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Abstract

Genomic signal processing (GSP) refers to the use of signal processing for the analysis of

genomic data. GSP methods require the transformation or mapping of the genomic data to

a numeric representation. To date, several DNA numeric representations (DNR) have been

proposed; however, it is not clear what the properties of each DNR are and how the selec-

tion of one will affect the results when using a signal processing technique to analyze them.

In this paper, we present an experimental study of the characteristics of nine of the most fre-

quently-used DNR. The objective of this paper is to evaluate the behavior of each represen-

tation when used to measure the similarity of a given pair of DNA sequences.

Introduction

Genomic signal processing (GSP) refers to the use of signal processing theory, algorithms, and

mathematical methods for the analysis, transformation, and interpretation of the information

contained in genomic data. It has been an active field of research for the past 25 years. While

most current GSP methods focus on identifying protein-coding regions in DNA sequences

(e.g., [1–10]), other applications include searching for genomic repeats [11], determining the

structural, thermodynamic, and bending properties of DNA [12], biological sequence querying

[13], estimating of DNA sequence similarity [14–16], and sequence alignment [17].

GSP methods require the transformation or mapping of the genomic information usually

represented as a string of characters (i.e., A, T, G and C) to a numeric representation in the

form of a single or multidimensional array of numeric values (i.e., a signal) [18]. Current DNA

numerical representations (DNR) may be divided into three categories: single-value mapping,

multidimensional sequence mapping, and cumulative sequence mapping.

Single-value representations are characterized by the use of a single one-dimensional

numerical value for each nucleotide in the DNA sequence. In this category we find: (i) “integer

representation”, where a numeric vector is generated by replacing each of the four possible let-

ters of the nucleotide by a fixed integer value [19]; (ii) “real number representation”, which

employs positive decimal values for the pyrimidines (i.e., A and G), and negative decimal val-

ues for the purines (C and T) [20, 21]; (iii) “paired numeric representation”, which incorpo-

rates the complementarity property of the nucleotides in the DNA strain [5]; (iv) “atomic
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number representation”, which assigns the atomic number of each nucleotide [22]; and, (v)

“electron-ion” interaction potential representation (EIIP), which employs numeric values that

represent the distribution of the free electron’s energies along the DNA sequence [23].

Multidimensional representations replace every nucleotide in the DNA sequence with a

vector that represents a point in a space of two or more dimensions. In this category, we find:

(i) “Voss representation”, which employs four binary indicator sequences to denote the pres-

ence of a nucleotide of each type [24]; and (ii) “Tetrahedron representation”, in which each

nucleotide corresponds to a vertex of a three-dimensional structure that is characterized by

having equal distances between every pair of vortices [25].

Cumulative representations can use single or multidimensional vectors, and are character-

ized by employing a random walk model in which a curve is constructed by the aggregate con-

tribution of consecutive numeric values assigned to each nucleotide. In this category we find

(i) “DNA walk representation” consists in taking a step upwards if the nucleotide is a pyrimi-

dine, and downwards if it is a purine [26]; and (ii) “Z-curve representation”, which constructs

a three-dimensional curve in which the first dimension relates to the distributions of the types

of nitrogenous base rings (purines vs. pyrimidines), while the second reflects the type of chem-

ical functional groups (i.e., amino vs. keto), and the third represents the strength of the hydro-

gen bonds in the nucleotide molecules (i.e., strong H bonds vs. weak H-bonds) [27].

To date, no DNR can be considered the “gold standard” nor is there any study or compari-

son of the properties of the different DNRs in a common task. In this paper, we present an

experimental study and comparison of the characteristics of nine common DNRs when used

to estimate the similarity between DNA sequences, employing the frequency power spectrum

obtained by the fast Fourier transform (FFT). The principle contribution of this paper is its the

exploration of the characteristics of the existing DNRs, which helps to provide insight into the

features that may be desirable for proposing new DNRs and GSP methods.

Materials and methods

Nine of the DNRs in the literature were selected for analysis and comparison (Table 1). For

each DNR, we performed synthetic and biological data experiments consisting of the computa-

tion of pairwise DNA sequence similarity. The details of the proposed experimental methodol-

ogy are described in the following section.

Sequence similarity computation

Consider a DNA sequence α (e.g., α = ATTCGCAT. . .) and let X̂ a denote the digital signal ver-

sion of that sequence that has been obtained using a DNR method. By applying the FFT to X̂ a

it is possible to compute its power spectral density (PSD) Ŝa, which describes how the power of

the signal (energy per unit time) is distributed over the different frequencies [28].

Consider two DNA signals X̂ a and X̂b corresponding to two DNA sequences α and β,

respectively. The relatedness or similarity score of these two sequences can be estimated by

comparing their frequency power spectra dðŜa; ŜbÞ using a similarity metric.

In this work, we explore four widely-used metrics: Euclidean distance [29], Normalized

Squared Euclidean distance [30], Correlation coefficient [29], and Manhattan distance [29].

To compare the PSD of two signals, both spectra must have the same number of elements k,

and every element in both vectors must correspond to the same frequency component. How-

ever, since the length of the signal representation of two different DNA sequences can differ,

this condition may not be satisfied. To overcome this challenge, we apply a zero padding to the

DNA signal with the smaller length before computing the FFT [31]. Also, the first entry of a

On DNR for genomic similarity computation

PLOS ONE | https://doi.org/10.1371/journal.pone.0173288 March 21, 2017 2 / 27

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0173288


Table 1. Selected DNA numerical representations.

Name Numeric representation Example for sequence X = [AACTGT]

1 Integer

X̂ðiÞ ¼

3 ifXðiÞ ¼ G

2 ifXðiÞ ¼ A

1 ifXðiÞ ¼ C

0 ifXðiÞ ¼ T

8
>>>>><

>>>>>:

X̂ ¼ ½2; 2; 1; 0; 3; 0�

2 Real

X̂ðiÞ ¼

� 0:5 ifXðiÞ ¼ G

� 1:5 ifXðiÞ ¼ A

0:5 ifXðiÞ ¼ C

1:5 ifXðiÞ ¼ T

8
>>>>><

>>>>>:

X̂ ¼ ½� 1:5; � 1:5; 0:5; 1:5; � 0:5; 1:5�

3 EIIP

X̂ðiÞ ¼

0:0806 ifXðiÞ ¼ G

0:1260 ifXðiÞ ¼ A

0:1340 ifXðiÞ ¼ C

0:1335 ifXðiÞ ¼ T

8
>>>>><

>>>>>:

X̂ ¼ ½0:1260; 0:1260; 0:1340; 0:1335; 0:0806; 0:1335�

4 Atomic Number

X̂ðiÞ ¼

78 ifXðiÞ ¼ G

70 ifXðiÞ ¼ A

58 ifXðiÞ ¼ C

66 ifXðiÞ ¼ T

8
>>>>><

>>>>>:

X̂ ¼ ½70; 70; 58; 66; 78; 66�

5 Paired Numeric

X̂ðiÞ ¼
1 ifXðiÞ ¼ A _ T

� 1 otherwise

8
<

:

X̂ ¼ ½1; 1; � 1; 1; � 1; 1�

6 Voss

X̂1ðiÞ ¼
1 ifXðiÞ ¼ A

0 otherwise

8
<

:

X̂2ðiÞ ¼
1 ifXðiÞ ¼ G

0 otherwise

8
<

:

X̂3ðiÞ ¼
1 ifXðiÞ ¼ C

0 otherwise

8
<

:

X̂4ðiÞ ¼
1 ifXðiÞ ¼ T

0 otherwise

8
<

:

X̂1 ¼ ½1; 1; 0; 0; 0; 0�

X̂2 ¼ ½0; 0; 0; 0; 1; 0�

X̂3 ¼ ½0; 0; 1; 0; 0; 0�

X̂4 ¼ ½0; 0; 0; 1; 0; 1�

7 Tetrahedron

X̂1ðiÞ ¼

2
ffiffiffi
2
p

3
ifXðiÞ ¼ T

�

ffiffiffi
2
p

3
ifXðiÞ ¼ C _G

0 otherwise

8
>>>>>>>><

>>>>>>>>:

X̂2ðiÞ ¼

ffiffiffi
6
p

3
ifXðiÞ ¼ C

�

ffiffiffi
6
p

3
ifXðiÞ ¼ G

0 otherwise

8
>>>>>>>><

>>>>>>>>:

X̂3ðiÞ ¼

1 ifXðiÞ ¼ A

�
1

3
otherwise

8
><

>:

X̂1 ¼ 0; 0; �

ffiffiffi
2
p

3
;
2
ffiffiffi
2
p

3
; �

ffiffiffi
2
p

3
; 2

1

3

� �

X̂2 ¼ 0; 0;

ffiffiffi
6
p

3
; 0; �

ffiffiffi
6
p

3
; 0

� �

X̂3 ¼ 1; 1; �
1

3
; �

1

3
; �

1

3
; �

1

3

� �

(Continued )
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power spectrum (e.g., Ŝað0Þ) is known as the zero-frequency (DC) component and represents

the average intensity of the DNA signal. In this work, we chose not to consider the DC compo-

nent in the spectrum comparisons for two reasons: (i) this value does not provide information

about the possible patterns present in the DNA sequences; and, (ii) this value is affected by the

zero padding, which will have an impact on the computed similarity score.

Euclidean and normalized squared euclidean distances. The Euclidean distance Eq (1) is

a metric used to define the distance between two points in an N-dimensional space. By consider-

ing each k frequency component of a DNA signal spectra as a dimension, a DNA sequence may

be represented as a point in a k-dimensional space. Therefore, the Euclidean distance can be

employed to determine the relatedness or similarity between sequences. A Euclidean distance of

zero can be interpreted as meaning that the two DNA sequences are identical or closely-related,

while a larger value means that the sequences are different. Additionally, since the Euclidean dis-

tance is unbounded (i.e., there is no limit for the largest value), we compute the normalized

squared Euclidean distance (Eq (2)), which provides similarity values in the interval [01].

dEðŜa; ŜbÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xk

f¼1

Ŝaðf Þ � Ŝbðf Þ
� �22

v
u
u
t ; ð1Þ

dNSEðŜa; ŜbÞ ¼
1

2
�
kðŜa � ŜaÞ � ðŜb � ŜbÞk2

kðŜa � ŜaÞk2 þ kðŜb � ŜbÞk2

ð2Þ

Manhattan distance. The Manhattan distance described in Eq (3) (also known as Taxicab

geometry or L1-Norm), is also used to determine the distance between two points in an N-

dimensional space; however, it considers distance only in orthogonal directions. This metric is

usually used to assess the differences in discrete space distributions, in contrast to the Euclid-

ean metric. Thus, this property makes it suitable for use as a measure of similarity between the

PSD of DNA signals.

dl1ðŜa; ŜbÞ ¼ k Ŝa � Ŝb k1 ¼
Xn

i¼1

jŜa

i � Ŝb

i j ð3Þ

Table 1. (Continued)

Name Numeric representation Example for sequence X = [AACTGT]

8 Z-Curve

X̂1ðiÞ ¼
Xði � 1Þ þ 1 ifXðiÞ ¼ T _G

Xði � 1Þ þ ð� 1Þ otherwise

8
<

:

X̂2ðiÞ ¼
Xði � 1Þ þ 1 ifXðiÞ ¼ A _ C

Xði � 1Þ þ ð� 1Þ otherwise

8
<

:

X̂3ðiÞ ¼
Xði � 1Þ þ 1 ifXðiÞ ¼ A _ T

Xði � 1Þ þ ð� 1Þ otherwise

8
<

:

X̂1 ¼ ½� 1; � 2; � 3; � 2; � 1; 0�

X̂2 ¼ ½1; 2; 3; 2; 1; 0�

X̂3 ¼ ½1; 2; 1; 2; 1; 2�

9 DNA walk

X̂ðiÞ ¼
Xði � 1Þ þ 1 ifXðiÞ ¼ C _ T

Xði � 1Þ þ ð� 1Þ otherwise

8
<

:

X̂ ¼ ½� 1; � 2; � 1; 0; � 1; 0�

https://doi.org/10.1371/journal.pone.0173288.t001
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Correlation coefficient. The correlation coefficient (Eq (4)) measures the strength and

direction of a linear relationship between two variables and so can be used to measure the

degree of similarity between the PSD of two DNA signals. The correlation coefficient is

bounded in the interval [01]. In general, a correlation value greater than 0.8 is generally

assumed as strong, whereas a correlation smaller than 0.5 is generally assumed as weak.

corrðŜa; ŜbÞ ¼

Pk
f¼1

Ŝaðf Þ � Ŝa

� �
Ŝbðf Þ � Ŝb

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pk

f¼1
Ŝaðf Þ � Ŝa

� �2Pk
f¼2

Ŝbðf Þ � Ŝb

� �2
r ð4Þ

where

Ŝ ¼
1

k

Xk

f¼1

Ŝðf Þ: ð5Þ

Synthetic data experiments

Data generation. To evaluate how different changes in a DNA sequence will affect the

similarity score when using a DNR, we generated a baseline DNA sequence of length 1,000

where each element was selected randomly with an equal probability of 0.25 for each type of

nucleotide (i.e., A, C, G, T). A total of 42 datasets were generated that corresponded to the

combinations of seven types of modifications (i.e., the three basic types of changes: insertion

(i), deletion (d), substitution (s); and their combinations: insertion and deletion (i-d), insertion

and substitution (i-s), deletion and substitution (d-s), insertion, deletion, and substitution

(i-d-s)), and six percentages of change (i.e., 1%, 2%, 4%, 8%, 16% and 32%) with respect to

the baseline sequence. For each type of change, the position of the nucleotide to be inserted,

removed, or replaced was selected randomly using uniform distribution. The kind of nucleo-

tide to be inserted or replaced was also selected using an equal probability of 0.25 for each type

of nucleotide. For each of the 42 datasets, we generated a sample of 400 sequences out of the

total number of possible variations of the baseline sequence. The sample size of 400 was deter-

mined by computing the minimal number of modified sequences needed for statistically sig-

nificant experiments with a confidence interval of Z = 1.96, an expected true proportion of

p = 0.5, and a confidence interval of c = 0.05 [32].

We performed three experiments using the synthetic data:

1. The first experiment was designed to evaluate how a DNR is affected by the different types

of change. We computed the mean similarity score of all the modified sequences within

every data set compared to the baseline sequence using the Euclidean distance, normalized

squared Euclidean distance, Manhattan distance, and correlation coefficient.

2. The second experiment was designed to evaluate how the different percentages of change

affect the frequency components of the power spectrum generated with a DNR. To this

end, we computed the variance of the similarity score of all the modified sequences within

the i-d-s data set, then we divided the power spectrum frequency axis into ten frequency

ranges. For each range of frequencies, we computed the average variance and mapped it to

a color value to generate an image that depicts the changes in the variance of the frequency

components with respect to the percentage of change.

3. The third experiment consisted in evaluating the genetic similarity score obtained with each

selected DNR, when comparing a DNA sequence with its corresponding complementary
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sequence (e.g., the complementary sequence of ATCG is TAGC), and its reverse comple-

mentary sequence (e.g., the reverse complementary sequence of ATCG is CGAT). To

achieve this, we generated the complementary sequence of the baseline sequence, and com-

puted the similarity by comparing the power spectra with the Euclidean distance, normal-

ized squared Euclidean distance, Manhattan distance, and correlation coefficient.

Biological data experiments

To evaluate the characteristics of the selected DNRs for estimating the similarity between real

biological sequences, we generated a database consisting of the DNA sequences that corre-

spond to the ribosomal protein encoding gene RP-S18 [33], downloaded from the Kyoto Ency-

clopedia of Genes and Genomes (KEGG) database [34, 35]. The main reason for employing

the RP-S18 is that this gene can be found in all eukaryotes. Thus, each sequence represents one

species in the eukaryote tree, allowing us to evaluate the performance of each DNR in comput-

ing the similarity between highly-related species (e.g., H. sapiens vs. P. troglodytes), as well as

distantly-related species (e.g., H. sapiens vs. S. cerevisiae). Twenty-six sequences were selected

in order to generate various clusters that were highly-distinct from each other, i.e., eutherians,

insects, and plants. Furthermore, at least one sequence was located outside every group (e.g.,

M. domestica is external to eutherians and together they constitute mammals, for which there

are two sequences external to them, and so on), where S. Cerevisiae is the furthest external

sequence. Fig 1 depicts the species selected for the RP-S18 gene, organized according to the

taxonomy tree.

Experiments that consisted in computing the pairwise similarity score of every DNA

sequence compared to (i) H. sapiens (representing the mammals group), and (ii) P. Saccharo-
myces (representing the species external to all others) were performed employing the Euclid-

ean distance, normalized squared Euclidean distance, Manhattan distance, and correlation

coefficient.

In the first experiment, the expectation was that the species belonging to the mammals

group (red) would be clustered together with a high similarity score compared to H. sapiens,
and that the insects (orange), and plants (green) species would be grouped with their corre-

sponding groups with a lower similarity score with respect to all eutherians. On the other

hand, it is expected that the most external species, S. Cerevisiae, would obtain the lowest simi-

larity score with respect to H. sapiens. In the second experiment, the expectation was that every

species would obtain low similarity scores with respect to S. cerevisisae, with no a particular

grouping order.

Additionally, we performed a second set of experiments using the Cytochome C oxidase

subunit 1 (COX1), a widely-known gene that has been branded as a general molecular marker

[36]. A total of 41 sequences were obtained from the KEGG database (Orthology: K02256),

corresponding to 17 mammals, 6 insects, 7 plants, 9 other vertebrates that can be located

between the mammals and the insects, 1 organism located between the insects and plants, and

the yeast S. cerevisiae as the external Eukaryota group. We performed comparisons of each

group with respect to one organism: H. sapiens for mammals, D. melanogaster for insects, O.
sativa for plants, and the S. cerevisiae as the external group.

We selected the COX1 gene because of its ability to allow the differentiation from Phyla to

Order with a mean pairwise divergence value of 11.3% among animals [37]. While it can dis-

sect the insect order appropriately [37] and perform reasonably well for all vertebrates [38, 39],

its value has been questioned for plants, where its mutation rate is even slower and chloroplast

genes are preferred [40].
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Based on this rationale, the expectation was that in our experiment that compared

sequences with respect to mammals or insects, the animals would distribute adequately. Also,

when comparing with respect to plants, two groups, that of plants and those of the rest with

seemingly undifferentiated clumps, would appear clearly.

Fig 1. Biological species selected for gene RP-S18 similarity comparison.

https://doi.org/10.1371/journal.pone.0173288.g001
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Fig 2 depicts the selected species for the COX1 genes organized according to the taxonomy

tree.

Results

Synthetic data results

Fig 3 depicts plots of the mean Euclidean distance scores for 400 synthetic sequences in each

one of the 42 datasets when using the selected DNRs.

Note that the increases in the mean Euclidean distance score for the real, paired numeric,

Voss, and tetrahedron representations present a similar behavior for all types of changes

despite the fact that they correspond to different DNR types (see Section 1). For these DNRs,

the curve with the shortest distance scores corresponds to substitutions. The curves corre-

sponding to deletions-substitutions, insertions-deletions, and insertions-deletions-substitu-

tions present notable differences when a small percentage of changes are present, and almost

an identical rate of increase after changes above 16%.

The curve corresponding to deletions exhibits a decrease in the Euclidean distance score for

changes above 4% for the real, paired numeric, and tetrahedron representations. Finally, the

curves corresponding to insertion-substitutions and insertions are the most distant from the

baseline sequence in these DNRs. For the integer representation, the curve with the smallest

distance with respect to the baseline sequence is also the one corresponding to substitutions.

Note that there is an important difference between the distance scores for the remaining

types of changes, with the exception of the curves corresponding to insertions-deletions and

insertion-deletion-substitutions the rate of change is very similar. The plots corresponding to

the EEIP and atomic number representations are also almost identical, with slight differences

in the rate of increase of distance for the curve corresponding to insertions.

Note as well that there is a brief decrease in the distance score at 4% for insertions, and at

8% for the insertion-substitution curves. It is notable that for the DNRs of cumulative type

(i.e., DNA walk and Z-curve), the curve corresponding to substitutions is not the one with the

lowest Euclidean distance score, as is the case in the other DNRs. For these DNRs, the lowest

distance scores correspond to the insertion-deletions, followed by the insertion-deletions-sub-

stitutions. Finally, note that the deletion, substitution, and insertion-deletion curves present

notable differences in their order in both plots after changes by 16%.

Table 2 lists the angle (in degrees) of the rate of change in the mean Euclidean distance

scores for the type of change corresponding to insertions-deletions-substitutions, for five

ranges of the percentage of changes.

Note that for almost all DNRs the angles are close to 90˚ in the range of 1%–2%, which

implies that small differences between two DNA sequences will produce high Euclidean dis-

tance scores. The exception to this is the EIIP representation, for which the angle is close to

45˚. This DNR presents smaller angles than the others, which means that the Euclidean dis-

tance score will not be dramatically affected even when there are great differences between a

pair of DNA sequences. The integer and real representations behave similarly in terms of

angles, as do as the Voss and tetrahedron representations. The angles corresponding to the

atomic number, Z-curve, and DNA walk representations are large for all the ranges, which

indicates that any magnitude of difference between two DNA sequences will produce large

Euclidean distance scores.

Fig 4 depicts plots of the mean normalized squared Euclidean distance in the same synthetic

data set. Note that the integer, EIIP and atomic number representations present a similar

behavior to that observed when using the Euclidean distance. The real, paired numeric and tet-

rahedron representations present very small differences for deletions, deletions-substitutions,
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Fig 2. Biological species selected for gene COX1 similarity comparison.

https://doi.org/10.1371/journal.pone.0173288.g002
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and insertion-substitutions after approximately 15% of changes, which may make it unreliable

for differentiating among such types of changes. The Voss representation appears to preserve

the same structure as with the Euclidean distance, but with more noticeable differences in the

distances between the deletion-substitutions, insertion-deletions and insertion-deletion-sub-

stitutions. Moreover, it is noteworthy that the cumulative DNRs are more sensitive to dele-

tions, compared to the large sensitivity to insertions when using the Euclidean distance.

Fig 3. Mean Euclidean distance scores for 400 synthetic sequences in each one of the 42 datasets when using each of the selected DNR

(i: insertion, d: deletion, s: substitution, i-d-s: insertion-deletion-substitution, i-d: insertion-deletion, i-s: insertion-substitution, d-s:

deletion-substitution).

https://doi.org/10.1371/journal.pone.0173288.g003
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Table 3 lists the the angle (in degrees) of the rate of change in the mean normalized squared

Euclidean distance scores for the type of change corresponding to insertions-deletions-substi-

tutions for five ranges of the percentage of change. Note that the angle of the rate of change

is relatively small for all DNRs compared to the angle of the rate of change observed when

using the unbounded Euclidean distance (Table 2). This is explained by the normalization

step, which bounds the maximum possible score to the value of one, and therefore, has the

effect of “compressing” the relative difference scores.

Fig 5 depicts the results corresponding to the use of the Manhattan distance in the synthetic

DNA signal data set. Note that for all DNRs the substitutions present the highest similarity

with respect to the original sequence, while the insertions represent the largest differences.

Moreover, the order of the curves in the plots indicate that this distance may be more robust

with respect to the DNRs employed.

Table 4 lists the the angle (in degrees) of the rate of change in the Manhattan distance scores

for the type of change corresponding to insertions-deletions-substitutions for five ranges of

the percentage of change. Note that the angles remain large for all the DNRs with the exception

of the EEIP, compared to the Euclidean distance, which means that the difference score will

continue to increase as the percentage of change increases.

Fig 6 depicts the mean complementary correlation coefficient scores (i.e., 1-Correlation)

for the same data when using each one of the selected DNRs.

Note that the magnitude of the similarity scores, in particular the EIIP, the atomic number,

and the cumulative representations, present high correlation scores even when large changes

occur (e.g., a correlation of approximately 0.94 for changes of 32% with the baseline sequence

in the curve corresponding to deletions). Note that for all the non-cumulative DNRs, the high-

est mean correlation score is obtained by the type of change corresponding to substitutions.

The mean correlation coefficient corresponding to the other types of changes behaves simi-

larly for the real, paired Numeric, and Tetrahedron representations, with the curve corre-

sponding to substitutions far above the other curves, and an apparent convergence of these

curves as the percentage of changes increases. The Voss representation behaves similarly, with

the difference that the mean correlation coefficient scores are higher for all the curves, and a

better separation of the other curves as the percentage of changes increases, as well as its dis-

tinct behavior for insertions, which is most similar to the one for the integer representation.

The integer representation also behaves similarly, with the difference that the other curves

score higher than the Voss representation curves. The EIIP and Atomic number curves behave

like each other, with minor differences in the mean correlation coefficients. Finally, the DNA-

Table 2. Angle (in degrees) of the rate of change in the mean Euclidean distance scores for the type of change corresponding to insertions-dele-

tions-substitutions, for five ranges of the percentage of changes (2-1, 4-2, 8-4, 16-8, 32-16).

Angle of the Rate of Change Score by Percentage of Change

DNR 2-1 4-2 8-4 16-8 32-16 1 2 4 8 16 32

Integer 88.8 86.9 80.2 69.3 42.7 601.37 648.64 685.70 708.74 729.91 744.66

Real 88.7 86.5 78.5 65.0 37.2 583.68 626.69 659.76 679.33 696.50 708.65

EIIP 45.6 25.0 10.1 5.9 2.6 12.22 13.24 14.18 14.89 15.71 16.45

Atomic Number 89.9 89.7 89.3 89.1 88.0 4367.13 4812.52 5258.03 5605.61 6105.16 6568.63

Paired Numeric 88.5 86.5 77.8 63.8 34.6 525.94 565.33 597.74 616.22 632.44 643.48

DNA Walk 89.9 89.8 89.7 89.6 89.5 1309.21 1772.64 2451.74 3360.19 4453.91 6306.96

Voss 86.6 81.7 64.1 42.5 18.4 228.48 245.30 259.07 267.32 274.65 279.95

Tetrahedron 87.4 83.7 68.8 51.0 23.0 304.65 326.77 344.82 355.11 364.98 371.77

Z-Curve 89.9 89.8 89.8 89.7 89.5 1500.43 2066.82 2826.21 3836.01 5351.83 7053.40

https://doi.org/10.1371/journal.pone.0173288.t002
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walk and Z-curve representations present a quasi-linear decrease in their mean correlation

scores with respect to increasing percentages of changes.

For these DNRs, the highest score is obtained by the insertion-deletion curve. Unlike the

other DNRs, the i-d-s and i-d curves are better separated. Note how these results are consistent

with those obtained with the other distances, with the main difference that the correlation

coefficient is always in the range of [−1, 1], while the Euclidean and Manhattan distances

ranges within [0,1) and the normalized Euclidean distance in the range of [0, 1].

Fig 4. Mean Normalized squared euclidean distance scores for 400 synthetic sequences in each of the 42 datasets when using each of the

selected DNR (i: insertion, d: deletion, s: substitution, i-d-s: insertion-deletion-substitution, i-d: insertion-deletion, i-s: insertion-

substitution, d-s: deletion-substitution).

https://doi.org/10.1371/journal.pone.0173288.g004
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Table 5 lists the angle (in degrees) of the rate of change in the mean correlation coefficient

scores for the type of change corresponding to insertions-deletions-substitutions for five

ranges of the percentage of change.

Similar to the case of the normalized squared Euclidean distance, the angles are subtle for

almost all DNRs. Note that for the Atomic number, EEIP, and DNA-Walk representations, the

angles are near zero for every range of percentage of change. Therefore, the similarity between

two sequences may be impossible to estimate using these DNRs with this metric. The integer

representation method may be more sensitive to differences between two signals, while the

real, paired numeric, and cumulative representations may be a better option for estimating the

correlation between two sequences.

Fig 7 depicts the mean variance of the frequency components according to the percentage

of change for the selected DNRs using a color palette where red and blue represent high and

low variances, respectively. Note that the tetrahedron representation concentrates the variabil-

ity around the higher frequencies as well as the frequency corresponding to approximately 1/5

of the maximum frequency for percentages of change around 8%, and more homogeneous

spread of variability for higher percentages of change. The integer, real, and Voss representa-

tions have a significant variability in the high-frequency components, and in some of the low-

and mid- frequency components.

The paired numeric representation concentrates the variability in the mid-frequency com-

ponents. The EIIP, atomic number, and cumulative representations concentrate an extremely

high variability in the low frequencies for percentages of change larger than 8%, which

depresses the variability in the other frequency components among the remaining percentages

of change. This explains the high correlation scores for these DNRs, since almost the entire

power spectrum may seem similar in comparison to the largest possible value differences for

the low frequency components.

Table 6 lists the scores for the comparison of the synthetic baseline sequence with its corre-

sponding complementary sequence, and the reverse complementary sequence. Note that the

real and paired numeric representations obtain scores that indicate the identity of the power

spectra of the complementary and reverse complementary sequences for all metrics. This can

be explained because these DNRs consider the complementarity property of the DNA strands

for the numeric mapping and, therefore, generate the same patterns in the signals.

This behavior may be an advantage in some cases of analysis where it is desirable to account

for the structural complementarity of the DNA (for example, for determining the similarity

between two DNA sequences A and B without the need to determine which of the two strains

Table 3. Angle (in degrees) of the rate of change in the mean normalized squared Euclidean distance scores for the type of change corresponding

to insertions-deletions-substitutions, for five ranges of the percentage of changes (2-1, 4-2, 8-4, 16-8, 32-16). A = ×10−2, B = ×10−3.

Angle of the Rate of Change Score by Percentage of Change

DNR 2-1 4-2 8-4 16-8 32-16 1 2 4 8 16 32

Integer 0.6 0.3 8.8A 4.1A 1.5A 0.07028 0.08121 0.09058 0.09671 0.10250 0.10663

Real 2.7 1.1 0.3 0.2 5.4A 0.33235 0.37968 0.41860 0.44303 0.46433 0.47933

EIIP 5.0A 2.5A 1.1A 6.4B 3.0B 0.00530 0.00618 0.00707 0.00780 0.00870 0.00954

Atomic Number 2.5A 1.4A 6.1B 4.7B 2.3B 0.00208 0.00251 0.00300 0.00342 0.00408 0.00473

Paired Numeric 2.7 1.2 0.4 0.2 5.9A 0.32230 0.36861 0.41081 0.43616 0.46088 0.47739

DNA Walk 0.1 9.8A 9.9A 7.4A 7.7A 0.00210 0.00390 0.00734 0.01422 0.02453 0.04605

Voss 1.6 0.7 0.2 0.1 3.8A 0.19917 0.22771 0.25325 0.26935 0.28420 0.29469

Tetrahedron 2.6 1.2 0.3 0.2 5.9A 0.32567 0.37133 0.41189 0.43632 0.46108 0.47756

Z-Curve 0.2 0.2 0.2 0.2 9.8A 0.00506 0.00917 0.01684 0.02940 0.05263 0.07996

https://doi.org/10.1371/journal.pone.0173288.t003
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of A or B needs to be employed). However, this may be a disadvantage in cases where a

detailed analysis of the differences between two DNA sequences is required.

Note that the Z-curve and DNA Walk representations also provide scores that indicate

identical power spectra compared to the complementary sequence. However, in the case of the

reverse complementary sequences, these two scores indicate a large difference between their

frequencies. This property can be explained by the cumulative characteristic of these DNRs,

which generates different DNA signals when taking the reverse direction. This response could

Fig 5. Mean Manhattan distance scores for 400 synthetic sequences in each one of the 42 datasets when using each of the selected DNR

(i: insertion, d: deletion, s: substitution, i-d-s: insertion-deletion-substitution, i-d: insertion-deletion, i-s: insertion-substitution, d-s:

deletion-substitution).

https://doi.org/10.1371/journal.pone.0173288.g005
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represent an important criticism of these DNRs, since in their formulation the authors justify

the mapping values employed arguing that they consider the DNA complementarity property,

while this does not apply for computing similarities. Integer, EIIP, Atomic Number, Voss and

Tetrahedron present the same scores for the complementary sequence and the reverse comple-

mentary sequence, respectively. The latter is due to the symmetry property of the frequency

Table 4. Angle (in degrees) of the rate of change in the mean Manhattan distance scores for the type of change corresponding to insertions-dele-

tions-substitutions, for five ranges of the percentage of changes (2-1, 4-2, 8-4, 16-8, 32-16).

Angle of the Rate of Change Score by Percentage of Change

DNR 2-1 4-2 8-4 16-8 32-16 1 2 4 8 16 32

Integer 90.0 89.9 89.7 89.3 88.0 14545.7 15922.5 17065.4 17796.3 18440.1 18891.6

Real 90.0 89.9 89.6 89.2 87.5 14127.3 15379.3 16405.9 17043.9 17589.7 17949.1

EIIP 88.1 85.7 77.5 66.1 40.2 302.3 331.9 358.3 376.4 394.5 408.0

Atomic Number 90.0 90.0 90.0 89.9 89.9 109659.5 121566.4 132437.8 139022.9 147648.2 154013.4

Paired Numeric 89.9 89.9 89.6 89.1 87.3 12759.7 13901.9 14878.3 15468.6 15958.7 16297.6

DNA Walk 90.0 90.0 89.9 89.9 89.9 19099.4 23006.4 27651.7 32232.5 37815.1 45259.6

Voss 89.9 89.7 89.1 88.0 84.2 5532.5 6023.3 6443.3 6704.3 6939.2 7097.1

Tetrahedron 89.9 89.8 89.3 88.5 85.5 7375.7 8020.8 8575.5 8902.9 9217.5 9421.4

Z-Curve 90.0 90.0 90.0 89.9 89.9 18633.5 22596.3 27166.0 31891.5 38082.2 44335.7

https://doi.org/10.1371/journal.pone.0173288.t004

Fig 6. Mean 1-Correlation scores for 400 synthetic sequences in each one of the 42 datasets when

using each of the selected DNRs. i-d: insertion-deletion, i-s: insertion-substitution, d-s: deletion-

substitution). Note that the range for each box is not between [0, 1], instead they vary in order to present a

better visualization.

https://doi.org/10.1371/journal.pone.0173288.g006
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Table 5. Angle (in degrees) of the rate of change in the mean correlation coefficient scores for the type of change corresponding to insertions-dele-

tions-substitutions, for five ranges of the percentage of changes (2-1, 4-2, 8-4, 16-8, 32-16). A = ×10−2, B = ×10−3.

Angle of the Rate of Change Score by Percentage of Change

DNR 2-1 4-2 8-4 16-8 32-16 1 2 4 8 16 32

Integer 1.3 0.5 0.2 8.3A 3.0A 0.14053 0.16240 0.18112 0.19337 0.20493 0.21317

Real 5.4 2.2 0.7 0.3 0.1 0.66464 0.75931 0.83715 0.88604 0.92864 0.95865

EIIP 0.1 5.1A 2.1A 1.3A 6.0B 0.01060 0.01236 0.01413 0.01560 0.01739 0.01907

Atomic Number 5.0A 2.8A 1.2A 9.5B 4.7B 0.00416 0.00503 0.00599 0.00684 0.00816 0.00946

Paired Numeric 5.3 2.4 0.7 0.4 0.1 0.64453 0.73715 0.82156 0.87229 0.92173 0.95477

DNA Walk 8.9A 8.0A 9.7A 8.5A 8.5A 0.00186 0.00341 0.00621 0.01300 0.02488 0.04852

Voss 3.3 1.5 0.5 0.2 7.5A 0.39826 0.45532 0.50639 0.53857 0.56826 0.58921

Tetrahedron 5.2 2.3 0.7 0.4 0.1 0.65123 0.74256 0.82370 0.87258 0.92212 0.95510

Z-Curve 0.3 0.2 0.2 0.2 0.1 0.00691 0.01187 0.02045 0.03559 0.06183 0.09648

https://doi.org/10.1371/journal.pone.0173288.t005

Fig 7. Mean variance of the frequency components according to the percentage of change for the

selected DNRs using a color palette where red and blue represent high and low variances,

respectively. HF stands for high and and LF for low frequencies.

https://doi.org/10.1371/journal.pone.0173288.g007
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spectrum (i.e., the frequency spectrum of a numeric sequence is the same even if this numeric

sequence is sorted in reverse order).

Voss does not present such behavior because of the procedure used to transform a multidi-

mensional signal to a single-dimensional signal in which, for each dimension, the power spec-

trum is computed and then concatenated one after the other.

Biological data results

Fig 8 depict the distribution of the similarity scores of all the selected species of the gene

RP-S18 with respect to H. sapiens (left column) and S. Cerevisiae (right column) when using

the four selected similarity metrics. Note that all the non-cumulative DNRs were successful in

clustering all mammals with a large similarity score when compared to H. sapiens. Also, note

that the Macaca mulatta and Pan Troglodytes were the closest species to H. sapiens as was to be

expected.

When using the Euclidean distance, only the Real, Voss, and Tetrahedron representations

successfully assign a lower similarity score to the S. Cerevisiae than to all other species (i.e., the

black cross marked on top of all other markers). However, when using the normalized squared

Euclidean distance and the correlation coefficient, the integer, real, Paired Numeric, Voss, and

tetrahedron representations depict the black cross above every other marker. When using the

Manhattan distance, the EEIP also depict the S. Cerevisiae as the most unrelated specimen.

Note that for the non-cumulative DNRs all species tend to cluster together with low similarity

scores when compared to S. Cerevisiae. DNA walk and Z-curve do not show this clustering

and present a more uniform distribution of the similarity scores for all metrics. When using

the correlation coefficient, a similar behavior can be observed, with the main difference being

in the Atomic number and EEIP representations where the species are grouped with a high

similarity score when compared to S. Cerevisiae (i.e., around 98% to 99% correlation). This

implies that all species are very similar to S. Cerevisiae, which is incorrect. Similarly, the cumu-

lative representations yield high similarity scores with respect to this species.

Figs 9–12 depict the distribution of the similarity scores of all the selected species of the

gene COX1 with respect to H. sapiens, (B) Drosophila melanogaster, and (C) Oryza sativa when

using the Euclidean distance, squared Euclidean distance, Manhattan distance, and correlation

coefficient as the similarity metrics, respectively.

Note that overall, the distance measurements remain similar for the single and multidimen-

sional representations. However, this is not the case for the cumulative DNRs that smear all

Table 6. Complementary sequence scores for each DNR. EC stands for Euclidean distance, CC for correlation coefficient, NE for normalized Euclidean

distance, and MD for Manhattan distance.

Complementary R. complementary

DNR ED NE MD CC ED NE MD CC

Integer 636.92 0.075 1.63×104 0.84 636.92 0.075 1.63×104 0.84

Real 0 0 0 1 0 0 0 1

EIIP 15.68 0.008 391.46 0.98 15.68 0.008 391.46 0.98

Atomic number 4.69×103 0.002 1.02×105 0.99 4.69×103 0.002 1.02×105 0.99

Paired numeric 0 0 0 1 0 0 0 1

Voss 277.12 0.289 7.07×103 0.42 277.12 0.289 7.07×103 0.42

Tetrahedron 245.93 0.316 6.25×103 0.36 245.93 0.316 6.25×103 0.36

Z-Curve 0 0 0 1 8.98×103 0.081 3.62×104 0.8925

DNA Walk 0 0 0 1 1.42×104 0.113 4.74×104 0.8837

https://doi.org/10.1371/journal.pone.0173288.t006
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Fig 8. Biological experiment results for the similarity computation of the selected gene RP-S18 sequences

with respect to H. sapiens (left column) and S. Cerevisiae (right column) when using the four selected

similarity metrics.

https://doi.org/10.1371/journal.pone.0173288.g008
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Fig 9. Biological experiment results for the similarity computation of the selected gene COX1

sequences with respect to H. sapiens (top), Drosophila melanogaster (middle), and Oryza sativa

(bottom) when using the Euclidean distance as the similarity metric.

https://doi.org/10.1371/journal.pone.0173288.g009
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Fig 10. Biological experiment results for the similarity computation of the selected gene COX1

sequences with respect to H. sapiens (top), Drosophila melanogaster (middle), and Oryza sativa

(bottom) when using the normalized squared Euclidean distance as the similarity metric.

https://doi.org/10.1371/journal.pone.0173288.g010
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Fig 11. Biological experiment results for the similarity computation of the selected gene COX1

sequences with respect to H. sapiens (top), Drosophila melanogaster (middle), and Oryza sativa

(bottom) when using the Manhattan distance as the similarity metric.

https://doi.org/10.1371/journal.pone.0173288.g011
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Fig 12. Biological experiment results for the similarity computation of the selected gene COX1

sequences with respect to H. sapiens (top), Drosophila melanogaster (middle), and Oryza sativa

(bottom) when using the correlation coefficient as the similarity metric.

https://doi.org/10.1371/journal.pone.0173288.g012
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the species without any chance to resolve even at the Phylum level. In contrast, the Atomic

Number and EEIP representations present an erratic clustering of the taxa.

Note that the main difference of all the explored distance metrics is the scale at which they

differentiate the organisms, following from the lowest-to-highest: Euclidean < Correlation <

Norm L2 <Manhattan. At first glance, the Manhattan distance may seem to disperse ade-

quately through the relevant order layers, but when reviewed for all the comparisons it

becomes clear that this measurement is quickly saturated and renders maximum distances to

groups that the COX1 gene may still differentiate at the phylum level. Likewise, the Norm L2

distance can barely differentiate between the Phyla before reaching saturation points.

An interesting result is that Bos mutus is consistently the farthest specimen on almost every

comparison, independently of the DNR and distance measurement employed. When perform-

ing a more detailed examination of its respective KEGG entry (bom:102267288) it showed

that even when it is a COX1 gene, in the RefSeq is registered as cytochrome c oxidase subunit

1-like. This means that, a distant homologous gene was introduced and it acted as the external

group since it showed greater distance than Saccharomyces cerevisiae. This shows that the

methodology presented in this work is capable of discriminating between close orthology and

more distant homologies.

Discussion

The proposed DNRs may be grouped into two categories, according to the values to be

assigned to each nucleotide [18]: fixed value-based mapping methods characterized by

employing arbitrary numeric values for each DNA letter, and biological-based mappings char-

acterized by their use of numerical values that are somehow justified by some biochemical or

biophysical properties of the DNA molecules.

We believe that the robustness of the fixed value-based mapping methods such as the inte-

ger and real representations is questionable since they do not consider any biological property.

Moreover, it is evident that the use of different values generates different results. If we look at

EIIP and atomic number representations as fixed value mapping methods since they employ

characteristics that may not directly affect the biological properties or the dynamics associated

with the DNA molecules, we can verify that the use of arbitrary values and intervals lead to dif-

ferent results. In that respect, biological-based mappings such as the Voss and tetrahedron rep-

resentations which consider the properties of the DNA molecules and their interactions may

represent a better choice.

In the research presented in this paper, we performed experiments employing synthetic

DNA sequences that were generated and altered with different types of change in a cumulative

manner, using a uniform probability distribution for the selection of each type of nucleotide.

This procedure may not be valid for modeling real biological DNA sequences, since the rela-

tive proportions of bases in DNA are not even [41]. However, given that the numeric values

assigned to each nucleotide are different among the selected DNRs, the uniform probability

distribution employed seems to be appropriate to avoid a possible bias in the results due to a

high frequency of appearance of a certain numeric value.

It is interesting that the EIIP and atomic number representations behave similarly to each

other, and unlike the rest of the single-dimensional DNRs (Figs 3–6). We believe this is

because of the cost of change of a nucleotide, in a given sequence, to a different one. Such a

cost is determined by the arithmetical difference in the value of the two different nucleotides

to be interchanged (the larger the difference, the greater the cost). In the case of the integer,

real, and paired numeric representations, the costs are relatively lower, in comparison with

the cost when using the EIIP and atomic number representations. In these latter DNRs, large
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differences between sequences will tend to generate disproportionately lower frequencies, as

can be verified in Fig 7.

It is thus evident that the cumulative representations obtained the worst results with respect

to our hypothesis. In particular, we believe that these types of representations are not suitable

for FFT-based GSP methods, because of their lack of stationarity, which is a desideratum when

using digital signal processing methods [42]. Moreover, the cumulative representations tend to

generate disproportionately greater lower frequencies, similarly to the EIIP and atomic num-

ber representations (Fig 7).

In this sense, the multidimensional representations may be considered as more appropri-

ate choices, since their structure makes it possible to have equal costs for the replacement of

any two nucleotide types. From the results obtained using biological data, we verified that,

indeed, the multi-dimensional representations are more accurate with respect to what was

expected as a result of the biological experiments. The paired numeric and real representa-

tions also seem to be adequate for GSP, since they consider the structural characteristics of

the DNA molecule (i.e., complementarity property). This can be verified as well in the bio-

logical results (Figs 8–12).

In fact, we can verify that all the non-cumulative selected DNRs are sub-spaces of the space

generated by the Voss representation. For example, the integer, real, EEIP, atomic number,

and paired numeric representations can be derived from the Voss representation by multiply-

ing each Voss indicator sequence by the values assigned to each nucleotide type on each of the

DNRs, and then performing a sum over the four dimensions.

From the results obtained in this research, we believe that an adequate DNR could consist

of a multidimensional mapping that employs different values corresponding to the biological

properties of the DNA molecules in each dimension. Moreover, we believe that the notion of

neighboring nucleotides must be considered. In this sense, the use of the k-tuples approach

could be useful when defining a new DNR.

An application of the presented approach is the assessment of the similarity among sets of

DNA sequences without the need of performing alignment over the DNA characters. This will

allow performing faster comparisons among large databases, especially if the sequences are

stores in DNA signal form with their corresponding power spectra. In fact, thanks to the

increase of algorithms and computational methods based on the use of Graphical Processing

Units (GPU), we believe that it is very likely that most of the GSP methods will be based on

these technologies. Our future work includes the implementation of our methods using GPU

and, the evaluation and development of additional DNRs and methods for DNA analysis

based on GSP techniques.

Conclusion

We have presented an experimental study on the characteristics of nine DNRs belonging to

three categories. Our results indicate that the multidimensional DNRs such as the Voss and

tetrahedron representations are more appropriate for the computation of the similarity

between DNA signals than are the other DNRs.
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