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The Family 16 methyltransferases are a group of eukaryotic nonhistone

protein methyltransferases. Sixteen of these have recently been described

in yeast and human, but little is known about their sequence and struc-

tural features. Here we investigate one of these methyltransferases, Sac-

charomyces cerevisiae elongation factor methyltransferase 2 (Efm2), by

site-directed mutagenesis and truncation. We show that an active site-

associated tryptophan, invariant in Family 16 methyltransferases and at

position 222 in Efm2, is important for methyltransferase activity. A sec-

ond highly conserved tryptophan, at position 318 in Efm2, is likely

involved in S-adenosyl methionine binding but is of lesser consequence

for catalysis. By truncation analysis, we show that the N-terminal

50–200 amino acids of Efm2 are critical for its methyltransferase activ-

ity. As N-terminal regions are variable among Family 16 methyltrans-

ferases, this suggests a possible role in determining substrate specificity.

This is consistent with recently solved structures that show the core of

Family 16 methyltransferases to be near-identical but the N termini to

be structurally quite different. Finally, we show that Efm2 can exist as

an oligomer but that its N terminus is not necessary for oligomerisation

to occur.

Protein methylation is a widespread post-translational

modification in the eukaryotic cell. While the methyla-

tion of histones has been widely characterised, methy-

lation of nonhistone proteins has gained increased

attention due to its roles in cellular signalling and dis-

ease [1–7]. In order to expand the knowledge of nonhi-

stone methylation, there have been many recent

proteome-scale studies to discover protein methylation

sites [8–13]. However, the function of the vast majority

of these sites remains elusive. One critical step in

understanding the function of protein methylation is

to identify and characterise the methyltransferases that

catalyse it.

Protein methyltransferases can be separated into two

main groups based on their methyltransferase domain:

SET domain methyltransferases and seven-beta-strand

methyltransferases, also called Class I methyltrans-

ferases [6]. Additionally, there is one known protein

methyltransferase with the SPOUT fold [14]. All SET

domain methyltransferases are protein methyltrans-

ferases that are specific to lysine [15], while seven-beta-

strand methyltransferases are more diverse in their sub-

strates. Seven-beta-strand methyltransferases, which

make up the majority of all methyltransferases, are

known to methylate DNA, RNA, metabolites and other

small molecules, as well as proteins [16]. It is therefore
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difficult to predict the substrate specificity of seven-

beta-strand methyltransferases. Nonetheless, there have

been many attempts to predict the substrate specificity

of yeast methyltransferases based on features beyond

their core fold [17,18].

Recently, a subclass of seven-beta-strand methyl-

transferases has been discovered which has, so far,

proven to be protein-specific: the Family 16 group

of methyltransferases. There are 16 protein methyl-

transferases in Saccharomyces cerevisiae and human

which belong to this family, 12 of which have

described substrates (Table 1). All members appear

to exclusively methylate nonhistone proteins. The

S. cerevisiae members target translation-associated

proteins. Efm2 and Efm3 methylate eukaryotic trans-

lation elongation factor 2 (eEF2), Efm6 and Efm7

methylate eukaryotic translation elongation factor 1A

(eEF1A), while Rkm5 and Hpm1 methylate riboso-

mal proteins RPL1A/B and RPL3 [19–26]. The

human members target more diverse substrates:

CaM-KMT methylates calmodulin, VCP-KMT

methylates the valosin-containing protein (VCP),

HSPA-KMT methylates a number of 70 kDa heat

shock proteins, METTL22 methylates KIN17,

ETFB-KMT methylates electron transfer flavoprotein

subunit beta and eEF2-KMT, the orthologue of

Efm3, methylates eEF2 [21,27–33]. Interestingly, no

other substrates have been described for each of

these methyltransferases, despite attempts to find

more [21,28,30,34]. The Family 16 methyltransferases

therefore have very restricted substrate specificity.

This is probably due to the fact that they recognise

three-dimensional aspects of their substrates and not

just sequence motifs [24,28,35]. It is not yet known,

however, what aspect of the Family 16 methyltrans-

ferases determines their specificity.

All Family 16 methyltransferases contain a [D/E]XX

[Y/F] motif. This is important for methyltransferase

activity, as evidenced, for example, by loss of activity of

VCP-KMT when the aspartate is mutated [28]. Besides

this, however, there have been no functional studies into

the sequence features of Family 16 methyltransferases.

We previously noted the presence of two highly con-

served tryptophans in Efm2 [19]. Here, we use mutagen-

esis and structural models of Efm2 to show that one of

these residues is important for methyltransferase activ-

ity, while the other is of lesser consequence. We also

show that an extended N-terminal region of Efm2, of

about 200 residues, is also critical for its methyltrans-

ferase activity. We suggest that it may be involved in

binding its substrate eEF2, and that this highly variable

region among Family 16 methyltransferases may be

responsible for their substrate specificity.

Materials and methods

Bioinformatic analysis

All yeast and human Family 16 methyltransferases were

aligned using Clustal Omega [36]. This alignment was then

used to generate a sequence logo using Web logo [37]. The

domain structures of Family 16 proteins were visualised

using CDvist [38]. Efm2 was modelled with Swiss-Model

[39] based on the structure of METTL21D (PDB ID:

4LG1) and disorder predicted by pondr-fit [40]. Structures

of METTL21A-D were acquired from the RCSB Protein

Data Bank (www.rcsb.org) [41] with IDs of PDB: 4LEC,

4QPN, 4MTL and 4LG1.

Table 1. Family 16 methyltransferases in yeast and human.

Name Organism Substrate and site Methylation degree UniProt accession Ref(s)

Efm2 Yeast eEF2-K613 Di P38347 [19,20]

Efm3 Yeast eEF2-K509 Tri P47163 [20–22]

Efm6 Yeast eEF1A-K390 Mono P53970 [23]

Efm7 Yeast eEF1A-G2/K3 Tri/Di Q05874 [24]

Rkm5 Yeast RPL1A/B-K47 Mono Q12367 [25]

Hpm1 Yeast RPL3-H243 Mono P40481 [26]

VCP-KMT Human VCP-K315 Tri Q9H867 [28,29]

HSPA-KMT Human Hsp70s: HSPA1-K561, HSPA5-K585, HSPA8-K561 Tri Q8WXB1 [29,30]

METTL22 Human KIN17-K135 Tri Q9BUU2 [29,31]

eEF2-KMT Human eEF2-K525 Tri Q96G04 [21]

CaM-KMT Human Calmodulin-K116 Tri Q7Z624 [27]

ETFB-KMT Human ETFB-K200/K203 Tri/Tri Q8IXQ9 [32,33]

METTL18 Human – – O95568 –

METTL21B Human – – Q96AZ1 –

METTL21C Human – – Q5VZV1 –

METTL23 Human – – Q86XA0 –

1321FEBS Open Bio 6 (2016) 1320–1330 ª 2016 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

J. J. Hamey et al. Mutagenesis and truncation analysis of yeast Efm2

http://www.rcsb.org/pdb/search/structidSearch.do?structureId=4LG1
http://www.rcsb.org
http://www.rcsb.org/pdb/search/structidSearch.do?structureId=4LEC
http://www.rcsb.org/pdb/search/structidSearch.do?structureId=4QPN
http://www.rcsb.org/pdb/search/structidSearch.do?structureId=4MTL
http://www.rcsb.org/pdb/search/structidSearch.do?structureId=4LG1
http://www.uniprot.org/uniprot/P38347
http://www.uniprot.org/uniprot/P47163
http://www.uniprot.org/uniprot/P53970
http://www.uniprot.org/uniprot/Q05874
http://www.uniprot.org/uniprot/Q12367
http://www.uniprot.org/uniprot/P40481
http://www.uniprot.org/uniprot/Q9H867
http://www.uniprot.org/uniprot/Q8WXB1
http://www.uniprot.org/uniprot/Q9BUU2
http://www.uniprot.org/uniprot/Q96G04
http://www.uniprot.org/uniprot/Q7Z624
http://www.uniprot.org/uniprot/Q8IXQ9
http://www.uniprot.org/uniprot/O95568
http://www.uniprot.org/uniprot/Q96AZ1
http://www.uniprot.org/uniprot/Q5VZV1
http://www.uniprot.org/uniprot/Q86XA0


Expression and purification of eEF2, Efm2 and

mutant Efm2

N-terminal truncation mutants of Efm2 were generated by

site-directed ligase-independent mutagenesis (SLIM) [42].

Tryptophan-to-phenylalanine mutations in Efm2 were gen-

erated by site-directed mutagenesis [43]. Efm2 and mutated

Efm2 were overexpressed and purified from Escherichia coli

(Rosetta DE3), while eEF2 was overexpressed and purified

from a DEFM2 yeast strain, according to previous methods

[20].

In vitro methylation

In vitro methylation reactions were performed and analysed

by SDS/PAGE and immunoblotting according to previous

methods [20]. Briefly, eEF2 was incubated with Efm2 (wild-

type or mutant) in the presence of 50 lM S-adenosyl

methionine (AdoMet) in 19 in vitro methylation buffer

(50 mM HEPES-KOH, 20 mM NaCl, 1 mM EDTA, pH 7.4)

at 30 °C for 1 h, unless otherwise indicated. The antibodies

used for immunoblotting were the methylated lysine anti-

body ab7315 (1 : 1000 dilution; Abcam, Cambridge, UK)

and anti-PentaHis HRP-conjugated antibody (1 : 5000 dilu-

tion; Qiagen, Hilden, Germany, 34460). Ab7315 does not

recognise the K509 trimethylation site on eEF2 (see nega-

tive controls in Figs 3 and 4), which is catalysed by Efm3

[20–22].

Mass spectrometry

Samples were analysed on an Orbitrap Velos Pro

(Thermo Fisher Scientific, Waltham, MA, USA) according

to previous methods [44]. Extracted ion chromatograms

(XICs) for peptides were obtained using THERMO XCALIBUR

QUAL BROWSER 2.2 SP1.48 by setting mass windows of

�10 ppm of the relevant m/z value, and applying a scan

filter to only analyse MS1 scans. Methyl-peptide identities

were confirmed by comparison with a synthetic equivalent

(see Fig. S1 for representative spectra), as done previously

[45].

In vitro crosslinking

Efm2 and N-terminal truncation mutants, in 25 mM

sodium phosphate buffer, 100 mM NaCl, 20% (v/v) glyc-

erol, 5 mM b-mercaptoethanol, 0.2 M triethanolamine,

were crosslinked with 330 lM dimethyl pimelimidate

(Thermo Fisher Scientific) for 2 h at room temperature.

For the 60-min time course assay of Efm2 crosslinking,

410 lM dimethyl pimelimidate was added instead. SDS

was added to a final concentration of 1% prior to addi-

tion of the crosslinker for a negative control. SDS sample

buffer was added to quench the crosslinking reaction and

samples were analysed by SDS/PAGE and immunoblot-

ting as described above.

Results

Family 16 methyltransferases show conservation

of two key tryptophans and variable N-terminal

regions

In order to better understand the potential significance

of tryptophans W222 and W318 in Efm2, their conser-

vation was investigated by aligning all yeast and human

Family 16 methyltransferases and generating a sequence

logo from this alignment (Fig. 1A, see Fig. S2 for entire

sequence logo). W222 showed 100% conservation, while

W318 was absent only in ETFB-KMT (Fig. 1A). We

then investigated the structural contexts of both these

tryptophans in a homology-predicted model of Efm2.

Strikingly, both tryptophans are positioned at the loca-

tion of methyl-donor AdoMet binding (Fig. 1B). W222

is positioned near the active site, as has been noted pre-

viously [22], while W318 is positioned adjacent to the

imidazole ring of AdoMet, and may therefore stabilise

the binding of AdoMet via p-stacking interactions

between its indole group and the adenine group of Ado-

Met, as has been suggested to occur for Efm6 [23].

These relative positions of the tryptophans are also

observable in the structures of METTL21A-D and

CaM-KMT (Fig. S3). Overall, this strongly suggests an

important role for these tryptophans in the activity of

Efm2 and in Family 16 methyltransferases.

To investigate the prevalence of N-terminal extensions

beyond the core Family 16 methyltransferase domain,

we visualised the domain architecture of all yeast and

human Family 16 methyltransferases using CDvist

(Fig. 2A). This showed that Efm2 has the longest

N-terminal extension. Interestingly, some of these

methyltransferases, notably Efm6, Efm7, VCP-KMT and

HSPA-KMT, have very short N-terminal extensions, in

sharp contrast with Efm2. The N-terminal ~ 50 residues

of Efm2 are predicted to be disordered, with the rest of

the protein being predominantly ordered, as typified by

the prediction made by Pondr-fit (Fig. 2B).

We therefore sought to investigate the importance

of the two conserved tryptophans and N-terminal

region in Efm2. We generated conservative trypto-

phan-to-phenylalanine point mutations for W222 and

W318 and four N-terminal truncations, as depicted in

Fig. 2C, and investigated their methyltransferase activ-

ities compared to the wild-type enzyme.

Conservative point mutations indicate the

importance of two key tryptophan residues

Given that the tryptophans are likely to be critical for

methyltransferase activity, we mutated them to the
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similarly hydrophobic and aromatic residue, phenylala-

nine. Immunoblotting of a time-series assay of methyl-

transferase activity on eEF2, compared to wild-type Efm2,

showed a severe reduction in methyltransferase activity

with the W222F mutant, while the W318F showed only a

slight reduction in activity (Fig. 3A). LC-MS/MS analysis

of eEF2 from the 10-min time-point showed that wild-type

Efm2 produced predominantly dimethylation of K613 in

Fig. 1. Two highly conserved tryptophans are situated near the location of AdoMet binding in Family 16 methyltransferases. (A) Sequence

logo for all Family 16 methyltransferases from yeast and human, showing the relative conservation of W222 (top) and W318 (bottom)

numbered relative to Efm2. The y-axis shows the total conservation of each position (total height of each stack) and the relative

conservation of each amino acid (relative heights of each letter). Maximum conservation is the maximum entropy for amino acid sequences

(log2 of 20 amino acids = 4.3). W222 showed 100% conservation, while W318 was only absent in ETFB-KMT. The full sequence logo is

shown in Fig. S2. (B) The predicted structure of residues 192–406 Efm2 by homology modelling based upon the structure of VCP-KMT

(PDB ID: 4LG1). Efm2 is shown as a ribbon structure in green, with tryptophans 222 and 318 shown as stick structures in red and blue

respectively; AdoMet is shown as a stick structure in cyan, with the donated methyl group shown in yellow. Visualised in PYMOL (The

PyMOL Molecular Graphics System, Version 1.3 Schr€odinger, LLC, New York, NY, USA).

Fig. 2. Efm2 has a long, partially disordered N-terminal region separate from the core methyltransferase domain. (A) The domain

architectures of all known Family 16 methyltransferases from yeast and human. A number of them have extended N-terminal regions; Efm2

has the longest of all. Methyltransferase lengths are to scale; Efm2 is 419 residues long. Jagged edges of domains represent partial

truncations. (B) The predicted disorder of Efm2 as determined by pondr-fit. Disorder disposition > 0.5 represents disorder. (C) Mutagenesis

of Efm2. Four N-terminal truncation mutants and two point mutants were generated in order to characterise the N-terminal region and the

conserved tryptophans in Efm2. Note that all four N-terminal truncations retain the core Family 16 methyltransferase domain.
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the peptide DDFKAR (Fig. 3B). The W318F mutant pro-

duced slightly less dimethylation than the wild-type, and

had slightly more unmethylated eEF2 remaining (Fig. 3B).

The W222F mutant, however, produced predominantly

monomethylation (Fig. 3B). This could reflect a decreased

rate of activity or a change in the degree of methylation

the enzyme is capable of catalysing. The pronounced effect

of the W222F mutation may be due to the proximity of

W222 to the active site of Efm2, as mentioned above. The

fact that the W318F mutant had an activity comparable to

that of the wild-type enzyme indicates either that W318 is

not critical for binding AdoMet, or that the phenylalanine

is sufficiently similar to the structure of tryptophan to bind

AdoMet effectively.

Efm2 N-terminal truncations reveal the

importance of the N terminus for

methyltransferase activity

We investigated the unique extended N-terminal region

of Efm2 by generating four incremental 50 amino acid

N-terminal truncations (Fig. 2C) and testing their

methyltransferase activity on eEF2 over 1 h. Surpris-

ingly, immunoblotting suggested that the ND100, ND150
and ND200 truncations all showed no methyltransferase

activity, while the ND50 truncation showed reduced

activity compared to wild-type Efm2 (Fig. 4A). LC-MS/

MS of eEF2 (Fig. 4B) confirmed the lack of activity

observed for ND100, ND150 and ND200 and showed

that ND50 produced predominantly monomethylation at

K613 in the peptide DDFKAR, and markedly less

dimethylation than wild-type Efm2 produces in 10 min

(see above). Together, these results indicate that the N-

terminal region of Efm2, particularly residues 50–200, is
important for its methyltransferase activity.

One possible explanation for this loss of methyl-

transferase activity is that the N-terminal region is

required for Efm2 to self-interact and form oligomers

necessary for its activity, as is the case for some other

protein methyltransferases [46,47]. In order to investi-

gate this possibility, we first tested whether wild-type

Efm2 is capable of forming oligomers. In vitro

Fig. 3. Tryptophan point mutants of Efm2 show reduced methyltransferase activity. eEF2 was incubated with wild-type (WT), W222F or

W318F Efm2 in the presence of AdoMet for 1, 2, 5 or 10 min, before reactions were resolved by SDS/PAGE and analysed by

immunoblotting (A) or LC-MS/MS (B). No enzyme was added for a negative control. (A) Immunoblotting with the anti-methyl-lysine antibody

ab7315 (top) revealed markedly reduced methyltransferase activity of the W222F mutant, while the W318F mutant showed slightly reduced

activity. An immunoblot with the anti-PentaHis antibody was used as a loading control (bottom). (B) LC-MS/MS of eEF2 from the 10-min

assay revealed that the wild-type enzyme was able to produce almost complete dimethylation of K613 in the peptide DDFKAR, while the

W222F mutant produced predominantly monomethylation and the W318F mutant produced nearly the same level of dimethylation as the

wild-type enzyme. The no enzyme control did not show any gain of methylation. The relative amount of each methylation state was

determined by the area under the curve for each peak in the extracted ion chromatograms (XICs), which are shown in Fig. S4. W222

therefore appears to be important for methyltransferase activity, while W318 is not as important.
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chemical crosslinking followed by SDS/PAGE revealed

that wild-type Efm2 forms a series of oligomeric states,

as bands corresponding to the dimer (~ 96 kDa), tri-

mer (~ 144 kDa) and tetramer (~ 192 kDa) were seen

to gradually form over an hour of crosslinking

(Fig. 5A). A negative control with 1% SDS added

prior to crosslinking showed minimal formation of oli-

gomeric bands, indicating that the crosslinking is due

to the self-interaction of Efm2, which is disturbed

upon denaturation by SDS. We then tested the ability

of the four N-terminal truncations to form oligomers

after 2 h of crosslinking, compared to wild-type Efm2

and SDS controls. This showed that all four N-term-

inal truncations were able to form the oligomeric

states observed for wild-type Efm2 (Fig. 5B). This

indicates that the N-terminal 200 residues of Efm2 are

not critical for oligomerisation, and suggests that the

effect on methyltransferase activity observed upon

N-terminal truncation may be due to a loss of inter-

action with its substrate eEF2.

Discussion

Elongation factor methyltransferase 2 is one of the

Family 16 group of methyltransferases, a group of

newly discovered eukaryotic enzymes that all methy-

late nonhistone proteins. Here we have investigated

Efm2 by site-directed mutagenesis and truncation in

order to better understand Family 16 methyltrans-

ferases. We have shown that one completely conserved

tryptophan (W222 in Efm2) is important for methyl-

transferase activity, while the other, which is present in

all but one Family 16 methyltransferase, is of lesser

Fig. 4. N-terminal truncations of Efm2 show severely reduced

methyltransferase activity. eEF2 was incubated with wild-type (WT)

or N-terminally truncated Efm2 (ND50, ND100, ND150 and ND200)

in the presence of AdoMet for 1 h, before reactions were resolved

by SDS/PAGE and analysed by immunoblotting (A) or LC-MS/

MS (B). No enzyme was added for a negative control. (A)

Immunoblotting with the anti-methyl-lysine antibody ab7315 (top)

revealed markedly reduced methyltransferase activity of the ND50

mutant, while the ND100, ND150 and ND200 mutants showed no

activity. An immunoblot with the anti-PentaHis antibody was used

as a loading control (bottom). (B) LC-MS/MS of eEF2 revealed that

the ND50 mutant produced predominantly monomethylation of

K613 in the peptide DDFKAR, while the ND100, ND150 and ND200

mutants produced no methylation, in agreement with the

immunoblot. The relative amount of each methylation state was

determined by the area under the curve for each peak in the

extracted ion chromatograms (XICs), which are shown in Fig. S5.

The N terminus of Efm2, from residue 50 onwards, is therefore

critical for its methyltransferase activity.

Fig. 5. Efm2 and its N-terminal truncation mutants form oligomeric

states. Wild-type (WT) Efm2 and its N-terminal truncation mutants

were incubated with or without SDS in the presence of the

crosslinker dimethyl pimelimidate. An anti-PentaHis immunoblot

was used to detect all relevant species. (A) Time-series

crosslinking analysis of wild-type Efm2 indicates that it forms

oligomeric states. (B) Crosslinking of Efm2 N-terminal truncation

mutants for 2 h. SDS (1%) added prior to crosslinking was used as

a negative control for all N-terminal truncations.
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consequence. This disparity may be explained by the

fact that W222 is positioned at the active site, while

W318 is not. The shift to monomethylation of K613 in

eEF2, seen with the W222F mutation of Efm2, could

indicate that W222 determines the degree of methyla-

tion by affecting the size of the active site and thus

how many methyl groups can be added to a substrate.

The SET domain methyltransferases use a similar

mechanism to control the degree of substrate methyla-

tion [48]. It could alternatively be that the W222F

mutation reduced the rate of activity of Efm2, and

thus the monomethylation was simply an intermediate

in the formation of dimethylation. This would point to

a distributive mechanism of action, as Efm2 would dis-

sociate from eEF2 after the formation of monomethy-

lation.

We have also shown that the N-terminal 50–200
residues of Efm2 are essential for its methyltrans-

ferase activity. Interestingly, this correlates with

the predicted structural order of this region of

Efm2 from residue ~ 80 onwards. This suggests

that the N-terminal region of Efm2 may form

tertiary structures that are critical for its specific

recognition of eEF2; it also raises a broader possi-

bility that the N-terminal regions of Family 16

methyltransferases are critical for their specificity.

This is best exemplified by the human METTL21

proteins (METTL21A-D), which form a subgroup

within Family 16 methyltransferases due to their

similarity (Fig. 6A). METTL21A (HSPA-KMT)

and METTL21D (VCP-KMT) methylate different

proteins, while METTL21B and METTL21C have

no known substrates. Alignment of the crystal

structures of all four of these proteins demon-

strates the remarkable similarity of their core

methyltransferase domains, while revealing highly

variable N-terminal regions (Fig. 6B). It is there-

fore likely that these N-terminal regions of the

METTL21 proteins, and Family 16 methyltrans-

ferases in general, are important for determining

their substrate protein specificity.

Efm2 was shown to form a number of oligomeric

states. Several protein methyltransferases have been

previously shown to form oligomers, including the

Fig. 6. The human METTL21 proteins

exemplify the variability of N-terminal

regions of Family 16 methyltransferases.

(A) Alignment of human METTL21A

(HSPA-KMT), METTL21B, METTL21C and

METTL21D (VCP-KMT) using Clustal

Omega with default settings [36].

Asterisks (*) and red colour indicate

identical residues; double dots (:) and blue

colour indicate chemically similar residues;

single dots (.) indicate dissimilar residues;

dashes (–) indicate missing residues. The

two conserved tryptophans are indicated

with arrows. (B) Alignment of the

structures of the METTL21s (PDB IDs:

4LEC, 4QPN, 4MTL, 4LG1), showing their

highly similar core folds (green, AdoMet in

cyan) and their highly dissimilar N-terminal

regions (residues 15–46 of METTL21A:

red; residues 24–56 of METTL21B: blue;

residues 45–91 of METTL21C: yellow;

residues 11–42 of METTL21D: magenta).

Visualised in PYMOL (The PyMOL Molecular

Graphics System, Version 1.3 Schr€odinger,

LLC).
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arginine methyltransferases Hmt1 [46], CARM1 [49],

PRMT1 [47], PRMT3 [50,51], PRMT5 [52], PRMT8

[53] and some lysine methyltransferases such as G9a,

GLP [54] and SU(VAR)3-9 [55]. The oligomerisation

of Efm2 may point to a processive mechanism of

action, as a dimer of Efm2 could achieve dimethyla-

tion without detachment from eEF2, as is the case for

many arginine methyltransferases [56]. This is the first

demonstration that a Family 16 methyltransferase

forms oligomers, and it would be interesting to investi-

gate whether other Family 16 methyltransferases also

oligomerise.

While Family 16 methyltransferases have only

been discovered recently, their biological and medical

significance is already becoming apparent. Efm2 and

Efm3 both act on eEF2 in yeast, and deletion of

either methyltransferase has been shown to increase

sensitivity to translational inhibitors [21,22]. Both

were also shown to have potential effects on transla-

tional fidelity [21,22]. In human, VCP methylation

by VCP-KMT appears to affect its ATPase activity

and the methyltransferase was shown to be impor-

tant for cell migration and invasion, suggesting a

role in cancer metastasis [28,29]. METTL22-mediated

methylation of Kin17 appears to regulate its associa-

tion with chromatin [31], while CaM-KMT appears

to be important for normal body growth and

somatosensory development [57]. HSPA-KMT-

mediated methylation of HSPA8 was shown to

reduce its affinity for a-Syn, a protein whose aggre-

gation is associated with Parkinson’s disease [30].

HSPA1 methylation, also catalysed by HSPA-KMT,

was recently found to correlate with cancer outcome

[58]. Even some Family 16 methyltransferases with-

out known substrates have been associated with dis-

ease. METTL21B has been linked to multiple

sclerosis [59–61], mutation of METTL23 has been

linked to intellectual disability [62,63] and

METTL21C has been found to be important in

muscle cell differentiation and bone cell viability,

and thereby is associated with osteoporosis and sar-

copenia [64]. It will therefore be of great interest to

discover the targets of these methyltransferases, and

to further characterise these and all other Family 16

methyltransferases, in order to better understand

their biological functions and roles in disease.
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