
Esser et al. Parasites Vectors          (2020) 13:464  
https://doi.org/10.1186/s13071-020-04339-0

RESEARCH

Spatial risk analysis for the introduction 
and circulation of six arboviruses 
in the Netherlands
Helen Joan Esser1,2,3*†  , Yorick Liefting1†, Adolfo Ibáñez‑Justicia4, Henk van der Jeugd5, 
Chris A. M. van Turnhout6,7, Arjan Stroo4, Chantal B. E. M. Reusken3,8, Marion P. G. Koopmans8 
and Willem Fred de Boer1

Abstract 

Background:  Arboviruses are a growing public health concern in Europe, with both endemic and exotic arboviruses 
expected to spread further into novel areas in the next decades. Predicting where future outbreaks will occur is a 
major challenge, particularly for regions where these arboviruses are not endemic. Spatial modelling of ecological risk 
factors for arbovirus circulation can help identify areas of potential emergence. Moreover, combining hazard maps of 
different arboviruses may facilitate a cost-efficient, targeted multiplex-surveillance strategy in areas where virus trans‑
mission is most likely. Here, we developed predictive hazard maps for the introduction and/or establishment of six 
arboviruses that were previously prioritized for the Netherlands: West Nile virus, Japanese encephalitis virus, Rift Valley 
fever virus, tick-borne encephalitis virus, louping-ill virus and Crimean-Congo haemorrhagic fever virus.

Methods:  Our spatial model included ecological risk factors that were identified as relevant for these arboviruses by 
an earlier systematic review, including abiotic conditions, vector abundance, and host availability. We used geo‑
graphic information system (GIS)-based tools and geostatistical analyses to model spatially continuous datasets on 
these risk factors to identify regions in the Netherlands with suitable ecological conditions for arbovirus introduction 
and establishment.

Results:  The resulting hazard maps show that there is spatial clustering of areas with either a relatively low or rela‑
tively high environmental suitability for arbovirus circulation. Moreover, there was some overlap in high-hazard areas 
for virus introduction and/or establishment, particularly in the southern part of the country.

Conclusions:  The similarities in environmental suitability for some of the arboviruses provide opportunities for 
targeted sampling of vectors and/or sentinel hosts in these potential hotspots of emergence, thereby increasing the 
efficient use of limited resources for surveillance.

Keywords:  Risk mapping, Geographic Information System, West Nile virus, Japanese encephalitis virus, Rift Valley 
fever virus, Tick-borne encephalitis virus, Louping-ill virus, Crimean-Congo haemorrhagic fever virus, Vector-borne 
diseases

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Arthropod-borne viruses, or arboviruses, are an increas-
ing public health concern in Europe [1]. Diseases caused 
by endemic arboviruses such as West Nile virus (WNV), 
Crimean-Congo haemorrhagic fever virus (CCHFV), and 
tick-borne encephalitis virus (TBEV) are all increasing 
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in incidence and distribution [2–4]. Moreover, the wide-
spread occurrence and periodically high local abun-
dance of competent vectors and reservoir hosts increase 
the probability that exotic arboviruses, such as Japanese 
encephalitis virus (JEV) or Rift Valley fever virus (RVFV), 
become established [5, 6]. Projected changes in land-use 
and climate, socio-economic development, and virus 
evolution may all contribute to larger and more frequent 
outbreaks in endemic regions, and promote geographic 
expansion of arboviruses, including those that were tra-
ditionally confined to tropical regions, into novel areas 
within Europe [7–10].

The above-mentioned mosquito-borne viruses (JEV, 
WNV and RVFV) and tick-borne viruses (CCHFV, TBEV 
and the closely related louping-ill virus LIV) have been 
marked as top priority arboviruses for the Netherlands 
based on epidemiological criteria, and their economic 
and societal impact [11]. Their potential emergence 
in the Netherlands may be facilitated by the country’s 
unique combination of (i) high densities of livestock, 
which function as reservoir hosts for JEV, RVFV, CCHFV 
and LIV, (ii) great global connectivity in trade and travel 
through large airports and seaports, which increases the 
risk for arbovirus introduction, and (iii) priority pol-
icy to improve ecological conditions attracting wildlife 
(both resident and migratory) via habitat conservation 
and the establishment of wildlife corridors. Examples of 
these conservation initiatives are the National Ecologi-
cal Network (NEN), the Natura 2000 network, and the 
Pan-European Ecological Network (PEEN), which are all 
aimed at higher wildlife mobility and larger distribution 
ranges, and hence may facilitate the spread of arboviruses 
with wildlife reservoirs. Moreover, increasingly warmer 
summers and milder winters improve the climatic suit-
ability of the Netherlands for the establishment of arbo-
viruses and their vectors [12, 13]. The recent outbreaks 
of Usutu virus in blackbirds and the first autochthonous 
human cases of TBE in this country, underline the con-
tinuous threat of arbovirus emergence [14, 15].

While history has shown that preventing the intro-
duction and spread of arboviruses and their vectors into 
novel areas may be near impossible [16–19], potential 
outbreaks can be prevented or their effects mitigated by 
targeted early warning surveillance, preparedness plan-
ning, and control efforts (e.g. monitoring of vectors and/
or sentinel hosts, vaccination, education campaigns and 
biological control) in hazardous areas [20, 21]. However, 
predicting where arbovirus emergence is most likely to 
occur and hence, selecting locations where surveillance 
should be most effective, is a major challenge. A spatial 
analysis of ecological risk factors for arbovirus circulation 
can help identify such areas. Arboviruses are associated 
with the presence, abundance and interactions of specific 

vectors, reservoir hosts, and abiotic conditions that need 
to converge for arbovirus replication and transmission 
to occur [22]. Spatial modelling of these ecological risk 
factors can be used to map the environmental suitability 
(‘hazard’) for local circulation of arboviruses in regions 
beyond their current distribution [23–27].

In this study, we developed predictive hazard maps 
for the introduction and/or establishment of the six ear-
lier prioritized arboviruses TBEV, LIV, CCHFV, JEV, 
WNV and RVFV in the Netherlands. Our spatial analy-
sis included ecological risk factors that were identified 
as relevant for these arboviruses by an earlier systematic 
review, including abiotic conditions, vector abundance, 
and host availability [28]. We used geographic informa-
tion system (GIS)-based tools and geostatistical analyses 
to model spatially continuous data on these risk factors 
to identify regions with suitable ecological conditions 
for endemic circulation. It is in these potential hotspots 
where surveillance efforts should be focused to enable 
early risk management. Our specific goal was to contrib-
ute to an integrated, multiplex surveillance strategy in 
which hazardous areas are monitored for the presence of 
multiple arboviruses simultaneously.

Methods
We considered Additional file  1: Table  S1 from the sys-
tematic literature review by Esser et  al. [22] to identify 
ecological risk factors associated with sustained circula-
tion and spread of the six previously prioritized arbovi-
ruses (JEV, WNV, RVFV, CCHFV, TBEV and LIV). These 
factors included abiotic conditions (i.e. temperature, 
humidity and precipitation), vegetation cover, and the 
abundance of vectors and (reservoir) hosts such as migra-
tory birds, livestock and deer. We then used nationwide 
continuous data on these ecological factors to construct 
hazard maps for the potential introduction and/or estab-
lishment of these arboviruses in the Netherlands. Factors 
that were not relevant for this country (e.g. elevation, 
presence of rice fields), or for which detailed information 
was not publicly available (e.g. point-to-point interna-
tional livestock transport), were excluded from analysis. 
The available data allowed us to construct 9 hazard maps, 
3 for the introduction of CCHFV, WNV, and JEV, and 6 
for the establishment of each arbovirus (see below).

Risk factors for introduction
Long-distance dispersal of infected vectors and/or wild-
life is an important mechanism for the introduction and 
spread of arboviruses into novel areas [28]. We consid-
ered the relative abundance of bird species that migrate 
from Africa and/or the Mediterranean area to the Neth-
erlands in spring as principal risk factor for the introduc-
tion of WNV and CCHFV (see Additional file 1: Table S1, 
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for a list of included bird species). As these birds have 
overwintering and/or stopover sites in endemic regions, 
they may potentially be viraemic with WNV or carry 
Hyalomma ticks infected with CCHFV upon arrival in 
the Netherlands [29, 30]. Indeed, even though there are 
no established populations of Hyalomma ticks in the 
Netherlands, immature ticks are incidentally imported by 
migratory birds [31, 32]. Migratory birds may also spread 
JEV via overlapping migratory flyways with birds migrat-
ing from JEV-endemic regions in southeast Asia [33]. 
We therefore included the relative abundance of these 
bird species as risk factor for the introduction of JEV (see 
Additional file 1: Table S2).

Long-distance dispersal of infected livestock is argu-
ably the most important mechanism for the introduction 
of RVFV and LIV into novel areas [28, 34]. In addition, 
livestock imported from CCHFV-endemic regions may 
also carry infected Hyalomma ticks [35]. However, data 
on point-to-point international transport of livestock is 
commercially and socially sensitive and was therefore not 
made available by competent bodies for this study, which 
precluded the construction of introduction risk maps for 
RVFV and LIV. Host movement also plays an important 
role in the spread of TBEV throughout Europe [36, 37], 
but as this virus emerged in the Netherlands while this 
study was ongoing, we limited our analysis to estimating 
the establishment of TBEV.

Risk factors for establishment
For the mosquito-borne viruses, we included the fol-
lowing risk factors for establishment: (i) abundance 
of competent vectors; (ii) abundance of competent 
reservoir hosts; and (iii) suitable climatic conditions 
(Table 1). Competent mosquito species that have been 
prioritized as a veterinary and public health concern 
for the Netherlands, based on their local occurrence 
and vector status, include Aedes vexans for RVFV 
and Culex pipiens for WNV and RVFV [38–40]. More 
recently, European Cx. pipiens mosquitoes were also 
shown to be competent vectors for JEV [5]. We esti-
mated the abundance of these two mosquito species 
across the Netherlands using random forest models 
following the methods described in Ibañez-Justicia & 
Cianci [41] and using the data reported in Ibañez-Jus-
ticia et al. [42]. Detailed information on these methods 
and the ecological variables used can be found in Addi-
tional file 2: Text S1.

Different reservoir hosts are involved in the transmis-
sion cycle of each of the three mosquito-borne viruses. 
Domestic ruminants are the most important reservoir 
host for RVFV [34]. We therefore included the abun-
dance of cattle, sheep, and goats as risk factor for RVFV 
establishment. Pigs and horses do not play a significant 

role in RVFV epidemiology [43, 44], whereas the role of 
small mammals and ruminant wildlife, such as deer, in 
virus maintenance remains unclear [45, 46]. These ani-
mals were therefore not included as risk factors for the 
establishment of RVFV. For JEV, Ardeid birds and pigs 
are the principal reservoir hosts [33]. Hence, we included 
the local abundance of Ardeid bird species that occur 
in the Netherlands (see Additional file  1: Table  S3) and 
the abundance of pigs as risk factors for JEV establish-
ment. West Nile virus is a multi-host pathogen that is 
maintained in a bird-mosquito transmission cycle [47]. 
Although the reservoir competence of many European 
bird species for WNV remains largely unknown, past 
outbreaks have often occurred near wetland areas, where 
large numbers of wetland birds and ornithophilic mos-
quitoes concentrate [48, 49]. In addition, experimental 
studies have shown that the European carrion crow (Cor-
vus corone), the jackdaw (Coloeus monedula), the mag-
pie (Pica pica), the rock pigeon (Columba livia) and the 
house sparrow (Passer domesticus) are all highly suscepti-
ble to WNV infection and are competent reservoir hosts 
[50–54]. We therefore included the relative abundance of 
wetland bird species and that of crow, jackdaw, magpie, 
rock pigeon and house sparrow as risk factors for WNV 
establishment (see Additional file 1: Table S4).

Temperature, humidity, and precipitation have all been 
associated with outbreaks of the three mosquito-borne 
viruses that we consider here [22]. However, we included 
only temperature as abiotic risk factor because of its 
direct impact on vector competence, biting rates, and the 
extrinsic incubation period of the virus [55, 56]. Other 
abiotic factors, such as precipitation or humidity, are 
indirectly related to virus circulation via their impact on 
mosquito abundance [57, 58], which we have modelled 
separately. Specifically, we included the average daily 
temperature during spring and summer (April to Octo-
ber) as risk factor for WNV and RVFV establishment, 
with higher temperatures corresponding with higher risk 
[56, 59]. For JEV, we included the number of days when 
the average daily temperature was at least 25  °C, a tem-
perature limit above which JEV outbreaks occur [57].

For the tick-borne viruses, we included the following 
risk factors for establishment: (i) suitable tick habitat; (ii) 
presence of key host species for adult ticks and/or virus 
transmission; and (iii) abiotic conditions that facilitate 
virus transmission and/or tick development. Ticks are 
very sensitive to abiotic conditions and their survival is 
directly related to vegetation cover and leaf litter, which 
protects them from desiccation or freezing [60]. The 
principal vector of TBEV and LIV in Europe, Ixodes rici-
nus, occurs in a wide range of habitats, but it is typically 
found in woodlands and forests with thick undergrowth 
[61, 62]. Indeed, TBE incidence is positively correlated 
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with the proportion of broad-leafed, mixed, and conif-
erous forest stands, which also provide habitat for small 
rodents that function as amplifying hosts for TBEV [63–
66]. In contrast, the most prominent European vector of 
CCHFV, Hyalomma marginatum, prefers open country 
habitat [62], with clinical cases of CCHF being positively 
correlated with the proportion of shrub or grassland 
cover and with habitat fragmentation in agricultural 
areas [8, 26, 67]. We therefore included different land-
use types for I. ricinus and H. marginatum in our analysis 
and scored these on a scale of 1 to 3, with higher values 
corresponding to more suitable habitat (see Additional 
file 1: Table S5).

Large herbivores are final hosts of adult I. ricinus and 
H. marginatum ticks, and are also directly involved 
as reservoir host in the transmission cycle of LIV and 
CCHFV [35, 36, 68]. In the Netherlands, deer presence 
rather than abundance best explains I. ricinus density 
[69]. In areas where deer and other wild herbivores are 
absent, free-ranging livestock that are used for nature 
management may instead maintain tick populations by 
feeding adult ticks [70]. We therefore used the presence 
of deer (i.e. roe deer Capreolus capreolus, fallow deer 
Dama dama, red deer Cervus elaphus) and free-ranging 
livestock (i.e. cattle, sheep, goat and horse) as a risk fac-
tor for high densities of I. ricinus and hence local circula-
tion of TBEV. Louping ill virus most commonly occurs in 
upland habitats of the British Isles, where the red grouse 
(Lagopus lagopus scotica) is a competent transmission 
host, and the mountain hare (Lepus timidus) supports 
all three life stages of I. ricinus as well as non-viraemic 
transmission of LIV via co-feeding ticks [68]. Neither 
red grouse nor mountain hares are present in the Neth-
erlands. Their absence, however, does not preclude local 
circulation of LIV in this country; sheep are highly com-
petent reservoir hosts and are capable of maintaining an 
enzootic cycle with I. ricinus ticks, even in the absence of 
other key hosts such as deer [68]. We therefore included 
sheep abundance as a risk factor for the establishment of 
LIV. Livestock and hares are also principal host species 
for adult H. marginatum ticks and act as amplifying hosts 
for CCHFV [35]. Since the European hare (Lepus euro-
paeus) is present throughout the Netherlands, but local 
abundance data were not available, we only included the 
abundance of livestock (i.e. cattle, goat, sheep and horse) 
as a risk factor for CCHFV establishment.

Rapid autumnal cooling followed by rapid spring 
warming are considered to be key climatic conditions 
for the transmission of TBEV and LIV as it enables syn-
chronous activity of, and hence co-feeding transmission 
between, infected I. ricinus nymphs and uninfected lar-
vae [71, 72]. We therefore included the rate with which 
temperatures decreased in autumn and increased in 

spring as a risk factor for establishment of TBEV and LIV. 
Autumnal cooling was calculated as the slope of the aver-
age daily temperature decrease from August 1st to Octo-
ber 31st. Spring warming was calculated as the slope of 
the average daily temperature increase from March 1st 
to May 31st. As moist conditions are a controlling fac-
tor for the survival of I. ricinus, we also included a posi-
tive relationship with relative humidity [73]. In contrast, 
H. marginatum ticks are adapted to the warm climatic 
conditions of northern Africa and southern Europe [74]. 
Various modelling studies showed a northward shift in 
climate suitability of this species with increasing temper-
atures and decreasing rainfall as predicted under future 
climate change scenarios [75–77]. We therefore included 
a negative relationship with rainfall and a positive rela-
tionship with temperature during summer months (April 
to October) as risk factors for CCHFV establishment.

Raw source data
We used climatic data from the Royal Netherlands Mete-
orological Institute (KNMI). Daily meteorological data of 
38 stations from 1 January 2010 until 31 December 2015 
were used to interpolate (Spline function) daily maps 
with full coverage of the Netherlands. We followed the 
KNMI protocol for interpolating daily meteorological 
data [78]. We included the following factors: 24 h average 
temperature (TG; 0.1  °C); 24  h maximum temperature 
(TX; 0.1 °C), 24 h sum of precipitation (RH; 0.1 mm); and 
24 h average relative humidity (UG; %). To identify suit-
able tick habitat, we used the LGN7 dataset [79] for land-
use in the Netherlands, which differentiates between 39 
land-use types (Additional file  1: Table  S5). Livestock 
abundance data was obtained from the 2015 livestock 
survey database (Landbouwtelling 2015; poll date 1 April 
2015) as provided by the Netherlands Enterprise Agency 
(RVO). Presence of free-ranging livestock in nature 
reserves was provided by Wageningen Environmental 
Research. Data on the presence of roe deer and hares 
was obtained from the Dutch National Database Flora 
and Fauna [80]. Data on the abundance of birds during 
the breeding season (spring) were obtained from the Bird 
Atlas of the Netherlands, based on nationwide fieldwork 
in 2013–2015 (www.vogel​atlas​.nl). The abundance of 
rare bird species was estimated per 5 × 5 km grid square 
on a semi-quantitative ordinal scale (classes: 1–3; 4–10; 
11–25; 26–100; 101–500; 501–1000 breeding pairs). 
The abundance of common bird species was quantified 
by using geostatistical modelling, based on bird counts 
during standardized timed visits in eight systematically 
selected 1 × 1 km grid squares per 5 × 5 km square, and 
a set of environmental variables. For details of field work 
methods and modelling techniques, see Sovon Vogelond-
erzoek Nederland [81]. As the relative importance of 

http://www.vogelatlas.nl


Page 6 of 20Esser et al. Parasites Vectors          (2020) 13:464 

each bird species for virus transmission remains unclear, 
we weighted each bird species equally in our analyses. For 
rare bird species, we took the geometric mean per abun-
dance class, and then normalized the abundance of each 
species between 0 and 100. For common bird species, we 
directly normalized the abundance data by assigning 100 
to cells where the species was most common and 0 where 
it was absent.

Construction of hazard maps
We used ‘static risk mapping’ (sensu [82]) to character-
ize the spatial variation in the above-described ecological 
risk factors for arbovirus circulation. First, we gener-
ated a grid of 5 × 5 km covering the Netherlands in ESRI 
ArcGIS 10.5 (ESRI 2017). Cells that had their centroids 
>  1  km away from land were excluded from the analy-
ses to prevent edge effects. Each ecological risk factor 
was represented by a single GIS-layer that covered the 
entire grid. Values for each layer were averaged per cell 
and then normalized (0–100) over the entire grid to allow 
adding or subtracting in further analyses (see below). 
All individual layers are provided in Additional file  3: 
Figures S1–S19.

The introduction maps for CCHFV, WNV and JEV 
consisted of one GIS-layer each, i.e. the relative abun-
dance of migratory birds (Table 1). In contrast, the estab-
lishment maps of the six arboviruses were constructed 
by combining (overlaying) multiple GIS-layers. For 
this, we first classified each of these layers (risk factors) 
as belonging to either abiotic conditions, vector abun-
dance, or host availability (Table 1). Because the relative 
importance of each risk factor varies between endemic 
regions [22], it remains unclear which factor(s) will con-
tribute most to virus circulation in the Netherlands. All 
layers (risk factors) within each of the groups (abiotic, 
vector and host) were therefore weighted equally in the 
analysis by averaging all values per grid cell. The three 
groups were then overlaid and weighted equally again to 
prevent bias towards one particular group for arbovirus 
establishment.

For example, in the case of CCHFV, the host layer con-
sisted of livestock abundance, the vector layer consisted 
of suitable habitat for H. marginatum, whereas the abi-
otic layer was a combination of temperature and pre-
cipitation (Table  1). As we included a positive effect of 
temperature but a negative effect of precipitation, their 
values could not simply be averaged. We therefore sub-
tracted the precipitation values from 100 to obtain a scale 
where higher values correspond with lower precipita-
tion (which is favourable for H. marginatum). Tempera-
ture and precipitation values were then averaged per grid 
cell and normalized. The three abiotic, host, and vector 

layers were then averaged and normalized again to con-
struct the establishment map (see Additional file 4: Fig-
ures  S20–S25, for a schematic representation of the 
procedure).

The hazard maps illustrate spatial differences in opti-
mal environmental conditions for virus circulation and 
therefore portray relative hazard rather than actual haz-
ard. This relative hazard is expressed on a scale between 
0 (low hazard) and 100 (high hazard) and is visualised on 
the maps with colours ranging from black (low hazard 
area) to red (high hazard area). Because TBEV emerged 
in the Netherlands while this study was ongoing, we com-
pared our establishment map with locations where TBEV 
was detected in ticks, wildlife, and humans, and where 
serologically positive roe deer were found [83]. These 
data were obtained from the website of the National 
Institute for Public Health and the Environment (RIVM), 
to which the Dutch Wildlife Health Centre, ErasmusMC, 
LabMicTa, MPH Services (GGD), Wageningen Univer-
sity and Research, and Artemis One Health contributed. 
In addition, we compared our WNV establishment map 
with locations where serologically positive birds were 
recently reported [84].

Results
The introduction maps highlight locations with large 
concentrations of migratory birds from appropriate 
source areas or species groups, which may either be 
infected with WNV or JEV, or carry CCHFV-infected H. 
marginatum ticks from endemic regions (Figs.  1, 2 and 
3). The establishment maps indicated that for WNV, the 
southern and western part of the Netherlands are most 
suitable for endemic circulation (Fig.  4), while for JEV 
suitability was highest in the southern and eastern part 
of the country (Fig. 5). For RVFV and CCHFV, only few 
locations were classified as having a relatively high haz-
ard for establishment, but they were all located in the 
south (Figs.  6, 7). Establishment hazard of TBEV was 
highest in nature areas in central, southern, and eastern 
parts of the country, where the combination of seasonal 
temperature profiles, suitable tick habitat and host availa-
bility are most likely to allow for co-feeding transmission 
between infected and uninfected ticks on rodent hosts 
(Fig. 8). In contrast, the hazard of LIV establishment was 
highest in the north of the country (Fig.  9). Overlaying 
all of the establishment maps showed that overall haz-
ard of endemic arbovirus circulation was highest in the 
southern parts of the country; a region characterized by a 
warmer climate, which positively affects vectorial capac-
ity and vector abundance [56, 75, 85] (Fig. 10).

As TBEV recently emerged in the Netherlands, we 
compared our establishment maps with the specific loca-
tions where the virus has been detected in ticks, humans, 
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and wildlife and where seropositive roe deer were found 
[83]. Locations where PCR-positive ticks, wildlife and 
human cases have been found are all marked as high-
hazard areas, while serological evidence is present in 
medium- to high-hazard areas, providing supportive 
evidence for the validity of our maps (Fig.  8). In addi-
tion, WNV-specific neutralizing antibodies were recently 
detected in birds (Eurasian coot Fulica atra and carrion 
crow) from Amsterdam, Rotterdam and The Hague [84]. 
While it is possible that these birds acquired WNV out-
side of the Netherlands, the cities in which they were 
found are located in the western part of the country, 
where the relative hazard for establishment was highest 
(Fig. 4).

Discussion
We performed a spatial analysis of ecological risk fac-
tors for circulation of six arboviruses (WNV, JEV, RVFV, 
CCHFV, TBEV and LIV) to identify areas in the Neth-
erlands with the highest potential for their introduction 
and subsequent establishment. We created introduction 
maps for WNV, JEV and CCHFV, and establishment 
maps for each of the six arboviruses (Figs. 1, 2, 3, 4, 5, 6, 
7, 8 and 9). We stress that these maps portray spatial vari-
ation in relative hazard, i.e. arbovirus circulation is more 
likely in certain locations than in others, rather than 
actual hazard. That being said, the similarity between 
the predicted high-hazard areas and the locations where 
actual TBEV-cases and WNV-serologically positive birds 
were reported, provides some confidence that our spatial 
model, despite its relative simplicity, can be used to iden-
tify regions in the Netherlands where arbovirus emer-
gence is most likely.

While TBEV appears to be locally established in the 
Netherlands, autochthonous WNV infections in mos-
quitoes or animals have yet to be reported, despite 
widespread availability of competent vectors [39] and 
expected introduction by viraemic birds [30, 86]. Tem-
perature is regarded as the key limiting factor for WNV 
transmission in northern Europe [56, 87], but the virus is 
predicted to spread into this region via migratory birds 
under future climate change scenarios [88]. Similar pre-
dictions have been made for H. marginatum, which 
is both the main vector and reservoir host of CCHFV 
in Europe [75]. A population model showed that self-
sustaining populations of this tick species were absent 
in areas where yearly accumulated temperatures drop 
below 3000–4000 °C [60]. In the Netherlands, the yearly 
accumulated temperature averaged 3751  °C during our 
study period (2010–2015), but is expected to rise above 
4000  °C under the predicted temperature increase of 
1  °C by 2030 [13]. However, this temperature limit was 
already exceeded in the exceptionally warm year of 2018, 

and the first imported Hyalomma ticks have already been 
found on migratory birds, horses and humans [31, 32]. 
Together, these findings warrant increased surveillance 
for TBEV, WNV and CCHFV.

In contrast, the potential introduction of RVFV, JEV 
and LIV is probably more dependent on human activities, 
such as trade and travel, rather than natural movement of 
hosts and/or vectors. For example, the red grouse plays 
an important role in the transmission cycle of LIV in the 
UK [89], but this species is absent in the Netherlands. Its 
closest relative, the black grouse Lyrurus tetrix, is criti-
cally endangered and has only a small population on the 
Sallandse Heuvelrug. Past introductions of LIV into other 
parts of Europe were likely due to international transport 
of infected sheep [90], and this is also the most plausible 
route of introduction for the Netherlands. Subsequent 
establishment of LIV is possible through a competent and 
abundant vector, I. ricinus [68]. Likewise, few bird species 
that arrive in the Netherlands in summer have overlap-
ping migratory flyways with birds from JEV-endemic 
areas in Asia, resulting in limited potential for introduc-
tion when temperatures are suitable for viral replication. 
Such a long-distance migration might also reduce the 
viremia of these birds, so that they are no longer infec-
tious upon arrival [91]. Alternatively, introduction of 
JEV as well as RVFV via infected mosquitoes that come 
with trade or air traffic is theoretically possible [91], but 
is considered to be less likely for the Netherlands than 
entry through (illegal) trade of birds (JEV) and livestock 
(RVFV) [92]. Access to animal trade data is of critical 
importance for mapping this hazard, and it is therefore 
extremely unfortunate that this information was not 
made available by the relevant bodies, who deemed it to 
be economically too sensitive.

The use of GIS-based models has become increasingly 
common in the field of spatial epidemiology to map the 
potential emergence of diseases in areas beyond their 
current distribution [82, 93–96]. Our approach is similar 
and generated useful results that are corroborated with 
recent findings of e.g. TBEV emergence. Further, over-
lap between some of the arboviruses’ high-hazard areas 
supports the implementation of integrated surveillance 
in regions where multiple arboviruses may emerge. On 
the other hand, it is difficult to weigh for differences in 
importance or effect sizes of different risk factors in our 
analyses at this stage. More experimental research is 
required to disentangle the effects of the different, often 
confounded environmental factors and to estimate their 
relative contribution to virus circulation. However, it 
is relatively easy to include a weighting factor in our 
analyses, or to add additional layers (e.g. risk for human 
exposure via recreation) so that the accuracy of the pre-
dictions can be improved. These predictions also need to 
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be tested, and such a validation phase is a fundamental 
requirement to improve our understanding of the under-
lying causal mechanisms driving these spatial patterns. 

Testing the accuracy of these predictions will be a chal-
lenge, as most of the arboviruses considered here are still 
presumed absent from the Netherlands (i.e. CCHF, LIV, 

Fig. 1  Hazard map for the introduction of West Nile virus (WNV) in the Netherlands
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JEV, WNV and RVFV). However, the recent emergence 
of TBEV and the closely to WNV-related Usutu virus 
[15], might offer some prospect for testing these predic-
tions. Indeed, the establishment pattern of USUV in the 

Netherlands shows some resemblance to the establish-
ment map for WNV, with a gradual northwest-oriented 
spread from the southeast of the Netherlands [15].

Fig. 2  Hazard map for the introduction of Japanese encephalitis virus (JEV) in the Netherlands
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Fig. 3  Hazard map for the introduction of Crimean-Congo haemorrhagic fever virus (CCHFV) in the Netherlands
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Fig. 4  Hazard map for the establishment of West Nile virus (WNV) in the Netherlands. Locations where birds with WNV-neutralizing antibodies were 
caught [83] are indicated with black circles. Location 1: Amsterdam; Location 2: The Hague; Location 3: Rotterdam
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Fig. 5  Hazard map for the establishment of Japanese encephalitis virus (JEV) in the Netherlands
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Fig. 6  Hazard map for the establishment of Rift Valley fever virus (RVFV) in the Netherlands
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Conclusions
The use of spatial models has become a key method to 
map the environmental suitability for arbovirus circula-
tion and to target surveillance in regions of potential 

emergence. Our analyses and the generated hazard maps 
show that there is spatial clustering of areas with either a 
relatively low or high potential for arbovirus introduction 
and/or establishment in the Netherlands. Importantly, 

Fig. 7  Hazard map for the establishment of Crimean-Congo haemorrhagic fever virus (CCHFV) in the Netherlands
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Fig. 8  Hazard map for the establishment of tick-borne encephalitis virus (TBEV) in the Netherlands. Locations where TBEV-positive ticks, wildlife, 
and human cases were found are indicated with black circles. Locations where TBEV-seropositive wildlife were found are indicated with dashed 
circles [83]
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Fig. 9  Hazard map for the establishment of louping-ill virus (LIV) in the Netherlands
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Fig. 10  Combined establishment map for all six arboviruses (WNV, JEV, RVFV, TBEV, CCHFV and LIV) shows that the relative hazard is highest in the 
southern part of the Netherlands
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some of these high-hazard areas overlap. Our combined 
map, showing the summed hazard for all six arboviruses 
per cell, shows that overall hazard is highest in the south-
ern part of the country. Sampling of vectors and sentinel 
hosts should be focused in these key priority areas, where 
several arboviruses may emerge. Such targeted sampling 
increases the efficient use of limited resources for surveil-
lance. Thus, the construction and subsequent overlaying 
of multiple hazard maps provides a promising approach 
for an integrated, cost-efficient, multiplex-surveillance 
strategy that targets multiple arboviruses simultaneously.
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