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Abstract

Background: An alarming portion of patients develop persistent or chronic pain following surgical procedures, but the
mechanisms underlying the transition from acute to chronic pain states are not fully understood. In general, endocannabinoids
(ECBs) inhibit nociceptive processing by stimulating cannabinoid receptors type 1 (CB1) and type 2 (CB2). We have previously
shown that intrathecal administration of a CB2 receptor agonist reverses both surgical incision-induced behavioral
hypersensitivity and associated over-expression of spinal glial markers. We therefore hypothesized that endocannabinoid
signaling promotes the resolution of acute postoperative pain by modulating pro-inflammatory signaling in spinal cord glial cells.

Methodology/Principal Findings: To test this hypothesis, rats receiving paw incision surgery were used as a model of acute
postoperative pain that spontaneously resolves. We first characterized the concentration of ECBs and localization of CB1 and
CB2 receptors in the spinal cord following paw incision. We then administered concomitant CB1 and CB2 receptor
antagonists/inverse agonists (AM281 and AM630, 1 mg.kg21 each, i.p.) during the acute phase of paw incision-induced
mechanical allodynia and evaluated the expression of glial cell markers and phosphorylated p38 (a MAPK associated with
inflammation) in the lumbar dorsal horn. Dual blockade of CB1 and CB2 receptor signaling prevented the resolution of
postoperative allodynia and resulted in persistent over-expression of spinal Glial Fibrillary Acidic Protein (GFAP, an astrocytic
marker) and phospho-p38 in astrocytes. We provide evidence for the functional significance of these astrocytic changes by
demonstrating that intrathecal administration of propentofylline (50 mg, i.t.) attenuated both persistent behavioral
hypersensitivity and over-expression of GFAP and phospho-p38 in antagonist-treated animals.

Conclusions/Significance: Our results demonstrate that endocannabinoid signaling via CB1 and CB2 receptors is necessary
for the resolution of paw incision-induced behavioral hypersensitivity and for the limitation of pro-inflammatory signaling in
astrocytes following surgical insult. Our findings suggest that therapeutic strategies designed to enhance endocannabinoid
signaling may prevent patients from developing persistent or chronic pain states following surgery.
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Introduction

Following surgical procedures such as hernia repair, breast

surgery, thoracotomy, cesarean section or coronary artery bypass

surgery, patients develop acute postoperative pain that is

characterized by mechanical hypersensitivity (pain due to

ambulation, cough or manipulation of the surgical incision area).

While this acute postoperative pain typically resolves, 10-50% of

patients experience persistent postsurgical pain despite analgesic

treatment, and 2-10% of patients develop severe chronic pain

(rates depend on the procedure) [1]. The clinical treatment of

persistent or chronic pain is frequently complicated by the limited

efficacy and undesirable side effects of currently available analgesic

drugs. The development of safer, more effective analgesics for the

management of persistent postoperative pain requires a better

understanding of the mechanisms by which tissue injury-induced

acute pain can develop into chronic pain.

In general, stimulation of the G protein-coupled cannabinoid

receptors types 1 and 2 (CB1 and CB2) results in inhibition of

nociceptive signaling pathways (reviewed in [2]). Plant-derived and
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synthetic CB1 or CB2 receptor agonists produce well-described

antinociceptive effects [3,4,5], but endogenous cannabinoid

compounds, or endocannabinoids (ECBs), have also gained

attention for their ability to modulate pain pathways. The two

main ECBs, anandamide (AEA) and 2-arachidonoylglycerol (2-

AG), inhibit nociception following exogenous administration [6,7]

and have been shown to mediate stress-induced [8] and fear-

conditioned [9] analgesia. Inhibitors of endocannabinoid reuptake

[10,11] or degradation [12,13,14] also produce antinociceptive

effects. Based on these findings, it has been suggested that the

endocannabinoid system mediates an adaptive response aimed at

reducing pain and inflammation in response to injury or stress

[15]. We therefore hypothesized endocannabinoid signaling is

necessary to prevent the perpetuation of acute postoperative pain

following surgical insult.

To test this hypothesis, we used a model of postoperative pain in

rats that consists of a small incision made on the plantar surface of

one hind paw [16]. Following paw incision, animals exhibit

significant mechanical allodynia and an associated increase in the

expression of glial markers, both of which spontaneously resolve

over the course of approximately one week [16,17]. Based on our

previous findings that intrathecal administration of a CB2 receptor

agonist reverses both behavioral hypersensitivity and associated

over-expression of glial markers resulting from paw incision [3],

we further hypothesized that endocannabinoid signaling contrib-

utes to the resolution of postoperative pain by limiting pro-

inflammatory responses in spinal cord glial cells.

In the current study, we first characterized tissue concentrations

of ECBs and the overall expression and cellular localization of CB1

and CB2 receptors in the spinal cord following paw incision. To

test our main hypothesis, we then introduced a dual blockade of

CB1 and CB2 receptors during the acute phase of paw incision-

induced mechanical allodynia. Using this approach, we demon-

strated that ECB signaling plays a functional role in the resolution

of postoperative pain and in regulating the expression of glial cell

markers and phosphorylated p38 (a MAPK associated with

inflammation [18]).

Results

Mechanical Allodynia and Expression of Glial Markers
following Paw Incision

Animals were tested for mechanical allodynia at days 1, 3 and 9

following surgery to establish a behavioral basis for the

characterization of ECB levels and spinal expression of CB1 and

CB2 receptor in response to paw incision. Withdrawal thresholds

of the injured paw (ipsilateral to paw incision) were significantly

reduced on days 1 and 3 after surgery compared to baseline values.

By day 9 after paw incision, however, this mechanical hypersen-

sitivity had resolved (Figure 1A). Similarly, no significant

differences were found between baseline withdrawal thresholds

and those observed on day 15 after surgery (19.0460.4 g vs.

17.6460.1 g, p.0.05). On all postoperative days tested,

mechanical withdrawal thresholds of the uninjured paw (contra-

lateral to paw incision) did not significantly differ from baseline

values (data not shown). In agreement with our previous

quantitative findings [17], both Ionized Calcium–Binding Adapter

Molecule 1 (Iba-1, microglial marker) and Glial Fibrillary Acidic

Protein (GFAP, astrocytic marker) demonstrated increased

immunostaining in the ipsilateral dorsal horn of the L5 spinal

cord on postoperative days 1 and 3 but returned to basal levels by

day 9 (Figure 1B). The number of ED2/CD163-positive cells in

the ipsilateral dorsal horn did not significantly change following

paw incision (data not shown).

Endocannabinoid Concentrations in the Spinal Cord and
PAG following Paw Incision

Endocannabinoids, other fatty acid ethanolamides (FAEs) and

their N-acylphosphatidylethanolamine species (NAPEs) precursors

were detected in the lumbar spinal cord of naı̈ve animals and animals

at days 1, 3, 9 and 15 after paw incision surgery. In animals receiving

paw incision surgery, the concentrations of AEA in both the

ipsilateral and contralateral lumbar spinal cord were significantly

lower on postoperative days 1 and 3 compared to basal concentra-

tions in naı̈ve animals. On postoperative days 9 and 15, however,

levels of spinal AEA were no longer significantly different from those

observed in naı̈ve animals (Figure 2). Spinal concentrations of N-

arachidonoylphosphatidylethanolamine (NAPE), a precursor of

AEA, demonstrated no significant differences from basal concentra-

tions at any postoperative time point tested, indicating that the

observed changes in AEA concentration may have resulted from

altered rates of degradation rather than synthesis (Table S1).

In contrast, the concentration of 2-AG in the ipsilateral spinal

cord did not significantly differ from basal levels on day 1 after

paw incision, but was significantly higher on days 3 and 9 before

returning to basal levels on day 15 (Figure 2). In the contralateral

spinal cord, tissue concentrations of 2-AG were significantly

increased on days 1 and 9 but did not significantly differ from

basal levels on days 3 and 15 after paw incision (Figure 2). In the

lumbar spinal cords of naı̈ve animals, concentrations of 2-AG were

approximately 100-fold higher than those of AEA, in agreement

with previous analyses of central nervous system tissues [19,20].

In both the contralateral and ipsilateral spinal cord, tissue

concentrations of the lipid amide palmitoylethanolamide (PEA), its

analog, (N-oleoylethanolamine) OEA and their respective precursors,

N-palmitoylphosphatidylethanolamine (NPPE) and N-oleoylpho-

sphatidylethanolamine (NOPE), did not significantly differ from

basal values at any postoperative time point tested (Figure S1 and

Table S1). The concentration of PEA in the periaqueductal gray

(PAG) was significantly lower in animals at days 1, 9 and 15 (but not

on day 3) after surgery than in naı̈ve animals (Figure S2). However,

compared to basal concentrations, we did not observe significant

changes in NAPE, NPPE, NOPE, OEA, AEA or 2-AG in the PAG at

any postsurgical time point studied (Figure S2 and Table S1).

Spinal Cord CB1 and CB2 Receptor Expression and
Cellular Localization

In order to characterize the targets of the endocannabinoid

system following paw incision, we evaluated the relative staining of

spinal CB1 and CB2 receptors over time and examined their

cellular localization. CB1 receptor staining in the L5 dorsal horn

was significantly reduced on postoperative days 1 and 9 and spinal

CB2 receptor staining was significantly increased on day 1

compared to staining in naı̈ve animals (Figures S3 and S4).

In both naı̈ve animals and animals receiving paw incision, spinal

CB1 receptors were primarily expressed on NeuN-positive neurons

(Figure 3). On occasion CB1 receptor staining also appeared to co-

localize with GFAP, an astrocyte marker (Figure 3). These findings

were confirmed using a 3-dimensional animation of Z-stack layered

confocal images (Videos S1 and S2). Microglia (Iba-1 positive cells)

and perivascular microglial cells (ED2/CD163 positive cells) did not

co-localize with CB1 receptor staining in naı̈ve animals or at any

observed time following paw incision (Figure 3).

Microglia (Iba-1 positive cells) and perivascular microglia

(ED2/CD163 positive cells) did, however, demonstrate localized

areas of strong CB2 receptor staining (Figure 4). CB2 receptor

staining was occasionally observed on NeuN-positive neuronal

somata but was punctate and relatively diffuse in character

Endocannabinoids in Acute Pain
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(Figure 4 and Video S3). GFAP-positive spinal cord astrocytes did

not demonstrate CB2 receptor expression (Figure 4).

Behavioral Effects of CB1 and CB2 Receptor Blockade
following Paw Incision

To our knowledge, CB1 and CB2 receptors have not previously

been implicated in the resolution of postoperative pain. We aimed

to produce a complete blockade of ECB signaling via these

receptors by systemically administering mixed CB1 and CB2

antagonists/inverse agonists (AM281 + AM630; 1 mg.kg21 each,

i.p.) to rats on the day of paw incision surgery and twice daily for

the following nine days. Control animals were treated with vehicle

according to the same paradigm. On postoperative day 1, both

groups similarly demonstrated significantly lower withdrawal

thresholds in the injured paw but not the uninjured paw as

compared to baseline values (Figure 5). By day 8 (and subsequent

days), however, the ipsilateral withdrawal thresholds of vehicle-

treated animals were significantly higher than their day 1 values

(p,0.05), indicating the resolution of paw incision-induced

mechanical allodynia (Figure 5). In contrast, the ipsilateral

withdrawal thresholds in the AM281 + AM630 group did not

differ significantly from their day 1 levels at any time point tested

(p.0.05) and were significantly lower than the vehicle group at

day 8 and subsequent days (Figure 5). The significant difference

between groups persisted through postoperative days 12-15, after

administration of AM281 + AM630 had been discontinued (day 9

was the last day of treatment).

In vehicle-treated animals, the withdrawal thresholds of the

uninjured paw (contralateral to paw incision) did not significantly

differ from baseline values on any days tested (p.0.05). In

contrast, animals treated chronically with AM281 + AM630

demonstrated a significant decrease in contralateral withdrawal

thresholds on days 7, 8 and 9 compared to baseline values

(p,0.05) and on day 9 compared to vehicle-treated animals

(Figure 5). However, on days 12-15, after the AM281 + AM630

treatment had been discontinued, contralateral withdrawal

thresholds were no longer significantly different from baseline

values or from vehicle controls (Figure 5). To monitor the acute

effects of AM281 + AM630 treatment, animals in preliminary

trials were tested before and 30 minutes, 1 hour and 2 hours after

drug or vehicle injections (n = 6 per group). On every day tested

(postoperative days 1-9), AM281 + AM630 injection produced no

significant changes in mechanical withdrawal thresholds at these

acute time points (data not shown).

Figure 1. Paw incision-induced mechanical allodynia and increased glial marker expression spontaneously resolve. (A) 50% paw withdrawal
thresholds were evaluated in naı̈ve animals and ipsilateral to paw incision in animals at days 1, 3 and 9 after surgery (n = 8 per group). *p,0.05 vs. baseline
values by one-way ANOVA repeated measures followed by Dunnett’s post test. #p,0.05 vs. postoperative day 1 values by one-way ANOVA repeated
measures followed by Dunnett’s post test. (B) L5 spinal cord sections were stained for Iba-1 (green) and GFAP (red). Representative confocal images show
detail of the superficial laminae of the L5 dorsal horn in naı̈ve animals and ipsilateral to paw incision in rats at days 1, 3 and 9 after surgery. BL: Baseline.
doi:10.1371/journal.pone.0010891.g001
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Effect of CB1 and CB2 Receptor Blockade on spinal GFAP,
Iba-1 and ED2/CD163 following Paw Incision

On day 9 following surgery, both the superficial (I-II) and deeper

laminae (III-V) of the ipsilateral L5 dorsal horn demonstrated

significantly stronger GFAP staining in animals treated with AM281

+ AM630 than in vehicle-treated animals (Figures 6A and 6C). On

day 9, GFAP staining in the contralateral dorsal horn (laminae I-II)

was also significantly stronger in animals treated with AM281 +
AM630 than in vehicle-treated animals (202.5664.1 vs. 41.663.7

pixels per 1000, AM281 + AM630 and vehicle groups respectively,

p,0.05). At the same time point we observed no significant differences

between groups in Iba-1 staining of the ipsilateral (Figures 6A and 6C)

or contralateral (21.463.7 vs. 11.561.0 pixels per 1000, AM281 +
AM630 and vehicle groups respectively, p.0.05) L5 dorsal horn.

On postoperative day 15 (six days after AM281 + AM630

treatment was discontinued), GFAP staining remained significantly

stronger in the ipsilateral L5 dorsal horn (laminae I-II) of mixed

antagonist-treated animals than in vehicle-treated animals (Figure 6B

and 6C) but no significant differences between groups were observed

in the contralateral dorsal horn (368.1662.1 vs. 239.167.7 pixels per

1000, AM281 + AM630 and vehicle group respectively, p.0.05). At

this time point, Iba-1 staining did not significantly differ between

groups in either the ipsilateral (Figure 6B and 6C) or contralateral

(15.862.0 vs. 12.161.1 pixels per 1000, AM281 + AM630 and

vehicle groups respectively, p.0.05) L5 dorsal horn. At day 15, the

number of spinal ED2/CD163-positive cells did not significantly

differ between groups (data not shown).

Effect of Propentofylline in Animals Treated with Dual
CB1 and CB2 Receptor Blockade

We then sought to evaluate whether the observed astrocytic

response played a functional role in the persistent hypersensitivity

observed in animals treated chronically with AM281 + AM630.

We confirmed that concomitant AM281 + AM630 administered

from the day of surgery to postoperative day 9 delayed the

resolution of paw incision-induced allodynia through postoperative

day 15. We also confirmed that after 9 days this treatment induced

significant allodynia in the uninjured paw. On postoperative days

14 and 15, we then treated a subset of animals from the AM281 +
AM630 group intrathecally (i.t.) with propentofylline (50 mg;

hereafter referenced as the ‘AM281 + AM630/PPF group’) or

vehicle (saline; hereafter referenced as the ‘AM281 + AM630/

Saline group’). Propentofylline is an atypical methylxanthine that

has been shown to attenuate both mechanical allodynia and

associated increases in glial marker and algesic factor expression in

a model of neuropathic pain [21,22,23]. Three hours after

injection on both days that propentofylline or vehicle was

administered (days 14 and 15), animals in the AM281 +
AM630/PPF group displayed ipsilateral withdrawal thresholds

that were significantly than AM281 + AM630/Saline controls

(Figure 7). Three hours after treatment on day 15, the ipsilateral

withdrawal thresholds of AM281 + AM630/PPF animals were not

significantly different from pre-surgery baseline values (Figure 7).

We then used immunostaining to evaluate the effects of

propentofylline treatment on relative expression of GFAP and the

phosphorylated form of p38, a mitogen activated protein kinase

(MAPK) associated with a pro-inflammatory cellular phenotype [18].

In addition to producing a persistent increase in spinal GFAP staining

(Figure 8), treatment with AM281 + AM630 also resulted in increased

phospho-p38 staining (Figure 8). Using confocal microscopy, we

observed that phospho-p38 was expressed mainly in astrocytes

(GFAP-positive cells) but was also expressed in perivascular microglia

(ED2/CD163-positive cells, Figure 9). Spinal cord sections from the

AM281 + AM630/PPF group demonstrated significantly lower

GFAP and pospho-p38 staining compared to sections from AM281 +
AM630/Saline animals, indicating that propentofylline treatment

had reversed the persistent increase in spinal GFAP expression and

p38 phosphorylation induced by the dual CB1/CB2 receptor

blockade (Figure 8).

Figure 2. Spinal endocannabinoid levels are dynamically regulated following paw incision. Spinal cord concentrations of AEA and 2-AG
were determined in the lumbar spinal cord of naı̈ve rats (N, n = 3) and in the ipsilateral and contralateral lumbar spinal cord of rats at days 1 (D1), 3
(D3), 9 (D9) and 15 (D15) after paw incision surgery (n = 6 for each group). *p,0.05 vs. naı̈ve group by one-way ANOVA followed by Dunnett’s post
test. 2-AG: 2-Arachidonoylglycerol, AEA: Anandamide.
doi:10.1371/journal.pone.0010891.g002

Endocannabinoids in Acute Pain

PLoS ONE | www.plosone.org 4 May 2010 | Volume 5 | Issue 5 | e10891



Discussion

Despite widespread recognition of the role of endocannabinoids

in regulating pain pathways, the role of the ECB system in the

resolution of acute pain following peripheral tissue damage has

not, to our knowledge, been previously described. In the current

study we used a rat model of postoperative pain to demonstrate

that dual blockade of CB1 and CB2 receptor signaling prevented

the resolution of postoperative allodynia and led to a persistent

increase of spinal GFAP expression and astrocytic p38 phosphor-

Figure 3. Spinal CB1 receptors are mainly expressed in neurons. Confocal analysis was used to determine spinal CB1 receptor cellular
localization in the superficial laminae of the L5 dorsal horn in naı̈ve rats or ipsilateral to surgery in rats at days 1, 3 and 9 after paw incision.
Representative images are shown. CB1 receptor staining appears in red. NeuN (marker for neurons), Iba-1 (marker for microglia) and ED2/CD163 (ED2,
marker for perivascular microglia) appear in green. GFAP (marker for astrocytes) appears in grey. In the images of CB1 receptors and Iba-1, CB1

receptor staining originally appeared green, and Iba-1 appeared in red. These colors were digitally switched in order to consistently represent CB1

receptor staining in red in all images. In the images of CB1 receptors and GFAP, GFAP staining originally appeared in green. The color of GFAP staining
was digitally changed to grey in order to allow better visualization of occasional staining of CB1 receptors on GFAP-positive cells. The colocalization of
CB1 receptors and NeuN staining appears in yellow.
doi:10.1371/journal.pone.0010891.g003
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ylation. We also provide evidence for the functional significance of

these astrocytic changes by demonstrating that intrathecal

administration of propentofylline attenuated both persistent

hypersensitivity and over-expression of GFAP and phospho-p38

in animals treated with AM281 + AM630.

Anandamide and 2-AG act mainly on CB1 and CB2 receptors

to modulate both normal physiology and disease pathogenesis in a

host of biological systems, including nociceptive processing

(reviewed in [15]). We found that AEA was reduced in the spinal

cord at the time of maximum mechanical hypersensitivity

Figure 4. Spinal CB2 receptors are mainly expressed in microglial cells. Confocal analysis was used to determine CB2 receptor cellular
localization in the superficial laminae of the L5 dorsal horn in naı̈ve rats or ipsilateral to surgery in rats at days 1, 3 and 9 after paw incision.
Representative images are shown. CB2 receptor staining appears in red. NeuN (marker for neurons), Iba-1 (marker for microglia) and ED2/CD163
(ED2, marker for perivascular microglia) appear in green. GFAP (marker for astrocytes) appears in grey. In the images of CB2 receptors and GFAP,
GFAP staining originally appeared in green. The color of GFAP staining was digitally changed to grey in order to allow a better visualization of this
specific marker and any potential staining of CB2 receptors. The colocalization of CB2 receptors with the other cellular markers is visualized in
yellow.
doi:10.1371/journal.pone.0010891.g004
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following paw incision (postoperative days 1 and 3) and returned

to basal levels by the time paw incision-induced allodynia had

spontaneously resolved (postoperative days 9 and 15). In

agreement with these results, previous studies using rodent models

have shown that decreased ECB levels may mediate nociceptive

sensitization arising from other disease states, such as bone cancer

[24] or migraine [25]. We also observed that spinal cord levels of

2-AG were not reduced but rather increased during the phase of

postoperative pain resolution (days 3 and 9 after surgery). Taken

together, these results suggest that low levels of AEA in the spinal

cord may contribute to paw incision-induced allodynia, and that

the normalization of spinal AEA concentrations paired with

elevated 2-AG may contribute to the spontaneous resolution of

behavioral hypersensitivity. This conclusion is supported by our

subsequent finding that chronic administration of mixed CB1 and

CB2 receptor antagonists/inverse agonists resulted in persistent

mechanical allodynia. While our approach cannot rule out the

involvement of other systems, these findings strongly suggest that

cannabinoid receptor signaling is required for the spontaneous

resolution of postoperative pain. In agreement with our results,

CB1 [26] and CB2 [27] receptor knock-out mice display increased

behavioral sensitivity in various models of pain. By day 9, twice-

daily treatment with mixed cannabinoid receptor antagonists

resulted in significant hypersensitivity of the uninjured paw and

associated increases in spinal GFAP staining of the superficial

dorsal horn contralateral to injury, as compared to vehicle

controls. These findings suggest that cannabinoid receptors may

also play a role in the maintenance of basal nociceptive signaling.

However, in the absence of injury, neither of these contralateral

effects was apparent once treatment was discontinued.

The enhancement of glial marker expression and glial p38

phosphorylation is evident in rodent models of acute postoperative

and neuropathic pain. In the former case, the incision-induced

increases in glial marker expression and p38 phosphorylation

spontaneously return to basal levels in association with the

resolution of acute allodynia [3,17,28,29]. Conversely, the

inappropriate persistence of enhanced glial marker expression

and p38 phosphorylation is associated with the generation and

maintenance of chronic pain states [30,31]. In the current study,

the persistent postoperative allodynia induced by the dual CB1/

CB2 receptor blockade was coupled with persistent over-

expression of GFAP and astrocytic phospho-p38, suggesting that

1) lasting astrocytic changes may also contribute to persistent

postoperative pain states and 2) under normal conditions,

endocannabinoid signaling may drive postoperative pain resolu-

tion by directly or indirectly limiting pro-inflammatory signaling in

astrocytes.

In a model of nerve-injury-induced chronic pain, propentofyl-

line has been shown to inhibit hyperalgesia and associated p38

phosphorylation in glial cells [32,33]. Additionally, propentofylline

attenuates GFAP over-expression and increases expression of

glutamate transporter-1 in astrocytes, which may prevent neuronal

sensitization resulting from excess synaptic glutamate [23,34]. In

the current study, propentofylline attenuated both persistent

hypersensitivity and over-expression of GFAP and phospho-p38

in antagonist-treated animals. These results suggest that the

persistence of enhanced astrocytic GFAP and phospho-p38

expression is functionally linked to the behavioral effects of the

dual cannabinoid receptor blockade. In the spinal nerve ligation

model of neuropathic pain, it has been previously shown that the

duration of behavioral hypersensitivity is reduced in GFAP

knockout mice and that intrathecal administration of a GFAP

antisense oligonucleotide reverses hypersensitivity [35]. Although

these findings implicate a functional role of GFAP in neuropathic

pain, it is also possible that these effects are due to mechanisms

upstream (such as nitric oxide, glutamate or substance P signaling

[36]) or downstream (such as myelination, blood–brain barrier

integrity or astrocyte motility [37]) from GFAP expression.

The phosphorylation of glial p38 plays a well-described role in

the production of pro-inflammatory factors (including cytokines,

chemokines, prostaglandins and nitric oxide) that may sensitize

spinal neurons and contribute to the aberrant nociceptive activity

characteristic of chronic pain conditions (reviewed in [18]). In

support of this role, the dephosphorylation of p38 has been shown

to reverse acute postoperative allodynia [30]. Although p38

phosphorylation has thus far been described mainly in microglia

[29,30,33,38,39], p38 has also been shown to participate in the

astrocytic response to a dual CB1/CB2 receptor agonist in vitro

[40]. Together, this in vitro study and our current findings suggest a

functional relationship between astrocytic cannabinoid receptor

signaling and inhibition of p38 phosphorylation. We also observed

the expression of both phospho-p38 and CB2 receptors in

perivascular cells, suggesting that ECBs may also directly regulate

p38 signaling in these cells. Since the number of ED2-positive

perivascular cells was not changed by the dual cannabinoid

receptor blockade, our findings support the idea that an accurate

Figure 5. Dual blockade of CB1 and CB2 receptors prevents the normal resolution of paw incision-induced hypersensitivity.
Withdrawal thresholds ipsilateral (A) and contralateral (B) to paw incision were determined before (BL: Baseline) and following surgery. Mixed
antagonists of CB1 receptors (AM281; 1 mg.kg21) and CB2 receptors (AM630; 1 mg.kg21) or vehicle were administered twice daily (i.p.) through day 9
(doted vertical lines). *p,0.05 vs. vehicle group by two-way ANOVA repeated measures followed by Bonferroni post test. n = 8 per group.
doi:10.1371/journal.pone.0010891.g005
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Figure 6. Dual blockade of CB1 and CB2 receptors results in persistent over-expression of GFAP. Representative images show GFAP
(astrocytic marker) and Iba-1 (microglial marker) staining in the L5 dorsal horn ipsilateral and contralateral to paw incision in vehicle- and AM281 +
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evaluation of glial cell phenotype or glial reactivity cannot be

obtained by exclusively studying glial marker expression. These

findings also demonstrate the need for further investigation of the

individual contributions of CB1 and CB2 receptor signaling to the

resolution of postoperative pain. The significant effects of

intrathecal propentofylline administration on mechanical allody-

nia and GFAP and phopho-p38 expression support the established

hypothesis that spinal cord mechanisms are integral for the

maintenance of persistent and chronic pain. However, based on

reports of the importance of peripheral cannabinoid receptors in

the induction of analgesia [26,41], the respective roles of

peripheral and central cannabinoid receptors also deserve further

attention in the context of postoperative pain resolution.

Previous studies have demonstrated direct effects of cannabi-

noid compounds on astrocytic function [40,42,43]. In particular,

evidence of ECB-dependent astrocytic-neuronal cross-talk [42]

suggests a mechanism by which the cannabinoid receptor

blockade may result in persistent pro-inflammatory signaling in

astrocytes and contribute to the perpetuation of nociceptive

signaling. Functional interactions between microglia and astro-

cytes may also play a role in mediating the astrocytic response to

changes in ECB signaling. Even though astrocytes do not express

CB2 receptors, genetic deletion of CB2 receptors results in

enhanced GFAP expression in rodent models of neuropathic pain

[27] and Huntington’s disease [44]. Additionally, we have

previously shown that central administration of a CB2 receptor

agonist reduced paw incision-induced GFAP expression [3].

Taken together, these findings suggest that direct effects on

astrocytes, altered neuronal-astrocytic cross-talk and/or altered

microglial-astrocytic interactions may drive the persistent astro-

cytic response that resulted from the dual cannabinoid receptor

blockade.

In conclusion, we have identified CB1 and CB2 receptor-

mediated endocannabinoid signaling as a novel mechanism

underlying the spontaneous resolution of acute postoperative

pain. Our data further suggest that ECB signaling may contribute

to the resolution of postoperative pain by limiting p38 phosphor-

ylation and thereby inhibiting pro-inflammatory signaling in spinal

astrocytes. These results provide a rationale for further investiga-

tion of the role of endocannabinoid signaling in the pathogenesis

of other conditions that may be driven by aberrant glial responses,

such as neurodegenerative diseases [44]. Our findings also suggest

that the dysregulation of ECB signaling may contribute to the

transition from acute to chronic pain states experienced by a

significant portion of surgery patients. Based on these conclusions,

we suggest that therapeutic strategies designed to enhance ECB

signaling may reduce the incidence of persistent postoperative

pain. Further studies are also warranted to evaluate whether these

strategies might prove effective in preventing nerve injury from

developing into chronic neuropathic pain or in treating established

chronic pain with better efficacy and fewer side-effects than

currently available analgesics.

Materials and Methods

Animals and Surgeries
Efforts were made to limit animal distress and to use the

minimum number of animals necessary to achieve statistical

significance. All protocols were previously approved by the

Institutional Animal Care and Use Committee at Dartmouth

College and in accordance with the Guidelines for Animal

Experimentation of the International Association for the Study

of Pain (IASP). Paw incision was used as model of postoperative

pain in rats. The hypersensitivity induced in this model has been

shown to largely resolve by a week after surgery [16,17]. In this

model, male Sprague-Dawley rats (Harlan, Indianapolis, IN)

weighing approximately 250 g at the start of surgery underwent

paw incision surgery as previously described [16]. Briefly, animals

were anesthetized with 4% isoflurane in oxygen by inhalation

followed by maintenance with 2% isoflurane in oxygen. Following

sterilization with 10% providone-iodine solution, a 1 cm midline

incision was made on the plantar face of the left hind paw from the

heel to the base of the toes using a No. 10 scalpel blade and sterile

technique. A small forceps was used to elevate the flexor tendon

from the heel to the toes and to irritate it for 6-8 seconds. The

wound was cleaned and two inverted 6-0 silk sutures were used to

close the incision. Animals were housed individually and

maintained in a 12:12 h light/dark cycle with ad libitum access to

food and water. Separate sets of animals received paw incision

surgery for the ECB tissue concentration studies, the CB1 and CB2

receptor expression and cellular localization studies and the

cannabinoid receptor blockade experiments.

Endocannabinoid Tissue Concentration
Untreated animals received paw incision surgery and were

subjected to deep inhalation of 4% isoflurane in oxygen and

Figure 7. Propentofylline reverses behavioral hypersensitivity
in rats treated with dual CB1/CB2 receptor blockade. 50%
withdrawal thresholds were determined in AM281 + AM630-treated
animals in response to subsequent propentofylline or saline treatment
(indicated by arrows). Animals treated from days 1-9 with mixed CB
antagonists were treated on days 14 and 15 with the glial modulator
propentofylline (50 mg in 10 ml, i.t., n = 7) or saline (10 ml, i.t., n = 7).
Behavior was tested before and 3 hours (3h) after injections as shown.
*p,0.05 vs. saline group by two-way ANOVA repeated measures
followed by Bonferroni post tests. BL: Baseline.
doi:10.1371/journal.pone.0010891.g007

AM630-treated rats at postoperative days 9 (A) and 15 (B). Quantification of these markers in laminae I-II is shown in the bottom panel (C). Staining
was quantified as the number of pixels above a set threshold per total pixels in the selected area. Vehicle group: Iba-1-day 9, n = 4; Iba-1-day 15, n = 8;
GFAP-day 9, n = 3; GFAP-day 15, n = 8. AM281+AM630 group: Iba-1-day 9, n = 4; Iba-1-day 15, n = 6; GFAP-day 9, n = 3; GFAP-day 15, n = 6. *p,0.05 vs.
vehicle group by two-way ANOVA followed by Bonferroni post test.
doi:10.1371/journal.pone.0010891.g006
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euthanized by decapitation on days 1, 3, 9 and 15 after surgery

(n = 6 each). Naı̈ve animals (n = 3) were used as the control group.

The lumbar enlargement of the spinal cord was collected and

dissected with a scalpel to divide the ipsilateral and contralateral

sides (left and right for naı̈ve animals). The periaqueductal gray

(PAG) was also harvested. Tissues were wrapped in foil and snap

frozen on dry ice and removed to -80 uC until analysis. Frozen

tissues were weighed and homogenized in methanol (1 mL/100

mg of tissue) containing [2H4]FAEs, [2H8] 2-AG (Cayman

Chemical, Ann Arbor, MI) and 1-O-Hexadecyl-2-palmitoyl-sn-

glycero-3-phospho-(N-palmitoyl)-ethanolamide (Enzo Life Scienc-

es International, Inc., Plymouth Meeting, PA) as internal

standards. [2H4]FAEs were synthesized as previously described

[45]. Lipids were extracted with chloroform and water and were

fractionated by open-bed silica gel column chromatography as

previously described [46]. FAEs and 2-AG were quantified as

previously described [47] using an 1100-LC system coupled to a

1946A-MS detector (Agilent Technologies, Inc., Palo Alto, CA)

equipped with an electrospray ionization interface. Quantifications

were conducted using an isotope dilution method, monitoring the

sodium adduct of the molecular ions ([M+Na]+). We quantified

NAPEs by LC-MSn using an 1100-LC system (Agilent Technol-

ogies) equipped with an Ion Trap XCT (Agilent Technologies) as

previously described [47]. Tissue-derived NAPEs were identified

by comparison of their LC retention times and MSn fragmentation

patterns with those of authentic standards, prepared as previously

described [47]. Extracted ion chromatograms were used to

quantify each NAPE precursor ion by monitoring the character-

istic lyso-NAPE product ions in MS2 using 1-O-Hexadecyl-2-

palmitoyl-sn-glycero-3-phospho-(N-palmitoyl)-ethanolamide (m/z

914.8.676.8) as an internal standard. The following NAPEs were

monitored: 1-stearoyl, 2-arachidonoyl-sn-glycero-3-phosphoetha-

nolamine-N-palmitoyl (m/z 1004.8.718.8), 1-stearoyl, 2-

arachidonoyl-sn-glycero-3-phosphoethanolamine-N-oleoyl (m/z

1030.8.744.6), and 1-stearoyl, 2- docosahexaenoyl-sn-glycero-3-

phosphoethanolamine-N-arachidonoyl (m/z 1076.8.766.8). De-

tection and analysis were controlled by Agilent/Bruker Daltonics

software version 5.2.

Drug Treatment
Animals in the experimental group were treated with intraperito-

neal (i.p.) injections of AM281 (1-(2,4-dichlorophenyl)-5-(4-iodophe-

nyl)-4-methyl-N-4-morpholinyl-1H-pyrazole-3-carboxamide; Tocris,

Ellisville, Missouri) and AM630 (6-iodo-2-methyl-1-[2-(4-morpholi-

nyl)ethyl]-1H-indol-3-yl](4-methoxyphenyl)methanone; Tocris, Ellis-

ville, Missouri) at a dose of 1 mg.kg21 each in 500 ml [41,48,49].

AM281 is a diarylpyrazole analog CB1 receptor antagonist/inverse

agonist [50,51]. AM630 is an aminoalkylindole analogue CB2

receptor antagonist/inverse agonist [52,53,54]. Although some

studies indicate that CB1 receptor antagonists may interact with

TRPV1 channels [55] or with the opioid system via prodynorphin

production [49], it is unlikely that our behavioral findings were

Figure 8. Propentofylline reverses over-expression of GFAP and phospho-p38 in rats treated with dual CB1/CB2 receptor blockade.
Representative images show spinal GFAP (A) and phospho-p38 staining (B) in the ipsilateral L5 dorsal horn of animals treated from days 1-9 with
AM281 + AM630 and subsequently treated on days 14 and 15 with the glial modulator propentofylline (PPF, 50 mg in 10 ml, i.t., n = 4) or saline (Sal,
10 ml, i.t., n = 3). Staining of GFAP (C) and phospho-p-38 (D) was quantified as the number of pixels above a set threshold per total pixels in the
selected area. Controls (Veh, n = 3) were treated with the antagonist vehicle for nine days but did not receive either propentofylline or saline
treatment. *p,0.05 vs. AM281 + AM630/saline group by one-way ANOVA followed by Dunnett’s post test.
doi:10.1371/journal.pone.0010891.g008
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influenced by interactions between our antagonist treatment and

these systems, which do not play a role in paw-incision-induced

hypersensitivity [56,57]. AM281 and AM630 were concomitantly

administered in the morning between 10:00 – 11:00 AM and in the

evening between 4:00 – 5:00 PM on the day of surgery and the

following nine days. A control group was injected with an equivalent

Figure 9. Phospho-p38 is expressed in astrocytes and perivascular microglia. Confocal analysis was used to determine phospho-p38 (P-
p38) cellular localization in the superficial laminae of the ipsilateral L5 dorsal horn in AM281 + AM630-treated rats on day 15 after paw incision.
Representative images are shown. Phospho-p38 appears in green. GFAP (marker for astrocytes), ED2/CD163 (ED2, marker for perivascular microglia),
Iba-1 (marker for microglia) and NeuN (marker for neurons) appear in red. The color of ED2/CD163, Iba-1 and NeuN staining was digitally changed
from green to red, and phospho-p38 from red to green for consistency in presenting the data and in order to allow a better visualization of the co-
localization of these markers. The colors of the GFAP/phospho-p38 co-stain (top panel) were not altered.
doi:10.1371/journal.pone.0010891.g009
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volume of vehicle (12% DMSO in 500 ml saline). Animals that were

perfused on day 9 did not receive drug or vehicle injections that day.

A subset of animals received i.t. injections of the glial modulator

propentofylline (50 mg in 10 ml) or saline (10 ml) on days 14 and 15

after surgery.

Behavioral Testing
To test mechanical allodynia, calibrated von Frey filaments

(Stoelting, Wood Dale, IL) were pressed against the plantar aspect

of each hind paw for approximately 6 seconds. The 50%

withdrawal thresholds of each hind paw were determined twice

at 10-15 minute intervals using the up-down statistical method

[58]. The average of these values was used for data analysis. The

untreated animals that provided tissue for the ECB concentration

and CB1 and CB2 receptor expression and cellular localization

studies were tested for baseline values, received paw incision

surgery and were tested before tissue collection on postoperative

days 1, 3, 9 or 15. In both cases, the naı̈ve animals used for

controls were also tested for baseline behavior but did not receive

paw incision surgery. In the cannabinoid receptor blockade

experiments, animals receiving mixed antagonist or vehicle

treatment (see above) were tested twice before surgery to obtain

a baseline then daily (before the morning injection) over the course

of the 15 days following surgery to monitor the resolution of

hypersensitivity. In a subset of animals, behavior was tested before

antagonist administration and at 30 minutes, 1 hour and 2 hours

after injection; however, since drug administration produced no

acute effects (data not shown), daily behavioral tests for the

majority of animals were only performed once daily (directly

before A.M. drug injections). In the subset of animals that were

additionally injected intrathecally (i.t.) with either propentofylline

(n = 7) or saline (n = 7) as described above, behavior was tested

before and 3 hours after i.t. injections. During all behavioral

testing, the experimenter was blinded to experimental conditions.

Tissue Preparation for Immunofluorescence and
Immunohistochemistry

In order to examine expression of Iba-1 (a microglial marker),

GFAP (an astrocytic marker), ED2/CD163 (a perivascular cell

marker) and CB1/CB2 receptor and CB1/CB2 receptor co-

localization with other cell markers in response to paw incision,

untreated animals received paw incision surgery and were

perfused as described below on days 1, 3 and 9 after surgery

(n = 4 each). Naı̈ve animals (n = 4) were used as the control group.

In separate experiments, animals receiving mixed CB1 and CB2

receptor antagonists (day 9 after surgery, n = 4; day 15 after

surgery, n = 6) or vehicle (day 9 after surgery, n = 4; day 15 after

surgery, n = 8) were perfused as described below on days 9 and 15

post-surgery. These animals were used to provide spinal cord

tissue for the analysis of ED2/CD163, Iba-1 and GFAP expression

for the cannabinoid receptor blockade experiments. Another set of

animals received vehicle (n = 3), mixed CB1 and CB2 receptor

antagonists followed by propentofylline on days 14 and 15 (n = 4)

or mixed CB1 and CB2 receptor antagonists followed by saline

vehicle on days 14 and 15 (n = 4). Animals were perfused 3 hours

after propentofylline or saline treatment as described below on day

15 post-surgery. These animals were used to provide spinal cord

tissue for the analysis of GFAP expression and p38 phosphory-

lation.

In all cases, animals were first subjected to deep inhalation of

4% isoflurane in oxygen and perfused transcardially with 0.01 M

phosphate buffered saline (PBS; approximately 150 ml) followed

by 4% formaldehyde (350 ml or until stiff) at room temperature.

After fixation, a laminectomy was performed, the lumbar

enlargement was removed and the L5 segment was separated

and cryoprotected in 30% sucrose for 48–72 h at 4uC. The tissue

was then mounted and frozen in Optimal Cutting Temperature

(O.C.T.) compound (Sakura Finetek, Torrance, CA) at -80uC.

Immunofluorescence was performed on transverse 20 mm sections

of the L5 spinal cord. Sections to be stained for ED2/CD163 were

then post-fixed with 4% formaldehyde for 5 minutes and washed 3

times with 1X PBS wash buffer (.0067 M) for 10 minutes at 4uC
before blocking. This step was omitted for all other stains. All

sections were blocked in 5% Normal Goat Serum (NGS) and

0.01% Triton-X-100 for 1 hour at 4uC. Sections were incubated in

the appropriate primary antibody or antibodies diluted in a buffer

composed of 1% NGS and 1% Triton-X-100 in PBS overnight at

4uC. Microglia were stained with a rabbit polyclonal antibody

directed against Iba-1 (1:1000, Wako Pure Chemical Industries,

Richmond, VA). Astrocytes were stained with a rabbit polyclonal

antibody directed against GFAP (1:10,000, Dako Cytomation,

Glostrup, Denmark) except when co-staining with Iba-1. To avoid

cross-reactivity in this latter case, a mouse polyclonal antibody was

used to stain GFAP (1:400, Sigma, Saint Louis, Missouri).

Perivascular cells were stained with a mouse polyclonal antibody

directed against ED2/CD163 (1:150, Serotec, Raleigh, NC).

Neurons were stained with a mouse polyclonal antibody directed

against Neuronal Nuclei, NeuN (1:10,000, Chemicon, Billerica,

Massachusetts). A rabbit polyclonal antibody was used to label

CB1 receptors (1:200, Cayman, Ann Arbor, MI; except when

using the TSA Signal Amplification Kit, see below). A goat

polyclonal antibody was used to label CB2 receptors (1:150, Santa

Cruz, Santa Cruz, CA). A mouse or rabbit monoclonal antibody

was used to label phospho-p38 (1:100, Cell Signaling, Danvers,

MA). The following day, tissue sections were washed 3 times with

PBS for 10 minutes at 4uC and stained with the appropriate

secondary fluorescent antibody or antibodies diluted 1:250 in a

buffer composed of 1% NGS and 1% Triton-X-100 in PBS for 1

hour at 4uC. For CB2 receptor expression at different time points

following paw incision surgery we used the Vector ELITE ABC

(Vector Labs, Burlingame, CA), avidin-biotin complex technique.

The following secondary antibodies were used as indicated in

Table S2 (Supplemental Material): Alexa-FluorTM 488 Goat anti-

Rabbit IgG1 (Molecular Probes, Eugene, Oregon), Alexa-FluorTM

488 Goat anti-Mouse IgG1 (Molecular Probes, Eugene, Oregon),

Alexa-FluorTM 555 Goat anti-Mouse IgG (Molecular Probes,

Eugene, Oregon) and Alexa-FluorTM 555 Donkey anti-Goat IgG

(Molecular Probes, Eugene, Oregon). Alexa-FluorTM 488 fluor-

ophore-tagged secondary antibodies emit green wavelengths of

visible light and Alexa-FluorTM 555 fluorophore-tagged secondary

antibodies emit red wavelengths of visible light. To avoid cross-

reactivity between the secondary antibodies in the CB2 receptor

co-localization experiments, sections were first incubated in Alexa-

FluorTM 555 Donkey anti-Goat IgG (Molecular Probes, Eugene,

Oregon) as described above, washed 2 times in PBS and then

incubated in the appropriate Alexa-FluorTM 488 secondary

antibody as described above. This protocol modification prevented

binding of the Alexa-FluorTM 555 Donkey anti-Goat IgG to the

goat-derived Alexa-FluorTM 488. To avoid cross-reactivity when

co-staining with primary antibodies against Iba-1 and CB1

receptors that are both rabbit-derived, a TSA Signal Amplification

Kit was used following the manufacturer instructions (PerkinElmer

LifeSciences Inc, Boston, MA). On the first day, normal

immunofluorescence protocol was followed except that sections

were incubated only in anti-CB1 receptor antibody at a

concentration of 1:10,000. On the second day sections were

washed 2 times for 5 minutes in PBS then incubated in a

biotinylated Goat a Rabbit secondary antibody for 1 hour at 4uC.
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Sections were then subjected to another wash, incubated in SA-

HRP (1:100) for 1 hour at 4uC, washed again and incubated in the

TSA fluorophore (1:250) for 10 minutes at 4uC. Sections were then

washed again and incubated overnight in the Iba-1 primary

antibody (1:1000). The next day sections were subjected to normal

day 2 immunofluorescence protocol to visualize Iba-1 (described

above). One control was included with only the anti-CB1 receptor

primary antibody (1:10,000) and the Alexa 555 Goat a Rabbit

secondary antibody to control for any cross-reactivity that might

cause CB1 receptor staining to appear in red. A second control

included only the anti-CB1 receptor primary antibody and the

TSA kit in order to visualize the staining achieved in the absence

of the co-stain. Finally, a third control included the TSA kit, Iba-1

primary and the Alexa 555 Goat a Rabbit secondary antibody but

excluded the anti-CB1 receptor primary antibody. This third

control provided visualization of the non-specific background

staining produced by the kit alone. All controls confirmed the

specificity of the complete co-stain.

In all cases, tissue sections were washed again as before,

mounted on glass slides, dehydrated, treated with Vectashield

(Vector Labs, Burlingame, CA) and sealed with a coverslip and

nail polish. The specificity of each antibody was tested by omitting

the primary antibody on 1-3 additional sections.

Imaging and Image Analysis
The induction of glial reactivity has been described as an

increase in the number (proliferation and/or migration) and

complexity of these populations (rounded cell bodies and thicker

processes), resulting in an increase in the expression of glial

markers. However, the role of common glial markers in

determining glial phenotype is not well understood. In order to

better assess the induction of inflammatory activity in CNS cell

populations, we also studied the expression of the pro-inflamma-

tory mitogen activated protein kinase (MAPK) p38 in its active

form (phosphorylated) in glial and neuronal cells. In order to

quantify these markers, stained sections were examined with an

Olympus fluorescence microscope, and images were captured with

a Q-Fire cooled camera (Olympus, Melville, NY). In the

superficial laminae (I-II) and deep laminae (III-V) of the L5 dorsal

horn, the intensity of CB1 receptor, CB2 receptor, Iba-1, GFAP

and phospho-p38 staining was quantified as the number of pixels

per area above a preset intensity threshold using SigmaScan Pro 5

(SPSS, Chicago, IL) as previously described [3,17]. For each area,

the number of high-intensity pixels was normalized to the total

pixels selected in that area. For each animal, 4 sections were

analyzed, and an average of these values was used for statistical

analysis. To ensure the consistency of staining technique between

groups, immunofluorescent/immunohistochemical staining and

image capture were both performed simultaneously on all tissue

samples that were directly compared and subjected to statistical

tests. Due to the relatively small volume of ED2/CD163 positive

cells, this marker was quantified by counting positively stained cells

on an Olympus fluorescence microscope.

Statistical Analysis
For behavioral data and comparison against base line or day 1

after surgery, one-way ANOVA repeated measures was conduct-

ed and followed by Dunnett’s or Bonferroni multiple comparison

post test (only when p,0.05 was found). Two-way ANOVA

repeated measures was used for comparisons between groups at

every time point for behavioral data, and followed by Bonferroni

post tests when p,0.05 was found. To compare relative CB1

receptor, CB2 receptor and ED2/CD163 staining and tissue

concentrations of ECBs, their precursors and other non-

cannabinoid ethanolamides over time, one-way ANOVA fol-

lowed by Dunnett’s multiple comparison post test, when p,0.05

was found, was performed. Two-way ANOVA plus Bonferroni

post tests when p,0.05 was used for comparisons between groups

for Iba-1 or GFAP expression. All data are presented as the mean

6 SEM. In all cases a p,0.05 was considered significant.

GraphPad Prism 5 software was used to perform all statistical

analyses.

Supporting Information

Figure S1 Spinal OEA and PEA concentrations do not change

after paw incision. Concentrations of OEA and PEA were

measured in naı̈ve rats (N, n = 3) and ipsilateral and contralateral

to paw incision in rats at days 1 (D1), 3 (D3), 9 (D9) and 15 (D15)

after surgery (n = 6 for each group). OEA: N-oleoylethanolamine,

PEA: palmitoylethanolamide. No significant difference was found

between groups using one-way ANOVA (p.0.05).

Found at: doi:10.1371/journal.pone.0010891.s001 (4.47 MB TIF)

Figure S2 PEA levels in the PAG are reduced after paw incision.

PAG concentrations of OEA, PEA, AEA and 2-AG were

measured in naı̈ve rats (N, n = 3) and at days 1 (D1), 3 (D3), 9

(D9) and 15 (D15) after surgery in rats receiving paw incision

(n = 6 for each group). *p,0.05 vs. naive group by one-way

ANOVA followed by Dunnett’s post test. 2-AG: 2-Arachidonoyl-

glycerol, AEA: Anandamide, OEA: N-oleoylethanolamine, PEA:

palmitoylethanolamide.

Found at: doi:10.1371/journal.pone.0010891.s002 (3.59 MB TIF)

Figure S3 CB1 receptor expression is reduced on days 1 and 9

after paw incision. Representative images (A) show CB1 receptor

staining in the L5 dorsal horn of naı̈ve rats (N, n = 3) and

ipsilateral to paw incision in rats at days 1 (D1, n = 3), 3 (D3, n = 3)

and 9 (D9, n = 4) after surgery. The middle panel (B) shows detail

of the superficial laminae (I-II) of the dorsal horn of these spinal

cord sections. Staining was quantified (C) as the number of pixels

above a set threshold per total pixels in the selected area. *p,0.05

vs. naive by one-way ANOVA followed by Dunnett’s post test.

Found at: doi:10.1371/journal.pone.0010891.s003 (2.66 MB TIF)

Figure S4 CB2 receptor expression is increased on day 1

following paw incision. Representative images (A) show CB2

receptor staining in the L5 dorsal horn of naı̈ve rats (N, n = 3) and

ipsilateral to paw incision in rats at days 1 (D1, n = 3), 3 (D3, n = 3)

and 9 (D9, n = 4) after surgery. The middle panel (B) shows detail

of the superficial laminae (I-II) of the dorsal horn of these spinal

cord sections. Staining was quantified (C) as the number of pixels

above a set threshold per total pixels in the selected area. These

representative images have been digitally transformed to black and

white color. *p,0.05 vs. naive group by one-way ANOVA

followed by Dunnett’s post test.

Found at: doi:10.1371/journal.pone.0010891.s004 (2.86 MB TIF)

Table S1 Tissue Concentrations of Fatty Acid Ethanolamide

Precursors. Levels of N-acylphosphatidylethanolamine species

precursors in the spinal cord and perieaqueductal grey (PAG) of

naı̈ve rats and of rats at days 1, 3, 9 and 15 after paw incision

surgery. No significant differences were found between groups for

any of these compounds using one-way ANOVA (p.0.05). I:

ipsilateral to paw incision, C: contralateral to paw incision, NAPE:

N-arachidonoylphosphatidylethanolamine, NPPE: N-palmitoyl-

phosphatidylethanolamine, NOPE: N-oleoylphosphatidylethano-

lamine. Data presented as mean (s.e.m.).

Found at: doi:10.1371/journal.pone.0010891.s005 (0.07 MB

DOC)
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Table S2 Details of antibody selections for immunohistochem-

istry and immunofluorescence experiments. CB1: Cannabinoid

Type 1, CB2: Cannabinoid Type 2, ED2: Perivascular cell marker,

GFAP: Glial Fibrillary Acidic Protein, Iba-1: Ionized Calcium-

Binding Adapter Molecule 1, NeuN: Neuronal Nuclei.

Found at: doi:10.1371/journal.pone.0010891.s006 (0.09 MB

DOC)

Video S1 Low levels of CB1 receptor are expressed in spinal

astrocytes. Analysis of Z-stacked confocal images was used to

confirm CB1 receptor colocalization with GFAP-positive astro-

cytes in the superficial laminae of the L5 dorsal horn of naı̈ve rats.

CB1 receptor staining appears in red. GFAP (marker for

astrocytes) appears in grey. In these images, GFAP staining

originally appeared in green. The the color of GFAP staining was

digitally changed to grey in order to allow better visualization of

occasional staining of CB1 receptors on GFAP-positive cells.

Found at: doi:10.1371/journal.pone.0010891.s007 (7.08 MB AVI)

Video S2 Low levels of CB1 receptor are expressed in spinal

astrocytes at day 9 after paw incision. Analysis of Z-stacked

confocal images was used to confirm CB1 receptor colocalization

with GFAP-positive astrocytes in the superficial laminae of the L5

dorsal horn at day 9 after paw incision surgery. CB1 receptor

staining appears in red. GFAP (marker for astrocytes) appears in

grey. In these images, GFAP staining originally appeared in green.

The color of GFAP staining was digitally changed to grey in order

to allow better visualization of occasional staining of CB1 receptors

on GFAP-positive cells.

Found at: doi:10.1371/journal.pone.0010891.s008 (7.08 MB AVI)

Video S3 Low levels of CB2 receptor are expressed in neuronal

somata. Analysis of Z-stacked confocal images was used to confirm

CB2 receptor colocalization with NeuN-positive neuronal somata

in the superficial laminae of the L5 dorsal horn at day 3 after paw

incision surgery. CB2 receptor staining appears in red. NeuN

(neuronal marker) appears in green.

Found at: doi:10.1371/journal.pone.0010891.s009 (11.80 MB

AVI)
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