation could alter the cell viability, pro-
liferation, properties, and/or function; thus, careful investiga-
tion of their effect on MSCs is mandatory.

Hence, for long-term therapeutic effectiveness and
safety of MSC-based therapies, more research on both
the preclinical and clinical levels has to be accomplished,
focusing on optimizing the protocol for MSC isolation
and in vitro expansion and preengineering to enhance
their in vivo survival, differentiation, homing, and
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functional integration into the diseased/injured target site.
In an attempt to prime the cells to be able to survive
the harsh in vivo environment postinjury and to augment
MSCs’ biological and functional properties, preconditio-
ning/pretreatment with hypoxia, growth factors, and/or
drugs and genetic engineering of MSCs are an area of
active research [543–547]. In addition, the establishment
of personalized treatment approaches for patients adapted
to their condition, disease state, and type of MSCs deliv-
ered is crucial. All these tactics (Figure 3) would greatly
contribute to the successful and efficacious translation of
MSC-based therapies into the clinical practice to be able
to achieve the long-awaited regenerative and therapeutic
role of MSCs.
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