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The gut microbiota modulates host amino acid and
glutathione metabolism in mice
Adil Mardinoglu1,2,†,*, Saeed Shoaie1,†, Mattias Bergentall3,4, Pouyan Ghaffari1, Cheng Zhang2,

Erik Larsson3,4, Fredrik Bäckhed3,4 & Jens Nielsen1,2

Abstract

The gut microbiota has been proposed as an environmental factor
that promotes the progression of metabolic diseases. Here, we
investigated how the gut microbiota modulates the global meta-
bolic differences in duodenum, jejunum, ileum, colon, liver, and two
white adipose tissue depots obtained from conventionally raised
(CONV-R) and germ-free (GF) mice using gene expression data and
tissue-specific genome-scale metabolic models (GEMs). We created
a generic mouse metabolic reaction (MMR) GEM, reconstructed 28
tissue-specific GEMs based on proteomics data, and manually
curated GEMs for small intestine, colon, liver, and adipose tissues.
We used these functional models to determine the global metabolic
differences between CONV-R and GF mice. Based on gene expres-
sion data, we found that the gut microbiota affects the host amino
acid (AA) metabolism, which leads to modifications in glutathione
metabolism. To validate our predictions, we measured the level of
AAs and N-acetylated AAs in the hepatic portal vein of CONV-R and
GF mice. Finally, we simulated the metabolic differences between
the small intestine of the CONV-R and GF mice accounting for the
content of the diet and relative gene expression differences. Our
analyses revealed that the gut microbiota influences host amino
acid and glutathione metabolism in mice.
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Introduction

The human gut harbors a vast ensemble of bacteria that have

profound effects on host physiology (Huttenhower et al, 2012).

Complex disorders including obesity (Ley et al, 2006; Turnbaugh

et al, 2009), type 2 diabetes (T2D) (Qin et al, 2012; Karlsson et al,

2013), atherosclerosis (Wang et al, 2011b; Karlsson et al, 2012), and

non-alcoholic fatty liver disease (NAFLD) (Henao-Mejia et al, 2012)

as well as the opposite end of the spectrum, for example, malnu-

trition (Smith et al, 2013; Subramanian et al, 2014), have been

associated with dysbiosis in the human gut microbiota. To gain

mechanistic insights into the contribution of specific microbial popu-

lations to the progression of such disorders, germ-free (GF) animals

(e.g. mice and rats) have been adopted for studying the association of

the gut microbiota with disease pathogenesis (Ridaura et al, 2013).

Comparisons between GF and conventionally raised (CONV-R)

mice are often used for studying the effect of gut microbiota on

host physiology (Wostmann, 1981; Stappenbeck et al, 2002; Claus

et al, 2008; Slack et al, 2009; El Aidy et al, 2013). Moreover,

Larsson et al (2012) studied the response of the host induced by

microbiota along the length of the gut in CONV-R and GF C57Bl6/J

mice and provided a detailed description for tissue-specific host

transcriptional responses.

Global metabolic differences of cells/tissues between different

clinical conditions can be revealed through the use of genome-scale

metabolic models (GEMs) (Mardinoglu & Nielsen, 2012, 2015;

Yizhak et al, 2013, 2014a,b; Bordbar et al, 2014; Shoaie & Nielsen,

2014; O’Brien et al, 2015; Varemo et al, 2015; Zhang et al, 2015).

GEMs include the known metabolism-related reactions and associ-

ated genes in a particular cell and tissue and serve as an excellent

scaffold for the integration of omics data (e.g. proteomics, transcrip-

tomics, and metabolomics) for increasing our understanding of the

relationship between genotype and phenotype (Mardinoglu et al,

2013b). To date, simulation-ready cell-/tissue-specific GEMs (Gille

et al, 2010; Karlstaedt et al, 2012; Mardinoglu et al, 2013a, 2014a)

and automatically reconstructed GEMs (Jerby et al, 2010; Agren

et al, 2012; Wang et al, 2012; Yizhak et al, 2014a; Uhlen et al,

2015) have been used for studying the metabolism of cells/tissues

in health and disease states.

In order to examine the gut microbiota-induced transcriptional

responses of the host metabolism, we performed microarray
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analysis of liver as well as epididymal and subcutaneous white

adipose tissues (WATs) obtained from both CONV-R and GF mice,

and analyzed the global gene expression profile of these tissues

together with the previously published gene expression profiles of

duodenum, jejunum, ileum, and colon tissues. We created a

generic mouse metabolic reaction (MMR) GEM and generated

tissue-specific mouse GEMs primarily based on proteomics data.

We investigated the metabolic differences between CONV-R and

GF mice using global gene expression profiling of the host tissues

and the network topology provided by the tissue GEMs, and

validated our predictions by generating metabolomics data for

these two sets of mice. Finally, we revealed the metabolic dif-

ferences between the small intestine of CONV-R and GF mice

accounting for the content of the chow diet as well as the relative

gene expression differences using relative metabolic differences

(RMetD) method.

Results

Global transcriptional profiles of CONV-R and GF mice

CONV-R and GF C57Bl6/J male mice were fed autoclaved chow diet

ad libitum and then euthanized at 12–14 weeks of age (Larsson

et al, 2012). We isolated RNA from liver as well as epididymal and

subcutaneous WATs obtained from CONV-R and GF mice and

performed global transcriptome analysis (Fig 1A). Small intestine

and colon have been previously removed from the same two sets of

mice, and small intestine has been divided into eight whereas the

colon into three equal-sized segments (Larsson et al, 2012). Global

transcriptome analysis was performed for the first (duodenum), fifth

(jejunum), and eighth (ileum) segments of the small intestine and

the proximal piece of the colon (Fig 1A).

We performed principal component analysis (PCA) of the tran-

scription profiles for the tissues separately and observed a clear

separation between the CONV-R and GF mice for duodenum,

jejunum, ileum, colon, and liver, whereas no separation was

found for both WATs (Fig EV1). We identified significantly dif-

ferentially expressed probe sets and genes in MMR, from here on

referred as metabolic genes, by comparing gene expression

profiles of tissues obtained from CONV-R versus GF mice (Fig 1B,

Dataset EV1). During the identification of the significantly

(Q-value < 0.05) differentially expressed probe sets and metabolic

genes, we adjusted P-values using the false discovery rate (FDR)

method and calculated Q-values. We found that ileum tissue had

the largest number of differentially expressed metabolic genes

between CONV-R and GF mice, and it was followed by duode-

num, jejunum, colon, and liver tissues (Fig 1B). It should also be

noted that we only detected two significantly differentially

expressed metabolic genes between the subcutaneous WAT

whereas no differentially expressed metabolic genes between the

epididymal WAT.

Comparing the differentially expressed metabolic genes between

duodenum, jejunum, ileum, colon, and liver tissues of CONV-R

and GF mice (Fig 1C), we found that the expression of the nicotin-

amide nucleotide transhydrogenase (Nnt) gene is higher and

ectonucleoside triphosphate diphosphohydrolase 4 (Entpd4) is

lower in all five tissues of CONV-R mice compared with GF mice

(Fig 1D). Strikingly, we found that Nnt and Entpd4 are also the

only differentially expressed genes in the subcutaneous WAT of

the CONV-R mice compared with GF mice and followed the same

directional changes in the subcutaneous WAT as in all other five

analyzed tissues. Entpd4 was initially named human Golgi

UDPase, and it hydrolyzes nucleoside diphosphates. UDP is the

best substrate for this enzyme, and its ADP activity is insignificant.

Nnt is required for regular mitochondrial function, and it uses

energy from the mitochondrial proton gradient to transfer reducing

equivalents from NADH to NADPH. The resulting NADPH is used

for driving macromolecular biosynthesis as well as for the reduc-

tion of glutathione (GSH) (Fig 1D). Here, we focused on the meta-

bolic differences associated with Nnt due to its well-known

metabolic function.

Creation of MMR and reconstruction of mouse
tissue-specific GEMs

We constructed MMR by using the mouse orthologs of human

genes in HMR2 (Mardinoglu et al, 2014a) (Fig 2A), and the result-

ing generic model includes 8,140 metabolism-related reactions,

3,579 associated metabolic genes to those reactions, and 5,992

metabolites in eight different subcellular compartments. Previously,

stable isotope labeling with amino acids (SILAC)-based proteomics

was generated to analyze the expression of 7,349 proteins in 28 dif-

ferent major C57BL/6 mouse tissues (Geiger et al, 2013) and these

data cover 2,030 of the protein-coding genes in MMR (Fig 2B,

Dataset EV2). We reconstructed tissue-specific GEMs for 28 mouse

tissues by using proteomics data, MMR, and the tINIT algorithm

(Agren et al, 2014) (see Materials and Methods). The tINIT algo-

rithm allows for the reconstruction of functional GEMs based on

global proteomics data as well as user-defined metabolic tasks,

which the resulting model should be able to perform. During the

reconstruction of the models, we complemented 56 metabolic tasks

(functions) (Agren et al, 2014), which are known to occur in all

cells/tissues.

The number of reactions, metabolites, and genes incorporated in

the models are presented in Dataset EV3. A total of 5,813 reactions,

4,574 metabolites, and 1,838 genes were shared across the tissue-

specific GEMs of which 2,750 (47.3%) reactions, 3,001 (65.6%)

metabolites, and 669 (36.4%) genes were common to all tissue-

specific GEMs. We found that 322 reactions, 134 metabolites, and

120 genes were incorporated into only one specific GEM (Fig 2C).

By pairwise comparison of GEMs, we found that each model has an

average of 765 reactions (Dataset EV4), 430 metabolites (Dataset

EV5), and 342 genes (Dataset EV6) different from other tissues

where the muscle tissue was the one with the highest average

difference (Fig 2C).

We analyzed the heterogeneity of the mouse tissue-specific GEMs

(Fig 2D) in terms of incorporated reactions, genes, and metabolites

by calculating the heterogeneity degree of each model. The hetero-

geneity degree allowed us to capture the divergence between meta-

bolic networks based on their constituent parameters including

reactions, metabolites, and genes, and it was calculated using the

average and maximum Hamming distance of the models (Ghaffari

et al, 2015). Moreover, we analyzed the heterogeneity of recently

reconstructed human cell-specific GEMs (Agren et al, 2014) that

have been reconstructed based on antibody-based proteomics data
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in the Human Protein Atlas (www.proteinatlas.org) (Uhlen

et al, 2010, 2015; Kampf et al, 2014b). On average, mouse tissue-

specific GEMs showed an average heterogeneity degree of 0.77 for

reactions, 0.72 for metabolites, and 0.78 for genes, whereas human

cell-specific GEMs had an average heterogeneity degree of 0.8 for

reactions, 0.7 for metabolites, and 0.84 for genes (Fig 2D).

Compared with the human cell-specific GEMs, the mouse tissue-

specific GEMs had a slightly higher metabolic uniformity and lower

heterogeneity based on the incorporated genes and reactions, but

they had a slightly higher heterogeneity based on the incorporated

metabolites into the models.

We next incorporated the significantly differentially expressed

genes between CONV-R and GF mouse tissues and generated four

functional GEMs for liver (iMouseLiver), adipose (iMouseAdipose),

colon (iMouseColon), and small intestine (iMouseSmallintestine),

with the latter reconstructed by merging the GEMs for duodenum,

jejunum, and ileum tissues. During manual evaluation of the GEMs,

previously published functional human cell-type GEMs for hepato-

cytes in liver tissue (Mardinoglu et al, 2014a) and adipocytes in

adipose tissue (Mardinoglu et al, 2013a, 2014b) were also used to

include known biological functions to the GEMs. The number of the

incorporated reactions, metabolites, and genes in the four functional

annotated tissue-specific GEMs as well as in the draft GEMs is

provided in Dataset EV3. MMR as well as the all mouse tissue-

specific models are publicly available in systems biology markup

language (SBML) format at the Human Metabolic Atlas portal

(www.metabolicatlas.org) (Pornputtapong et al, 2015), at the

BioModels database and as Computer Code EV1.
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Figure 1. Global gene expression profiling of tissues obtained from CONV-R and GF mice.

A Liver as well as epididymal and subcutaneous WATs was obtained from both CONV-R and GF mice, and global gene expression profiling was generated using
microarrays. Transcriptomics data for these three tissues were analyzed together with the previously published gene expression profiling of duodenum, jejunum,
ileum, and colon tissues.

B Gene expression data for each tissue were normalized independently of other tissues, and significantly (Q-value < 0.05) differentially expressed probe sets and
metabolic genes in Mouse Metabolic Reaction database were presented in each analyzed tissue.

C The overlap between the significantly (Q-value < 0.05) and differentially expressed metabolic genes in duodenum, jejunum, ileum, colon, and liver is presented.
D The significantly (Q-value < 0.05) and differentially expressed metabolic genes, Nnt, and Entpd4, as well as the reactions associated with Nnt, are presented. Red and

blue arrows indicate the significantly higher (Q-value < 0.05) and lower expression of the metabolic genes in CONV-R mice compared to GF mice, respectively.
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Figure 2. Creation of MMR and generation of tissue-specific GEMs.

A Mouse Metabolic Reaction database (MMR) was created using the mouse orthologs of human genes based on Human Metabolic Reaction database 2.0 (HMR2).
B The expression level of the 2,032 proteins used in the generation of the 28 tissue-specific mice models is presented.
C Bar plots represent the distribution of tissue-specific reactions, metabolites, genes, and metabolites across the 28 mouse tissue GEMs. Filled circles depict average

distance of each tissue GEMs compared to others. Average distance, calculated based on Hamming distance method, indicates required alteration to transform one
tissue model to the other based on the reactions and metabolites and genes. For instance, 478 changes in gene profile are required for intertransformation of GEM
for lung and stomach, from which 401 changes in genes correspond to transformation of lung to stomach and 77 changes in genes correspond to transformation of
stomach to lung.

D Filled circles represent the heterogeneity degree of 28 mouse tissues and 83 healthy human cell types. Heterogeneity values are projected on the left hand side axis.
There is a fall, ~0.06 degree, in heterogeneity of mice models compared to human modes based on genes and a lower decrease, ~0.03, based on the reactions.
However, comparing mouse tissues to human cells revealed higher heterogeneity based on the metabolites, in contrast to the reaction and genes. Average Hamming
distance of GEMs for mouse tissues and human cell types are projected on the right hand axis. Mouse tissues have relatively less, 40–60%, inter-model distance
compared to human cells based on the reactions and genes. However, the trend is reversed with around 50% increased inter-model distance for metabolites. In
general, mouse tissue-specific GEMs show gain of heterogeneity based on metabolites and loss of heterogeneity based on genes.
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Decreased glutathione synthesis in the small intestine of
CONV-R mice

We compared the gene expression profiling in the small intestine

segments (duodenum, jejunum and ileum) of CONV-R and GF mice,

and examined the changes in the expression of the genes interacting

with Nnt using the network structure provided by iMouse-

Smallintestine (Fig 1D). We found that the expression of glutathione

reductase (Gsr) which uses NADPH as an electron donor to reduce

glutathione disulfide (GSSG) to GSH was also significantly higher

(Q-value < 0.05) in all three small intestine segments of CONV-R

mice compared to GF mice (Fig 3A, Dataset EV1). GSH plays a

key role in reducing oxidative stress, and it can be synthesized

within the cells from glutamate, cysteine, and glycine through

the use of glutamate-cysteine ligase catalytic subunit (Gclc),

glutamate-cysteine ligase modifier subunit (Gclm), and glutathione

synthetase (Gss). We found that the expression of Gclc is signifi-

cantly lower (Q-value < 0.05) in jejunum and ileum, and the expres-

sions of Gclm and Gss are significantly lower (Q-value < 0.05) in

the ileum of CONV-R mice compared to GF mice (Fig 3A). Based on

gene expression data, we observed that decreased de novo synthesis

of GSH in the small intestine of CONV-R mice was compensated by

higher expression of Nnt and Gsr compared to GF mice.

The decreased synthesis of the GSH in the small intestine

segments of CONV-R mice may be due to the limited availability of

the substrates including glutamate, cysteine, and glycine. Hence, we

examined the expression of the enzymes involved in the synthesis

and catabolism of these amino acids by differentially expressed
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Figure 3. Metabolic differences in the small intestine.

A Metabolic genes as well as the associated reactions involved in the formation of glutathione (GSH) are presented.
B, C Significant differences associated with (B) glycine and (C) glutamine are shown. Red and blue arrows indicate the significantly (Q-value < 0.05) higher and lower

expression of the metabolic genes in CONV-R mice compared to GF mice, respectively.
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genes in the small intestine (Dataset EV7) and using the

network topology provided by iMouseSmallintestine. We integrated

differentially expressed genes in duodenum, jejunum, and ileum

using the lowest Q-value for the genes and associated fold changes

for studying the metabolic differences between the small intestine of

CONV-R and GF mice (Dataset EV7). Hereby, we identified signifi-

cantly (Q-value < 0.05) differentially expressed genes linked to

biosynthesis of glycine (Fig 3B) and glutamate (Fig 3C) and found

that there are metabolic differences in the utilization of these AAs

between CONV-R and GF mice. In contrast, we did not detect any

significant change in the expression of the genes linked to cysteine

except Gclc and Gclm (Dataset EV7).

In healthy animals, AAs in the small intestine are released in the

plasma and utilized by other peripheral tissues (e.g. liver, adipose,

and muscle tissues). Considering the down-regulation of genes asso-

ciated with de novo synthesis of GSH and of glutamate and glycine

required for GSH biosynthesis in the small intestine in CONV-R

mice, we hypothesized that the plasma level of glutamate and

glycine secreted from the small intestine in CONV-R mice may also

be lower compared with GF mice. Hence, we measured the level of

these two AAs in the hepatic portal vein (PV), which conducts blood

from the gastrointestinal tract to the liver, of CONV-R and GF mice,

and found that the PV level of glycine was significantly lower

(ANOVA test, Q-value < 0.05) and glutamate is slightly lower in

CONV-R mice compared to GF mice (Fig 3D, Dataset EV8). We also

measured the level of cysteine, likewise used for biosynthesis of

GSH, in the PV of CONV-R and GF mice (Fig 3D) but found no dif-

ferences, in agreement with the fact that there were no significant

changes in the expression of genes encoding enzymes required for

cysteine utilization (Dataset EV7).

We also searched for global metabolic differences in the small

intestine by mapping the gene expression data (Dataset EV7) to the

network topology provided by the small intestine GEM using the

reporter subnetworks algorithm (Patil & Nielsen, 2005). Hereby, we

found that there are major metabolic differences around 17 other

AAs (Dataset EV9). We thus next measured the level of these 17

AAs in the PV and found that the levels of arginine, asparagine,

histidine, isoleucine, leucine, methionine, phenylalanine, proline,

serine, threonine, tryptophan, tyrosine, and valine were signifi-

cantly lower and the level of glutamine was significantly higher in

CONV-R mice compared to GF mice. We did not detect any signifi-

cant changes in the level of alanine, aspartate, and lysine (Fig 4A,

Dataset EV8). Our results indicate that the gut microbiota alter AA

metabolism of the host.

Metabolic differences between the liver tissues of CONV-R and
GF mice

We found that the expression of Nnt was significantly higher and

Entpd4 was significantly lower in the liver tissue of CONV-R

compared to GF mice (Fig 5A) and validated the expression of these

genes by quantitative reverse transcription PCR (RT–PCR) methods

(Fig 5B). We found that glutathione S-transferase pi 1 (Gstp1),

which has a role in GSH metabolism, metabolism of xenobiotics by

cytochrome P450, and drug metabolism, is significantly higher in

CONV-R mice compared to GF mice. Notably, Claus et al (2008)

measured the liver tissue level of GSSG, which is used as a substrate

for the reaction catalyzed by the Gsr in CONV-R and GF mice by

employing a high-resolution 1H NMR spectroscopic approach, and

reported that the liver tissue level of GSSG was significantly higher

in CONV-R mice. Hence, we hypothesized that higher Nnt expres-

sion in CONV-R mice might be the response of liver to the lower

level of glycine required for the de novo synthesis of the GSH. Strik-

ingly, Claus et al (2008) has also measured the glycine level in the

liver tissue of CONV-R and GF mice, and found that the level of

glycine is lower in CONV-R mice compared to GF mice. We also

measured the PV level of serine, which can be taken up by the liver

and converted to glycine, and found that the level of serine was also

significantly lower in CONV-R mice compared to GF mice (Fig 4A).

However, N-acetylated AAs can also be taken up by the liver and

hydrolyzed to acetate and a free AA by aminoacylases, ACY1, ACY2

(ASPA), and ACY3 (Fig 4B) which are predicted to be present in

human liver tissue based on the transcriptomics and proteomics

data (Kampf et al, 2014a; Uhlen et al, 2015). Accordingly, we

measured the level of the acetyl-AAs in the PV and found that the

levels of N-acetyllysine, N-acetylalanine, N-acetylarginine, N-acetyl-

cysteine, N-acetylglutamate, N-acetylglycine, N-acetylisoleucine,

N-acetylleucine, N-acetylmethionine, N-acetylphenylalanine,

N-acetylthreonine, N-acetyltryptophan, N-acetyltyrosine, and N-acetyl-

valine are significantly lower (Q-value < 0.05), whereas N-acetylser-

ine and N-acetylthreonine are slightly (0.05 < Q-value < 0.1) lower

in CONV-R mice compared to GF mice (Fig 4C, Dataset EV8). We

could not detect any significant changes in the level of N-acetyl-

asparagine, N-acetylaspartate, N-acetylglutamine, and N-acetyl-

histidine.

Moreover, we investigated the differences in the expression of

liver tissue genes between CONV-R and GF mice. We found that the

expression of Alas1 involved in glycine metabolism, Slc2a1 known

as Glut1 and involved in glucose transportation, Slc16a12 involved

in creatine transportation, and Hmgcr involved in cholesterol

synthesis as well as Cyp7a1 and Akr1d1 involved in bile acid

synthesis were significantly lower in the liver tissue of CONV-R

mice compared to GF mice (Fig 5A). On the other hand, the expres-

sions of Sdr9c7 involved in vitamin A metabolism, Elovl3 involved

in long-chain fatty acids (FAs) elongation cycle, and Uap1l1

involved in amino sugar and nucleotide sugar metabolism were

significantly upregulated in liver tissue of CONV-R mice compared

to GF mice.

Metabolic differences between the colon tissues

We found that the expression of Sardh that converts sarcosine to the

glycine in the mitochondria is significantly lower (Q-value < 0.05),

whereas the expression of the genes involved in GSH metabolism

including, Gsta4, Gstk1, Gstp1, and Gstt1 is significantly higher

(Q-value < 0.05) in the colon tissue of CONV-R mice compared to

GF mice (Fig 6). Even though degradation of betaine is lower, the

increased expression of glutathione transferases (Gsts) may be

explained by the increased expression of the Nnt in the colon tissue

of CONV-R mice similar to the liver and small intestine tissues of

CONV-R mice.

We also revealed the global metabolic differences (Dataset EV1)

between the colon tissue of CONV-R and GF mice by mapping the

significantly differentially expressed genes to iMouseColon (Fig 6).

We found that the expression of Arg2 involved in arginine metabo-

lism as well as Ces1g, Aldh1a2, and Rbp4 involved in vitamin A
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metabolism was higher in the colon tissue of CONV-R mice

compared to GF mice. On the other hand, we found that Aldob and

Aldh9a1 involved in glycolysis; Hmgcs1, Hsd17b7, Nsdhl, and

Sc4 mol involved in cholesterol synthesis; Mgam and Sis involved

in starch and sucrose metabolism; and Slc2a5, Slc2a9, Sord, and

Khk involved in fructose metabolism as well as Ace2 transcription

factor involved in the conversion of angiotensin were significantly

lower in CONV-R mice (Fig 6). Moreover, we found that the expres-

sion of genes involved in the transport of AAs is significantly lower

in the colon tissue of CONV-R compared with GF mice (Dataset

EV1). Our analysis indicated that the overall central metabolism of

the colon tissue may have reduced activity in CONV-R mice

compared to GF mice based on the gene expression data.

The interactions between the microbiota in the small intestine

When CONV-R and GF C57Bl6/J mice were fed with a standard

autoclaved chow diet, we found that CONV-R mice were eating

approximately 20% more than the GF mice. However, the PV level

of 14 AAs and 13 N-acetylated AAs was significantly lower in

CONV-R mice compared to GF mice (Fig 4A and C), and this may

be due to the consumption of these AAs by the bacteria in the small

intestine.

Bacteroidetes and Clostridium cluster XIVa are among the domi-

nant phyla in the ileum (Zoetendal et al, 2012; Van den Abbeele

et al, 2013). To understand the metabolic interactions between the

gut microbiota as well as their interactions with the small intestine

A

CB

Figure 4. The level of the AAs and N-acetylated AAs in the hepatic portal vein.

A The level of the significantly (Q-value < 0.05) changed amino acids (AAs) including arginine, asparagine, glutamine, histidine, isoleucine, leucine, methionine,
phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine, and glutamine as well as the non-significantly changed AAs including alanine, aspartate, and
lysine are measured in the hepatic portal vein of CONV-R and GF mice.

B Reactions involved in the hydrolysis of N-acetylated AAs to acetate and a free AA as well as their catalyzing enzymes, aminoacylases, ACY1, ACY2 (ASPA), and ACY3 are
presented.

C The level of the N-acetylated AAs in hepatic portal vein of CONV-R and GF mice are shown in the volcano plot.
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in CONV-R mice, we simulated the interplay between the two key

species Bacteroides thetaiotamicron and Eubacterium rectale as rele-

vant representatives of these two main phyla in the human ileum.

The Community and Systems-level Interactive Optimization toolbox

(CASINO) has recently been developed for studying the interactions

between the gut microbiota and comprises an optimization algo-

rithm integrated with diet analysis to predict phenotypes (Shoaie

et al, 2015). Here, we employed manually reconstructed GEMs for

B. thetaiotamicron and E. rectale (Shoaie et al, 2013) to study the

interactions between the gut microbiota by using CASINO. During

the simulations, we used the content of the autoclaved chow diet

(Dataset EV10) and assumed that maximum 40% of the total protein

may be consumed by the bacteria (set as upper bound), 5% of the

total protein is transferred to the colon tissue, and the remaining

proteins are consumed by the small intestine (Fig 7A) based on a

previous study where the total AAs in the gastrointestinal tract of

CONV-R and GF mice were measured (Whitt & Demoss, 1975). We

also assumed that 40% of the digestible and 5% of the non-

digestible carbohydrates in the diet were consumed by the bacteria

in the small intestine and 5% of the digestible carbohydrates was

transferred to the colon tissue (Gibson & Roberfroid, 1995).

We maximized for the growth of bacteria and predicted the

amount of the short-chain fatty acids (SCFAs) (acetate, propionate

and butyrate) produced by the B. thetaiotamicron and E. rectale

(Fig 7B and Dataset EV11) by setting the content of the diet as upper

bound to the GEMs for bacteria (Dataset EV10). We observed that

part of the acetate produced by the B. thetaiotamicron is consumed

by the E. rectale and contributes to the production of butyrate in

E. rectale. We found that isoleucine, proline, and valine are only

consumed by the E. rectale, and glycine, serine, alanine, cystine,

glutamate, histidine, leucine, lysine, methionine, phenylalanine,

threonine, and tyrosine are consumed by both B. thetaiotamicron

and E. rectale, whereas arginine, aspartate, and tryptophan are not

consumed by neither of these bacteria (Fig 7C and Dataset EV11). It
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Figure 5. Metabolic differences in the liver tissue.

A The significantly (Q-value < 0.05) and differentially expressed metabolic genes in liver tissue of CONV-R mice compared to GF mice are mapped to the functional
GEM for mice liver tissue. Red and blue arrows indicate the significantly (Q-value < 0.05) higher and lower expression of the metabolic genes in CONV-R mice
compared to GF mice, respectively. Thick arrows indicate the liver tissue level of the metabolites.

B The liver tissue expression of Nnt and Entpd4 was measured by RT–PCR.

Molecular Systems Biology 11: 834 | 2015 ª 2015 The Authors

Molecular Systems Biology The effect of gut microbiota on host metabolism Adil Mardinoglu et al

8



should also be noted that the gut microbiota consumed all of the

available glycine, serine, and threonine during the formation of its

biomass.

Metabolic differences between the small intestine of CONV-R
and GF mice

We simulated the metabolic differences between the small intestine

of CONV-R and GF mice accounting for the relative differences in

the global gene expression data of the small intestine using RMetD

method (see Materials and Methods). RMetD is developed to

integrate the up- and down-regulation of the enzymes together with

the calculated corresponding P-values into the GEMs rather than the

absolute values for the expression of the enzymes.

Considering the content of the diet (Dataset EV10) as well as the

calculated bounds for the intracellular reactions in CONV-R and GF

mice using RMetD (Dataset EV12), we optimized for the production

of chylomicrons and compared the amount of chylomicrons and

HDL produced by CONV-R and GF mice (see Materials and Meth-

ods). We predicted that lower levels of chylomicrons and HDL are

secreted by CONV-R mice compared to GF mice (Fig 7D).

We also revealed the changes in metabolic fluxes in the small

intestine of CONV-R and GF in response to gut microbiota, and

which of these differences are likely to be associated with transcrip-

tional changes. Through the use iMouseSmallintestine, we defined a

region of feasible flux distributions using uptake rates for glucose,

SCFAs, AAs, and secretion rates for chylomicrons and HDL in

CONV-R and GF mice that are predicted by the RMetD. We calcu-

lated a set of flux distributions using a random sampling algorithm

(Bordel et al, 2010) which allowed for identification of transcription-

ally regulated reactions. Finally, we calculated the average and stan-

dard deviations for each of the fluxes carried by the reactions, and

compared the changes in fluxes with the changes in the expression

of the genes associated with those reactions. We found that reactions

involved in fatty acid biosynthesis and oxidations are transcription-

ally down-regulated in CONV-R compared to GF mice (Fig 7E).

Discussion

The interactions between the gut microbiota, host tissues of the

gastrointestinal tract, and diet are known to be highly relevant for
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Figure 6. Metabolic differences in the colon tissue.
The significantly (Q-value < 0.05) differentially expressed metabolic genes in colon tissue of CONV-R mice compared to GF mice are mapped to the functional GEM for mice
colon tissue. Red and blue arrows indicate the significantly (Q-value < 0.05) higher and lower expression of the metabolic genes in CONV-R mice compared to GF mice,
respectively.
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the health of the host. In order to understand the effect of the gut

microbiota on host metabolism, we revealed the metabolic dif-

ferences between the continuous gastrointestinal tracts as well as

liver and WATs of CONV-R and GF mice using tissue-specific GEMs.

We observed that the ileum was the tissue that was most affected

by the gut microbiota, followed by the duodenum, jejunum, colon,

liver, and adipose tissues. Even though, gene expression data for

each tissue were analyzed independently, we found that the expres-

sion of the Nnt was significantly higher in CONV-R mice compared

to GF mice and followed the same directional changes in six of the

analyzed tissues.

We validated our GEM-based predictions based on gene expres-

sion data by generating metabolomics data, and comparing the level

of the metabolites in the PV of the CONV-R and GF mice. Taken

together, we found that the levels of the glycine and serine as well

as the N-acetylated form of these two AAs that may be taken up by

the liver tissue and used in GSH synthesis were significantly lower

in the PV of the CONV-R mice compared to GF mice. Considering

the lower expression of the genes involved in glucose uptake as well

as the lower level of glycine in the liver, de novo synthesis of serine

may also be lower in CONV-R mice compared to GF mice. Hence,

we observed that the expression of Nnt is increased in the liver of

CONV-R mice potentially due to the limited availability of glycine

used as a substrate in GSH de novo synthesis.

The expression of Nnt is linked to insulin sensitivity, and higher

plasma insulin concentrations have been reported in CONV-R mice

compared to GF mice (Rabot et al, 2010). Naturally occurring dele-

tion of the Nnt in the C57BL/6J mouse strain has been associated

with impaired glucose homeostasis control and reduced insulin

secretion that is independent of obesity (Freeman et al, 2006).
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Figure 7. In silico simulation of the small intestine.

A The differences in the utilization of proteins, carbohydrates, non-digestible carbohydrates, and fats between the CONV-R and GF mice are presented.
B The production of the short-chain fatty acids including acetate, butyrate, and propionate produced by the gut microbiota in CONV-R mice is shown.
C The amount of glucose and AAs as well as their consumption for supporting their biomass is presented.
D The levels of the chylomicrons and HDL secreted by the small intestine of the CONV-R and GF mice are predicted.
E Transcriptionally down-regulated (blue arrows) reactions involved in fatty acid biosynthesis and oxidation in small intestine of CONV-R and GF mice are identified

through the use of random sampling algorithm.
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Suppression of Nnt in PC12 rat pheochromocytoma cells led to

increased oxidative stress with subsequent impairment of mitochon-

drial function (Yin et al, 2012). Moreover, Ripoll et al (2012) over-

expressed the NNT in a macrophage cell line and detected

decreased levels of reactive oxygen species, indicating that NNT

plays a key role in the modulation of the immune response and host

defense against pathogens.

The microbiota-induced transcriptional responses in specific frac-

tions of intestinal epithelial cells have also been recently examined

by a microarray analysis in CONV-R and GF mice (Sommer et al,

2015). It was reported that approximately 10% of the host’s tran-

scriptome, mainly genes involved in immune responses, cell prolif-

eration, and metabolism, was regulated by the microbiota.

The differences between the level of free AAs along the GI tract of

CONV-R and GF mice have been previously reported (Whitt &

Demoss, 1975), and our analysis provided a detailed explanation of

how bacteria may regulate the host AA homeostasis. We provided

an explanation for the higher expression of the Nnt in CONV-R mice,

and observed that the expression of Nnt is increased in CONV-R mice

as a response to the decreased level of de novo GSH synthesis due to

limited availability of glycine. We also found that microbiota in the

small intestine may consume glycine as well as other AAs to support

its growth and survival which leads to the decreased PV levels of the

AAs and regulates the AA and GSH metabolism of the host.

Moreover, we observed that the liver and colon tissues of

CONV-R mice also responded to the lower level of glycine by higher

expression of Nnt, and this indicated that the gut microbiota

regulates AA metabolism not only in the small intestine but also in

the liver and the colon. We investigated the global metabolic

differences between the liver tissue of the CONV-R and GF mice,

and found that the expression of genes involved glucose uptake,

and cholesterol and bile acid biosynthesis were significantly lower

in CONV-R mice. Previously, it has been shown that the activity and

expression of the Cyp7a1, which is the rate-limiting enzyme in bile

acid synthesis, is decreased in the liver of CONV-R mice compared

to GF mice and that the gut microbiota suppress bile acid synthesis

(Sayin et al, 2013). Similarly, lower expression of Hmgcr, which is

involved in the cholesterol synthesis, has been reported in CONV-R

mice compared to GF mice (Sayin et al, 2013).

Our analysis also indicated that the gut microbiota regulates the

host lipid metabolism. We simulated the metabolic differences

between the small intestine of CONV-R and GF mice by integrating

relative small intestine gene expression data. We found that lower

level of chylomicrons and HDL is produced by the small intestine of

the CONV-R. Our RMetD predictions were in agreement with experi-

mental studies in which 40% lower chylomicron levels in CONV-R

mice compared to GF mice was detected (Velagapudi et al, 2010)

and contribution of gut microbiota on the intake of fats was investi-

gated in CONV-R and GF mice (Duca et al, 2012).

There are several advantages of RMetD compared to previously

developed methods for integrating transcriptomics data into

constraint-based models of metabolism (Machado & Herrgard,

2014). Firstly, it only considers enzyme up-/down-regulation rather

than their absolute expression. This is based on the assumption that

up-/down-regulation of a specific enzyme likely suggests a higher/

lower flux in its corresponding reaction. This could be a better solu-

tion than inferring fluxes by comparing absolute expression level of

different enzymes. In addition, RMetD pushes the flux ranges

instead of the absolute fluxes. Pushing the ranges is more reason-

able since in our case (and in most cases), the reference flux distri-

bution of a GEM is unlikely to be exact, but the ranges are much

more reliable. Furthermore, multiple objective products could be

included in RMetD, and this could be of special interest for those

using mammalian tissue GEMs since they usually have more than

one obligatory functions and products.

Even though RMetD and other methods (Machado & Herrgard,

2014) for inferring flux rates from gene expression data have been

developed, the correlation between the fluxes carried by the reaction

and the expression of the gene catalyzing the reaction is known to

be limited (Bordel et al, 2010). Changes in gene expression levels

therefore only serve only as cues for the likelihood that there may

be an altered metabolic flux carried by the associated reaction. To

validate gene expression data-based predictions, we performed

metabolomics analysis in the PV of the both CONV-R and GF mice

and these data supported functional changes in the pathways show-

ing altered gene expression.

The functional output and diversity of the gut microbiota are

important modulators for the development of various human disor-

ders. Alterations in gut microbiota composition and function have

been shown in the pathogenesis of obesity (Ley et al, 2006;

Turnbaugh et al, 2009), T2D (Qin et al, 2012; Karlsson et al, 2013)

and NAFLD (Henao-Mejia et al, 2012). Imbalances in the plasma

level of glycine as well as other AAs have also been shown in

obesity (Newgard et al, 2009), T2D (Wang et al, 2011a), and

NAFLD (Kalhan et al, 2011). Strikingly, the plasma levels of glycine

are decreased in all subjects with the above-mentioned diseases

compared to the healthy subjects. Moreover, we have recently

found that the expression of the NNT is significantly increased in

both subcutaneous and visceral AT after extensive weight loss in

response to bariatric surgery (Mardinoglu et al, 2015). In this

context, it is of interest to study the microbial AAs in the human GI

tract in relation to its potential role in the development of such

metabolism-related disorders.

In conclusion, we observed that gut microbiota has a profound

systemic effect on AA and GSH as well as lipid metabolism, and it is

one of the major regulators of metabolism in mammals. We demon-

strate that a detailed understanding of the metabolic differences

between CONV-R and GF mice obtained through GEM modeling

may allow for revealing the key roles of the gut microbiota. Our

findings may be used for investigating the contribution of the gut

microbiome in the progression of metabolism-related disorders as

well as for elucidating the unknown etiology of such disorders.

Materials and Methods

Mice

Male C57Bl6/J mice aged 12–14 weeks were used in these experi-

ments. CONV-R mice were housed in individually ventilated cages,

and GF mice were housed in flexible film isolators, with maximum 5

mice per cage, and fed a normal chow ad libitum. GF status was

verified regularly by anaerobic culturing in addition to PCR for

bacterial 16S rDNA. Light cycle was 12/12 h dark/light and lights on

at 06:00. Mice were euthanized by cervical dislocation, and tissues

were collected in liquid nitrogen immediately. All procedures were
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approved by the Gothenburg University Ethical Committee (Permit No.

339/2012).

RNA from the liver as well as epididymal and subcutaneous

WATs obtained from CONV-R and GF mice were isolated using the

RNeasy Lipid Tissue Mini Kit (Qiagen, Hilden, Germany). RNA

concentration and quality were evaluated by spectrophotometric

analysis (ND-1000; NanoDrop Technologies, Wilmington, DE, USA)

and capillary electrophoresis on a 2100 Bioanalyzer (Agilent Tech-

nologies, Santa Clara, CA, USA). Tissue samples with no quality

issues were used in the generation of the gene expression data.

Transcriptomics data

Global gene expression profiling of liver as well as epididymal and

subcutaneous WATs was measured using MoGene 1.0 ST chips

(Affymetrix). CEL files for duodenum, jejunum, ileum, and colon

tissue of CONV-R and GF mice were retrieved from Gene Expression

Omnibus (GEO) public repository under the accession number

GSE17438.

Raw data for each tissue were preprocessed independent of the

other tissues and normalized with robust multi-array average

(RMA) using Piano R package (Väremo et al, 2013). Probes which

are not mapped to any gene from the analysis were removed, and

the differential expression analysis for 23,736 probe sets between

CONV-R and GF mice was carried out by calculating two-way analy-

sis of variance (ANOVA) P-values. P-values were adjusted for multi-

ple testing using the R-function p.adjust with the method set to false

discovery rate (FDR), and Q-values were calculated. Q-values were

used for network-dependent analysis.

During the simulation of the metabolic differences between the

small intestine of CONV-R and GF mice, gene expression data for

duodenum, jejunum, and ileum were integrated. However, acyl-CoA

dehydrogenase, long chain (Acadl), cell division cycle 14A

(Cdc14a), cystic fibrosis transmembrane conductance regulator

(Cftr), cathepsin B (Ctsb), fructose-1,6-bisphosphatase 1 (Fbp1),

and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (Pfkfb3),

which were significantly changed (Q-value < 0.05) in different

directions between the segments of the small intestine, were not

included into our analysis.

Raw data for liver as well as epididymal and subcutaneous WATs

will be deposited in GEO public repository under the accession

number GSE31115. To make the gene expression data easily avail-

able to the scientific community, the data are also included into the

searchable database (http://microbiota.wall.gu.se).

RT–PCR

Liver tissue samples obtained from CONV-R and GF mice were

dissected out and immediately frozen in liquid nitrogen. Total RNA

was extracted from frozen liver tissue samples using RNeasy Mini

Kit (Qiagen, Hilden, Germany). About 0.5 lg of RNA was used for

cDNA synthesis, using High Capacity cDNA reverse transcription kit

(Applied Biosciences). Primers were obtained from Sigma, and

specificity was verified by Blast and the appearance of a single

product band of predicted size. qRT–PCR was performed in a CFX96

Real-time System (Bio-Rad). Expression levels of Nnt and Entpd4

were calculated relative to the mRNA expression of L32 and calcu-

lated with the DD-Ct method.

Reconstruction of mouse tissue-specific GEMs

SILAC-based proteome reflected the proteins expressed in the

specified tissues, and in total, 7,349 proteins were analyzed in 28

different major C57BL/6 mouse tissues. We reconstructed tissue-

specific GEMs for each tissue using the proteomics data (Geiger

et al, 2013) and recently developed tINIT algorithm (Agren et al,

2014). During the reconstruction of the 28 draft GEMs, we used 56

common tasks that are known to occur in all human cells (Agren

et al, 2014). These metabolic functions include the provision of

energy and redox, utilization, and internal conversion substrates as

well as the biosynthesis of certain metabolites. We compared these

automated tissue-specific GEMs and found that GEM for liver

contained the largest number of tissue-specific reactions,

metabolites, and genes, which represents its unique role in overall

host metabolism. Moreover, we reconstructed functional GEMs for

liver and adipose tissue using the previously developed human

models (Mardinoglu et al, 2013a, 2014a,b) and functional GEMs for

small intestine and colon tissues. It should be noted that we recon-

structed a functional generic GEM for small intestine rather than

specific GEMs for duodenum, jejunum, and ileum.

AA and N-acetylated AA level in CONV-R and GF mice

In order to validate our model-based predictions, we raised six

CONV-R and six GF C57Bl6/J mice and fed with autoclaved chow

diet. We collected blood samples from hepatic portal vein after

12 weeks and detected the level of the AAs and acteyl-AAs. Samples

were prepared using the automated MicroLab STAR� system from

Hamilton Company. A recovery standard was added prior to the first

step in the extraction process for QC purposes. To remove protein,

dissociate small molecules bound to protein or trapped in the precip-

itated protein matrix, and to recover chemically diverse metabolites,

proteins were precipitated with methanol under vigorous shaking

for 2 min (Glen Mills GenoGrinder 2000) followed by centrifugation.

The liquid chromatography-tandem mass spectrometry (LC-MS/

MS) portion of the platform was based on a Waters ACQUITY ultra-

performance liquid chromatography (UPLC) and a Thermo-Finnigan

LTQ mass spectrometer operated at nominal mass resolution, which

consisted of an electrospray ionization (ESI) source and linear ion-

trap (LIT) mass analyzer. The sample extract was dried and then

reconstituted in acidic or basic LC-compatible solvents, each of

which contained 12 or more injection standards at fixed concentra-

tions. One aliquot was analyzed using acidic positive ion-optimized

conditions and the other using basic negative ion-optimized condi-

tions in two independent injections using separate dedicated

columns (Waters UPLC BEH C18-2.1 × 100 mm, 1.7 lm). Extracts

reconstituted in acidic conditions were gradient eluted using water

and methanol containing 0.1% formic acid, while the basic extracts,

which also used water/methanol, contained 6.5 mM ammonium

bicarbonate. The MS analysis alternated between MS and data-

dependent MS/MS scans using dynamic exclusion, and the scan

range was from 80 to 1,000 m/z.

Following log transformation and imputation of missing values,

if any, with the minimum observed value for each compound,

Welch’s two-sample t-test was used to identify AAs and

N-acetylated AAs that differed significantly between CONV-R and

GF mice, determined independently for each dataset. A summary of
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the numbers of biochemicals that achieved statistical significance

(P ≤ 0.05) is shown in Figs 3D and 4A and C. An estimate of the

false discovery rate (Q-value) is calculated to take into account the

multiple comparisons that normally occur in metabolomics-based

studies.

Integration of gene expression data into GEM for small intestine
using RMetD

In order to integrate gene expression data into GEMs, we developed

relative metabolic differences (RMetD), which allow for the applica-

tion of relative gene expressions between CONV-R and GF mice

rather than the absolute values, and simulated the metabolic

differences using the content of the diet (Dataset EV10). First, we

set the lower bounds of production of HDL and chylomicrons to

20% (arbitrary value) of their maximum production in GF small

intestine model. We performed flux variability analysis for all reac-

tions associated with the significantly (Q-value < 0.05) differentially

expressed genes in the model, and found the upper and lower

bound of these reactions. A reaction could be associated with more

than one gene, and these genes may have different expression

trends (e.g. one gene is up-regulated, whereas the other genes are

down-regulated). In such cases, we assumed that genes associated

with these reactions are not significantly changed (Q-value < 0.05).

Next, for reactions associated with the up-regulated genes in

CONV-R mice, we set both the upper and lower bounds of the reac-

tions in CONV-R model 20% (arbitrary value) more than the bound

of the reactions in GF model whereas 20% less for the reactions

associated with the down-regulated genes. By this way, reactions

with up-/down-regulated gene expression were able to carry more/

less fluxes. By adding these new constraints for each reaction in

CONV-R and GF mice together with the use of the content of the

diet, we predicted the fluxes of both models by maximizing the

production of chylomicrons and minimizing the sum of fluxes. For

all arbitrary values, we performed sensitivity analysis by using

different values and obtained similar results.

All the simulations were carried out using RAVEN toolbox

(Agren et al, 2013). RMetD source code was implemented in

MATLAB and RAVEN toolbox, and it is publically available at

https://sourceforge.net/projects/relative-metabolic-differences/files/

MiceStudy/.

Data availability

MMR generic mouse GEM, and functional GEMs for liver, adipose,

colon, and small intestine as well as the other mouse tissue GEMs

are publically available in the Systems Biology Mark-up Language

(SBML) format at Human Metabolic Atlas (http://www.metabolicat-

las.org) and at BioModels database with accession numbers

MODEL1509220000–MODEL1509220032. They are also provided as

Computer Code EV1.

Gene expression data from liver as well as epididymal and

subcutaneous WATs of CONV-R and GF mice are publically avail-

able in Gene Expression Omnibus (GEO) database with the acces-

sion number GSE31115.

Expanded View for this article is available online:

http://msb.embopress.org
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