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analyzed recently CNVs in the genome of idiopathic infertile men and 
normozoospermic controls and found that a man’s risk of idiopathic 
spermatogenic failure is changed by rare autosomal deletions (by 10%), 
rare X-linked CNVs (by 29%) and rare Y-linked duplications (by 88%). 
In summary, all described CNVs mark candidate genes which possibly 
cause spermatogenic failure or enhance the risk for it and thus represent 
novel targets for future investigations.

Apart from CNVs several single nucleotide polymorphisms and 
gene polymorphisms have also been described to be associated with 
poor male reproductive parameters. Such variants were detected in 
numerous genes including PRM1 (protamine 1),9 DAZL (deleted in 
azoospermia-like),10 MTHFR (methylenetetrahydrofolate reductase)11,12 
and the GST (Glutathione S-transferases) genes.13

However, 30%–40% of infertile patients are still characterized as 
idiopathic as the underlying (molecular) reason for their infertility 
is not known.2,3 Due to the high percentage of idiopathic male 
infertility new insights and approaches concerning the molecular 
and genetic nature of impaired spermatogenesis are urgently needed 
to improve diagnosis and treatment. Currently, the development of 
novel technologies such as whole-genome sequencing and single-cell 
sequencing14–16 lead to exciting new findings in this research field 
and inspires the search for novel biomarkers (e.g. genes, proteins and 
metabolites) which could be used in the diagnosis of male infertility.17,18

Among them recent descriptions of a strong association between 
aberrant DNA methylation in spermatozoa and idiopathic male 
infertility19–23 indicate that epigenetics might have a strong impact 
on the quantitative and qualitative aspects of spermatogenesis. This 
assumption is further strengthened by studies outlining a possible 
predictive power of spermatozoal DNA methylation in pregnancy 
outcome.24–27 Thus, the analysis of DNA methylation of specific genes in 
spermatozoa could serve as a new valuable and noninvasive diagnostic 
marker in clinical andrology. We therefore believe that it is timely to 

INTRODUCTION
Worldwide 10%–15% of couples are affected by infertility which can 
be attributed to various factors. Approximately 50% of reported cases 
are accounted for by male factor infertility, resulting in a prevalence of 
about 7% of all men.1–3 These numbers highlight the need for reliable 
diagnostic tools and further investigations of potential treatments. 
The classical andrological diagnostic procedure starts with the clinical 
and biochemical/endocrinological examination of the patient and is 
followed by semen analyses. These procedures have remained relatively 
unchanged for decades and consist of the inspection of macroscopic 
and microscopic appearance of the semen and the determination 
of sperm number, motility, vitality and morphology. Furthermore 
leukocyte peroxidase activity is measured and a mixed antiglobulin 
reaction test is recommended.4 As in 4% of infertile patients and 
20%–30% of azoospermic patients established genetic causes might 
underlie their infertility, patients are also routinely screened for 
chromosomal aberrations, microdeletions of the azoospermia 
factor-loci and mutations of the CFTR gene.3,5 In addition, further 
genetic causes for infertility are suspected like copy number variants 
(CNVs).6–8 In this context, Tüttelmann and colleagues investigated 
the role of CNVs in male infertility by analyzing normozoospermic 
controls and patients with idiopathic severe oligozoospermia or with 
Sertoli-cell-only syndrome. Although the mean number of CNVs 
were comparable between all groups, they found recurring CNVs 
which were present only in patients with severe oligozoospermia (10 
CNVs), only in Sertoli-cell-only syndrome (3 CNVs) or in both groups 
with spermatogenic failure (1 CNV), but not in controls.6 In addition, 
the analysis of X-linked CNVs in men with different sperm count 
demonstrated 73 CNVs being related to spermatogenesis. Interestingly, 
the patients had a higher excessive rate of deletions/person and a higher 
mean sequence loss/person resulting in a higher global burden of 
deletions in patients compared to controls.7 Furthermore, Lopes et al.8 
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consider the value of epigenetics in the diagnostic setup of infertile 
men and to critically evaluate the current challenges and perspectives 
of the approach.

DNA METHYLATION AND SPERMATOGENESIS
Epigenetics describes mitotically and/or meiotically heritable changes 
in gene function beyond the DNA sequence itself such as DNA 
methylation, histone modification, miRNA and non-coding RNAs.28,29 
Spermatozoa possess specific DNA methylation patterns which are 
obtained during early stages of spermatogenesis.30,31 In this context, 
some genes become differentially ‘imprinted’ by DNA methylation 
being important for fertilization and subsequent embryogenesis.32,33 
Several recent studies have shown a strong association of aberrant DNA 
methylation (epimutations) of some imprinted genes in spermatozoa 
with idiopathic infertility.19–23,34–36 Interestingly, men with moderate or 
severe oligospermia often displayed abnormalities in both maternal 
and paternal imprints.19 Furthermore, Marques et al.20 described that 
nearly 50% of patients of an oligozoospermic cohort had defective 
DNA methylation of the paternally imprinted gene H19 and/or the 
maternally imprinted gene MEST. Our group demonstrated that low 
sperm counts are associated with aberrant DNA methylation of H19 
and more so of MEST. Additionally, aberrant DNA methylation of 
MEST was found to be associated with decreased progressive sperm 
motility and poor sperm morphology.22 Two other studies showed 
that men with severe or moderate oligozoospermia display more 
aberrant imprints than normozoospermic men.23,34 Furthermore, 
Camprubí and colleagues demonstrated that infertile patients had 
more aberrant imprints than fertile men.36 Studies by Hammoud 
et al.21 and Minor et al.35 supported these findings by demonstrating 
that DNA methylation patterns in sperm of infertile patients were 
considerably altered at H19 and various additional imprinted loci 
(LIT1, MEST, SNRPN, PLAGL1 and PEG3). As several studies described 
associations of male infertility with spermatozoal DNA methylation 
of H19 and/or MEST, we performed meta-analyses of these studies (if 
suitable data for a meta-analysis were available) demonstrating that 
it is more likely for infertile patients to have aberrant MEST (odds 
ratio: 3.4, 95% confidence interval: 1.98–5.84, P < 0.0001) or H19 
(odds ratio: 14.62, 95% confidence interval: 7.34–29.12, P < 0.0001) 
DNA methylation in spermatozoa compared to fertile men (Figure 1).

Apart from imprinted genes, other studies described associations 
of aberrant DNA methylation of non-imprinted genes and CpG loci 
with oligozoospermia, abnormal sperm morphology and reduced 
sperm motility.37–41

Epigenetic aberrations of spermatozoa have been described to be 
possibly inheritable to the offspring42 and aberrant DNA methylation 
patterns are known to be responsible for imprinting disorders 
(e.g.  Beckwith-Wiedeman syndrome and Angelman syndrome). 
Interestingly, these aberrant imprints and imprinting disorders seem 
to occur more frequently after assisted reproductive techniques 
(ARTs) than after natural conception-although the prevalence of these 
disorders is still extremely low.43–49 In general, the epigenome of the 
spermatozoa seems to have an impact on embryo development50,51 and 
epimutations of the spermatozoa could be the cause for miscarriages 
as associations of spontaneous abortions and aberrant spermatozoal 
DNA methylation have been described.26,27

These findings have led to the concept that spermatozoal DNA 
methylation has some potential predictive power for pregnancy 
outcome.24–27 In this context, a study by El Hajj et al.25 demonstrated 
significantly higher (P < 0.001) ALU DNA methylation in sperm 
samples which led to pregnancy and live birth; whereas, significantly 

lower (P  =  0.027) ALU DNA methylation levels were found in 
spontaneous abortions. However, Benchaib et al.24 demonstrated by 
immunostaining of 5-methylcytosine that global DNA methylation 
of human spermatozoa was associated to pregnancy rate but not to 
fertilization rate or rate of good quality embryos. Furthermore, DNA 
methylation aberrations of H19 and the MTHFR promoter in paternal 
spermatozoa were described in cases of spontaneous abortions, 
suggesting an impact of spermatozoal DNA methylation on pregnancy 
outcome.26,27 In Supplementary Table 1 the studies which analyzed 
potential associations of spermatozoal DNA methylation with poor 
semen parameters or pregnancy outcome are summarized.

In addition, retained histones could play an essential role in the 
association of aberrant DNA methylation with male infertility. During 
spermatogenesis histones are replaced by protamines; however, this 
process is not completed and up to 15% of the histones remain in 
spermatozoal DNA.52,53 These retained histones mark genes and 
loci that play a role in development (e.g.  imprinted genes) and can 
be epigenetically modified.54,55 Failures in histone retention and 
modification or aberrations in protamine distribution might not 
only have an impact on male fertility as already described in several 
studies,56–59 but also could affect spermatozoal DNA methylation 

Figure 1: Meta‑analyses of studies which analyzed normal and abnormal 
DNA methylation of H19 and MEST in spermatozoa of infertile men in 
comparison to these values of fertile men. For each study the odds ratio with 
95% confidence interval is shown. Odds ratio >1 means that it is more likely 
for infertile men to have aberrant imprints than for fertile men, odds ratio 
<1 signifies that it is less likely for infertile men to have aberrant imprints 
compared to fertile men.



DNA methylation and sperm 
R Kläver and J Gromoll

671

Asian Journal of Andrology 

patterns. Indeed, aberrant spermatozoal DNA methylation has been 
already shown in men with abnormal protamine replacement.21,40,60

Recently, DNA hydroxymethylation was described as an 
additional type of DNA methylation, but it is still obscure if 
5-hydroxymethylcytosine is only an intermediate in the removal of 
5-methylcytosine or a separate epigenetic mark.61 Until now, most 
of the conventional methods for DNA methylation analysis can 
distinguish only between methylated and unmethylated cytosine, but 
not between different kinds of methylation. Thus, methods have been 
and will be developed to investigate 5-hydroxymethylation.62,63 With 
these new techniques, future studies will be able to elucidate the role 
of hydroxymethylation in andrology as this DNA modification could 
also play an essential role in spermatogenesis and embryo development.

CHALLENGES FOR THE IMPLEMENTATION OF DNA 
METHYLATION ANALYSIS IN ANDROLOGICAL DIAGNOSTICS
Although as of today numerous studies support the potential utility of 
DNA methylation in andrological workup, none of these studies have 
evaluated whether epigenetic analysis is suitable or for that matter 
feasible in a routine andrological lab.

Essential requirements for the application of DNA methylation 
analysis in the daily clinical routine are still missing. For this purpose 
and as one of the first steps, time-  and cost-effective technologies 
which provide dependable and reliable results have to be established. 
Several different technologies (which are to greater or lesser extent 
time- and cost-effective) for DNA methylation analysis such whole-
genome bisulfite sequencing, genome-wide DNA methylation arrays 
and locus-specific DNA methylation analysis such as pyrosequencing 
or methylation-specific PCR-based analyses are currently available and 
summarized in Table 1. Alternatively, already available commercial 
tests for DNA methylation analysis in routine diagnostics could be 
used. These tests are often based on bisulfite conversion of DNA 
and subsequent methylation specific real-time PCRs of the relevant 
gene(s).64

Some technologies are limited in their sensitivity of DNA 
methylation detection (immunostaining) or in the amount of 
investigated CpGs (e.g.  pyrosequencing or methylation-specific 
PCR-based analysis); however, these methods can be performed at 
affordable costs. In contrast, technologies such as whole-genome 
bisulfite sequencing or high resolution methylation arrays are able to 
measure multitudinous sequences across the genome, but are requiring 
sophisticated bioinformatic settings and are run at relatively high costs. 
If considering a clinical/andrological setting, a cost-effective, easy to 
perform and still informative technology seems preferable. Thus, a 
locus-specific DNA methylation analysis might provide sufficient 
information and is more rapid and less expensive than whole-genome 
analyses.

Another important aspect which has to be considered when 
analyzing DNA methylation in spermatozoa is the purification of 
semen samples. Independent of which methods are being applied, it is 
of crucial importance that the sample consists of spermatozoa only and 
is not contaminated by somatic cells or bacteria. One commonly 
used method, also recommended by the World Health Organization, is 
to perform swim-up purification before semen analysis which provides 
a relatively pure fraction of motile sperm.4

Further specific issues that need to be addressed are whether 
spermatozoal DNA methylation patterns represent a constant 
parameter over time and to which extent intra- and/or interindividual 
variations of gene-specific DNA methylation patterns exist. For the 
use as a diagnostic parameter, spermatozoal DNA methylation should 

ideally be temporally stable within individuals and should only display 
a small variability between healthy men.

Until now only a few studies have analyzed the temporal stability 
as well as the inter- and intraindividual variability of DNA methylation 
in spermatozoa. While one study described that DNA methylation in 
spermatozoa is stable over a short period of time (up to 1 year),65 others 
found locus-, cell-  and age-dependent differences.66,67 Concerning 
inter- and intraindividual variability, Krausz et al.68 recently analyzed 
multitudinous cytosine positions across the human genome by using 
high resolution Infinium 450K methylation arrays and demonstrated 

Table 1: List of frequently used methods for DNA methylation analysis

Type of DNA 
methylation 
analysis

Method Characteristics

Global High‑performance 
liquid 
chromatography

⊕ Highly quantitative and reproducible
⊖  Requires large amounts of 

high‑quality genomic DNA

Bisulfite sequencing 
of repetitive 
elements

⊕ Requires very little DNA
⊕  Quantitative, if a sufficient number of 

clones is sequenced
⊖ Labor‑intensive

5‑mC antibody 
staining

⊕ Easy to perform
⊖ Less sensitive
⊖ Not very quantitative

Genome‑wide Whole‑genome 
bisulfite sequencing

⊕ Comprehensive genomic coverage
⊕ High quantitative accuracy
⊖ High costs

Genome‑wide DNA 
methylation arrays

⊕  Enable to measure DNA methylation 
levels of preselected cytosines 
throughout the genome

⊕  Lower per‑sample cost compared with 
whole‑genome bisulfite sequencing

⊖ Limited genomic coverage
⊖  High setup cost for designing 

customized microarrays

Restriction landmark 
genome scanning

⊕  Simultaneous DNA methylation 
analysis of thousands of loci

⊖  Dependent of specific restriction 
enzyme cutting sites

⊖  Limited genome coverage and 
sensitivity

Methylated DNA 
immunoprecipitation

�  Can be followed by DNA microarrays 
or next‑generation sequencing

⊖  Requires large amounts of genomic 
DNA and antibody

Gene‑specific Bisulfite sequencing 
of specific 
genes (‘gold 
standard’)

⊕ Requires very little DNA
⊕  Quantitative, if a sufficient number of 

clones is sequenced
⊕  Information on allele‑specific 

methylation possible
⊖ Labor‑intensive

Pyrosequencing ⊕  Internal control (control 
dispensations) and accurate 
quantification of multiple CpG 
methylation sites in the same 
reaction

⊕ Time‑effective
⊖  Only analysis of short to 

medium‑length DNA sequences

Methylation 
sensitive PCR

⊕ Rapid and very sensitive technique
⊕  Requires low quantity and quality 

of DNA
⊖  Not quantitative (in case of 

MethyLight: quantitative by real‑ 
time PCR)

Bisulfite PCR 
followed by 
restriction 
analysis (COBRA)

⊕ Requires low quantity of DNA
⊕ Quantitative
⊖  Provides data only for specific 

restriction enzyme cutting sites

COBRA: combined bisufite‑PCR restriction analysis
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that DNA methylation in spermatozoa is highly conserved between 
normozoospermic men and stable in different subpopulations of the 
same individual.

In addition, quantitative relevant reference values of DNA 
methylation in spermatozoa need to be established69,70 to classify 
patients’ spermatozoal DNA methylation into ‘normal‘ and 
‘abnormal’. Such a reference should be calculated by studying a large, 
healthy control group from which the normal range is defined.71 
Recently, our group established a first reference range for normal 
spermatozoal MEST DNA methylation (0%–15%) based on the 
95th percentile of MEST DNA methylation of 31 highly selected men 
with normal andrological parameters.72 In the future, multicenter 
studies in several countries on different continents need to be 
performed in order to establish reference values based on different 
ethnicities and laboratory techniques.

Nevertheless, prior to introduction into clinical diagnostics the 
clinical benefit of each novel biomarker has to be evaluated. Although the 
number of potential biomarkers is increasing due to new technologies, 
only few of them are appropriate for the use in clinics since associations 
with clinical parameters do not always result in clinical importance. 
In addition, some markers are not valid for all patients, but only for a 
specific subgroup which could present a limitation of a clinical marker.18

As diagnostic protocols and performance can be quite different in 
several laboratories and diagnoses can vary widely in both accuracy 
and precision, standardizations of protocols, diagnostic procedures, 
the interpretation of results and patients reports are necessary. 
Furthermore, internal and external quality control procedures should be 
set up and performed. One example for this standardization and quality 
control assessment is the diagnostic performance for Y-chromosomal 
microdeletions (azoospermia factor). For this the European Academy 
of Andrology and the European Molecular Genetics Quality Network 
have teamed up together and supported the publication of Laboratory 
guidelines73 (http://www.emqn.org/bpguidelines.php). In this context, 
societies such as Asian Society of Andrology or European Society of 
Human Reproduction and Embryology could also have a leading role 
in the establishment of such a quality assessment scheme for DNA 
methylation analysis in spermatozoa.

PERSPECTIVES
Several studies have already shown that aberrant DNA methylation 
in spermatozoa is associated with oligozoospermia, abnormal sperm 
morphology and decreased progressive motility (Figure 2); however, 
the underlying mechanisms and exact nature of associations are still 
unknown. For example it is unknown whether DNA methylation in 
spermatozoa is influenced by the origin of infertility which could be due 
to either central or testicular causes. By the same token it is currently 
unclear to which extent epimutations affect qualitative and quantitative 
aspects of spermatogenesis and vice versa.

In addition, the knowledge of spermatozoal DNA methylation 
status could provide important information to subsequent fertilization, 
pregnancy success and possible outcome. Thus far ‘classical’ semen 
parameters only provide little information on the fertility capacity and 
cannot predict pregnancy rates or outcome, making DNA methylation 
a potentially invaluable tool in andrological examinations which in 
turn might yield a novel diagnostic parameter and prognostic factor 
for the outcome of any ART treatment.

The epigenetic status of spermatozoa could also affect the offspring’s 
health by potential transmission of epimutations. Besides imprinting 
disorders (as already described above) epigenetic aberrations can 
have severe consequences on genomic stability and gene expression 

and thereby could cause serious diseases such as lupus, asthma, 
malignancies and several neurological disorders. For some of these 
diseases, commercial DNA methylation tests are already available 
now.64,74 However, it is still unknown if epimutations of spermatozoa can 
be transmitted to the offspring and affect its health as there are two main 
events in which epigenetic patterns are erased and renewed: during 
gametogenesis and in the early zygote after fertilization. These two 
epigenetic reprogramming events avoid in principle the transmission 
of parental DNA methylation aberrations to the offspring; but the 
reprogramming in the early zygote does not include imprinted genes 
making the transmission of spermatozoal epimutations to the first 
offspring (F1-generation) possible.75

It is also very clear that more studies are needed to determine to 
what extent DNA methylation analysis will be useful as diagnostic 
factor for male (in)fertility and as a prognostic factor for pregnancy. 
If information on the DNA methylation status could provide further 
hitherto unknown insights into the fertility capacity of the patient 
it would significantly improve the diagnostics for couples with 
longstanding history of male idiopathic infertility.

In the decade of whole genome sequencing, technologies in the 
field of epigenetics are rapidly developing. It is to be expected that 
methods for DNA methylation will probably be improved within the 
upcoming years and a cost-effective analysis for diagnostic procedures 
will be available soon. On the horizon one might even think about DNA 
methylation analysis of one single living sperm using techniques such 
as Raman microscopy,76,77 which could be used for ART. This would 
revolutionize the examination and treatment of infertile couples and 
increase the success of ART as sperm could be systematically selected 
for its potential to induce pregnancy.

Taken together, the current findings point to the potential of the 
approach; however, we encourage further investigations of the role 
of spermatozoal DNA methylation and subsequently fertilization, 
embryo development and pregnancy outcome to establish a novel 
prognostic parameter in the andrological workup of infertile men. 
Novel methods which enable the time- and cost-effective sequencing 
of the spermatozoal epigenome could make the epigenetic analysis of 
spermatozoa a standard measurement in andrology. If andrologists, 
andrological societies and the genetic quality assessment groups would 
combine their forces and activities we are convinced that this would 
lead to a new level in the diagnostic setup of male infertility.
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