ARTICLE

Received 5 Aug 2015 | Accepted 19 Feb 2016 | Published 30 Mar 2016

Essential role of the Cdk2 activator RingoA in
meiotic telomere tethering to the nuclear envelope
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Cyclin-dependent kinases (CDKs) play key roles in cell cycle regulation. Genetic analysis in
mice has revealed an essential role for Cdk2 in meiosis, which renders Cdk2 knockout (KO)
mice sterile. Here we show that mice deficient in RingoA, an atypical activator of Cdk1 and
Cdk2 that has no amino acid sequence homology to cyclins, are sterile and display meiotic
defects virtually identical to those observed in Cdk2 KO mice including non-homologous
chromosome pairing, unrepaired double-strand breaks, undetectable sex-body and pachytene
arrest. Interestingly, RingoA is required for Cdk2 targeting to telomeres and RingoA KO
spermatocytes display severely affected telomere tethering as well as impaired distribution of
Sunl, a protein essential for the attachment of telomeres to the nuclear envelope. Our results
identify RingoA as an important activator of Cdk2 at meiotic telomeres, and provide genetic
evidence for a physiological function of mammalian Cdk2 that is not dependent on cyclins.
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ell division is orchestrated by the periodical activation of

cyclin-dependent kinases (CDKs) whose activity is

modulated by the binding of regulatory subunits named
cyclins!. However, there is evidence that CDK activation does not
always require the binding of conventional cyclins®. Atypical
CDK activators include the RINGO/Speedy proteins, which were
initially identified as potent inducers of meiotic maturation in
Xenopus oocytes>*. Xenopus RINGO (XRINGO) can interact
with and directly activate both Cdkl and Cdk2, despite having no
homology in its amino acid sequence to cyclins®. The activation
of Cdkl and Cdk2 by XRINGO is independent of the control
mechanisms that regulate CDK/cyclin complexes®. Interestingly,
XRINGO-activated Cdkl and Cdk2 have altered substrate
specificity and can phosphorylate the CDK inhibitory kinase
Mytl on three specific Ser residues much more efficiently than
the cyclin-activated CDKs®. These phosphorylations inhibit the
catalytic activity of Mytl, which probably accounts for the
role of XRINGO in Xenopus oocyte maturation®-8. Thus, RINGO
proteins are novel non-cyclin CDK regulators that may allow
CDKs to play different roles when cyclin expression is
compromised or to bypass control mechanisms of CDK-cyclin
complexes.

RINGO proteins are conserved among metazoans and several
mammalian RINGO family members have been identified, which
can all associate with and regulate Cdkl and Cdk2 (refs 9,10). The
best-studied family member in mammals is RingoA (also known
as SpdyA, Spyl or Ringo3). Overexpression of RingoA in
mammalian cell lines enhances the rate of cell proliferation'l,
but high levels of RingoA can interfere with cytokinesis and
chromosome decondensation, probably because of its ability to
maintain high Cdkl activity in mitosis'2. Experiments using
cell lines and ectopically expressed proteins have implicated
RingoA in processes, such as checkpoint signalling and
tumorigenesis'>~1>, but the precise physiological functions of
RingoA remain elusive.

Generation of knockout (KO) mice for CDKs and cyclins
during the past decade has shown that only Cdkl is essential for
mouse cell proliferation as it can compensate for other CDKs by
binding to several types of cyclins in a cell cycle stage-dependent
manner'®. In contrast, Cdk2 is dispensable for somatic cell
proliferation in mice but essential for male and female
meiosis!”!8, Interestingly, the meiotic phenotype of Cdk2 KO
mice is different from the reported phenotypes for cyclin-
deficient mice, which show later (cyclins Al and A2) or restricted
to males (cyclins E1 and E2) meiotic defects!®2!, In the case
of B-type cyclins, mice deficient in cyclin Bl die early in
embryogenesis, while cyclin B2 has no role in meiosis and cyclin
B3 appears to inhibit prophase 12%%3. It therefore seems that
meiotic Cdk2 might be regulated by a cyclin-independent
mechanism, which prompted us to investigate the role of
RingoA in meiosis. We have found that RingoA KO mice
phenocopy the meiotic defects of Cdk2 KO mice, indicating that
RingoA is an essential activator of Cdk2 in meiosis. We also
provide evidence that Cdk2-RingoA regulates the inner nuclear
membrane protein Sunl for meijotic telomere tethering to the
nuclear envelope (NE), a prerequisite for chromosome pairing
and successful completion of the first meiotic prophase.

Results

RingoA KO mice are sterile. To genetically inactivate RingoA,
we generated mice carrying a floxed version of the Spyda gene,
which encodes RingoA (Supplementary Fig. 1). Mice with the
Spdyal®* allele were crossed with Sox2-Cre transgenic mice to
delete exon 3 and generate Spdya®’~ mice. The heterozygous
mice were healthy and fertile and were inter-crossed to produce
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RingoA KO mice. These mice were born with the expected
Mendelian frequency (Supplementary Table 1), indicating that
RingoA is not essential for embryonic development, and we did
not detect any differences with adult wild-type (WT) littermates
(Fig. 1a). However, both RingoA KO males and females were
found to be sterile. We confirmed by PCR with reverse
transcription and western blotting that RingoA KO testis lacked
RingoA expression (Fig. 1b and Supplementary Fig. 2).

The testes from 2-month-old RingoA KO mice were
hypoplastic and about four times smaller in size and weight than
those from WT littermates (Fig. 1c). Histological examination of
RingoA-deficient testes revealed that the epithelium of the
majority of the seminiferous tubules was abnormal and contained
only a single layer of Sertoli and spermatogonial cells (Fig. 1d, top
row). Moreover, the seminiferous tubules were narrower and
lacked post-meiotic germ cells (spermatozoa and spermatids)
showing also degenerating spermatocyte-like cells with highly
condensed nuclei (Fig. 1d, Sc). The condensed nuclei resembled
the chromatin degradation characteristic of apoptosis (Fig. 1d, Sc)
and KO animals contained an increased number of TUNEL
positive cells per seminiferous tubule compared with WT mice
(Fig. 1e). The spermatogonial compartment of RingoA KO testes
appeared normal (Fig. 1d, Sg) and anaphase B-type spermatogo-
nia were observed close to the basal lamina (Fig. 1d, In and A).
Altogether, these data indicate that the spermatogenesis of
RingoA KO mice was arrested at stage IV, in mid-pachytene of
meiosis 124,

Ovaries of the RingoA KO female mice were also atrophic with
most of the organ composed of interstitial and stromal cells
(Supplementary Fig. 3a). We were unable to detect any ovarian
follicles in the RingoA KO mice.

RingoA KO spermatocytes arrest at a pachytene-like stage. In
prophase of meiosis I, homologous chromosomes pair and
recombine to form bivalents, which can be monitored by staining
for components of the synaptonemal complex (SC). The axial/
lateral elements of SC start to form in leptotene and SCs are fully
established in pachytene, before they disassemble in diplotene for
chromosome condensation.

In nuclear spreads from WT testes, the homologous chromo-
somes were fully synapsed and the SC was established by
pachytene, as seen by a fully overlapping signal of the axial/lateral
element protein Sycp3 and the transverse filament protein Sycpl
(Fig. 2a). The chromosomes of the most advanced prophase I
spermatocytes found in RingoA KO seminiferous tubules showed
elongated stretches of Sycp3 co-localizing with Sycpl, which
indicates synapsed regions (Fig. 2a). However, the synapsed
regions in these spermatocytes showed frequent partner switch-
ing, indicating extensive non-homologous pairing (Fig. 2a,
arrowheads). The same phenotype was observed for RingoA
KO oocytes (Supplementary Fig. 3b, arrowheads).

Since proper homologous pairing was seriously impaired in
RingoA KO spermatocytes, it was difficult to conclude in which
stage the more advanced prophase I cells were arrested. To
address this, we analysed the distribution of the testis-specific
histone H1t, a marker of entry into mid-pachytene that gradually
increases until diplotene?. In WT spermatocytes, we found that
the H1t signal marked mid-pachytene chromatin, then increased
gradually through late pachytene and was saturated in diplotene
(Fig. 2b). The intensity of H1t staining indicated that the majority
of the RingoA KO spermatocytes were arrested in early to mid-
pachytene (93%) and only some spermatocytes were able to reach
late pachytene (7%) (Fig. 2b).

These findings suggest that RingoA KO spermatocytes arrest in
a pachytene-like stage, probably due to the activation of the
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Figure 1 | RingoA KO males are sterile. (a) RingoA-deficient mice are indistinguishable from their littermates. (b) RingoA immunoprecipitates from WT
and KO testis lysates were immunoblotted for RingoA. The asterisk indicates IgGs. (€) RingoA KO testes are about four times smaller than the WT testes in
2-month-old mice. (n=9 WT and 5 KO, P value=0.001). (d) Testis from 2-month WT and KO mice were fixed in Bouin's solution, embedded in
paraffin and sections (6 um) were stained with H&E. A, A-type spermatogonia; In, intermediate spermatogonia; Sc, spermatocytes; Se, Sertoli cell;

Sg, spermatogonia in anaphase. Scale bar, 50 um. (e) Paraffin sections from WT and KO testes were stained with TUNEL (green) and DAPI (blue).
Scale bar, 10 pm. TUNEL™ spermatocytes per seminiferous tubule were counted. (n=48 WT and 114 KO tubules, P value = 0.009). Error bars are
presented as the average with s.d. Asterisks indicate statistical significance (**P value<0.01) determined by the unpaired two-way Wilcoxon rank-sum

test. The uncropped immunoblot is shown in Supplementary Fig. 7.

pachytene checkpoint?. Quantitative analysis confirmed that
the frequency of early prophase I stages was similar in WT and
RingoA KO prophase I spermatocytes, but diplotene sperma-
tocytes were absent from the KO, indicating a complete
pachytene arrest (Fig. 2c). We did not observe the accu-
mulation of RingoA KO cells in pachytene stage, probably due
to the checkpoint-arrested spermatocytes undergoing tubule-
wide synchronized apoptosis after prolonged pachytene arrest
(see Fig. le above), as seen in Cdk2 KO spermatocytes'’.

Increased non-repaired DNA in RingoA KO spermatocytes.
The process of chromosome pairing is facilitated by the intro-
duction of DNA double-strand breaks (DSBs)?’, which can be
monitored by the accumulation of phospho-histone H2AX
(YH2AX) positive foci from leptotene until the DSBs are
repaired in pachytene. As expected, in WT spermatocytes,
the YH2AX signal was high at leptotene and restricted to the

sex-body in pachytene spermatocytes (Fig. 3a, left column).
However, in RingoA KO spermatocytes, the YH2AX signal was
high throughout prophase I but without the typical enrichment at
the sex-body (Fig. 3a, right column). This indicates that DSBs
were properly introduced, but DSB repair was impaired and
sex-body formation was not detected.

After their formation by the topoisomerase-like enzyme Spoll,
DSBs are processed for repair and recruit recombination proteins,
including Rad51 and Dmcl (ref. 27). Rad51 and Dmcl mark DSBs
along the axial/lateral elements and upon proper SC formation in
pachytene are mostly replaced by other intermediate-stage
proteins. In WT pachytene spermatocytes, Rad51 foci remained
only along the asynapsed axial elements of the sex chromosomes
(Fig. 3b), whereas in RingoA KO spermatocytes Rad51 was widely
distributed along the axial/lateral elements of SCs even in
pachytene-like stages (Fig. 3b). Similar results were observed for
Dmcl foci (Fig. 3c). We quantified the amount of Dmcl foci in
RingoA KO pachytene-like spermatocytes. We scored on average
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Figure 2 | RingoA KO spermatocytes arrest in a pachytene-like stage with aberrant synapsis. (a) WT and KO spread spermatocytes were
immunolabelled for Sycp3 (red) and Sycp1 (green). KO spermatocytes presented non-homologous pairing and partner switching (arrowheads). (b) WTand
KO spread spermatocytes were immunolabelled for Sycp3 (red) and histone H1t (green). On the basis of H1t signal intensity, some pachytene-like KO
spermatocytes reached mid-pachytene (93%) and late-pachytene (7%) stages. (c¢) Percentage of cells at each stage of prophase | in the WT and KO
spreads of 2-months-old testes (based on stainings as in a; n=3, 150 spermatocytes per mouse). D, diplotene; L, leptotene; P, pachytene; P*, pachytene-
like; Z, zygotene. The sex-body is indicated in the WT pachytene spermatocytes (star). Scale bar, 10 um.

35 Dmcl foci per WT mid-pachytene spermatocyte and 168 Dmcl
foci per RingoA KO pachytene-like spermatocyte (Fig. 3d).

The late-recombination marker MutL homologue 1 (Mlhl)
normally appears at the designated crossing-over sites from mid-
pachytene onwards®®. However, we could not detect any Mlhl
foci in RingoA KO pachytene-like spermatocytes (Fig. 3e). We
also investigated the Mlh1 staining in oocytes, which have a more
permissive pachytene checkpoint. We analysed 130 RingoA KO
oocytes, which seemed in later stages of pachytene with longer
stretches of thick Sycp3 fibres, and found that ~5% of those
oocytes (7/130) showed an average of five Mlh1 foci of which 84%
also co-stained for Cdk2 (Supplementary Fig. 3c). Our results
indicate that DSB initiation and the recruitment of early repair
proteins is functional in the absence of RingoA, whereas the late-
recombination stages are impaired and crossing-over sites are not
produced, perhaps as a consequence of improper homologous
pairing due to defects upstream of the DSB repair.

RingoA co-localizes with Cdk2 at telomeres. The defective
homologue pairing phenotype observed in RingoA KO sperma-
tocytes is strikingly similar to what has been described in Cdk2
KO spermatocytes, suggesting that RingoA might be a key
meiotic regulator of Cdk2. We found that RingoA localized to the
telomeric regions in WT pachytene spermatocytes (Fig. 4a,b), as it
has been reported for Cdk2 (refs 17,29), and co-localized with
Cdk2 from leptotene (Fig. 4c) disappearing from telomeres as
cells entered the diplotene stage (Fig. 4d). RingoA and Cdk2 also
co-localized along the asynapsed axial elements of sex chromo-
somes in 58% of WT pachytene spermatocytes (Fig. 4d and

4

Supplementary Fig. 4), but RingoA was not found at crossing-
over sites (Fig. 4d, arrowheads). RingoA and Cdk2 co-localized
until late pachytene after which RingoA signal disappeared
completely and Cdk2 signal seemed more dispersed in the
diplotene nucleus (Fig. 4d). Interestingly, the localization of Cdk2
in telomeres was abolished in the RingoA KO pachytene-like
spermatocytes (Fig. 4a). In spite of the disappearance of
Cdk2 from telomeres in RingoA-deficient spermatocytes, total
Cdk2 expression levels were similar in WT and RingoA KO testes
at 18dpp, a time point when the WT and KO testes are
comparable (Fig. 4e).

Consistent with the above results, we detected inter-
action between endogenous RingoA and Cdk2 in testis by
co-immunoprecipitation experiments (Fig. 5a). Furthermore, the
kinase activity of Cdk2 immunoprecipitated from 18dpp testes
was reduced by ~70% in the RingoA KO mice compared with
WT mice (Fig. 5b), supporting the idea that impaired Cdk2
activity and subcellular localization are likely to account for the
defects observed in RingoA KO mice.

RingoA loss negatively affects meiotic telomere function.
Meiotic telomeres are central players of prophase I progression.
The initial steps in prophase I are tightly linked to telomeres,
although the underlying mechanisms are poorly understood*’. At
the onset of meiosis, telomeres are lengthened by presumably two
mechanisms, alternative lengthening of telomeres (ALT) and
telomerase’! 3> and fortified mechanically by the addition of
cohesins®%. This prepares the telomeres for anchoring to the NE,
which are then pulled along the NE to form a so-called ‘bouquet’

| 7:11084 | DOI: 10.1038/ncomms11084 | www.nature.com/naturecommunications


http://www.nature.com/naturecommunications

ARTICLE

Sycp3

200

Dmc1 foci/spc
- ©
o o
o o

Figure 3 | RingoA KO spermatocytes show non-repaired DSBs and lack of crossing-overs. (a) WT and KO spread spermatocytes were immunolabelled
for Sycp3 (red) and YH2AX (green). YH2AX marked DSBs in leptotene WT and KO spermatocytes. In pachytene WT spermatocytes, DSBs were mostly
repaired and YH2AX was sequestered to the sex-body (star), whereas the YH2AX signal persisted in pachytene-like KO spermatocytes. (b,c) WT and KO
spread spermatocytes were immunolabelled for Sycp3 (red) and either Rad51 (green in b) or Dmc1 (green in ¢). Rad51 and Dmc1 mark intermediate stages
of DSB repair and, in WT pachytene spermatocytes, Rad51 appears as spots along asynapsed regions of the sex chromosomes (b, star), whereas Dmc1 gets
removed from the chromosomes (c). In pachytene-like KO spermatocytes, Rad51 and Dmc1 marked numerous foci along synapsed and asynapsed
chromosome regions. (d) Quantification of Dmc1 foci in WT (n=125 cells, 3 mice) and KO spermatocytes (spc) (n=102 cells, 3 mice).

Pvalue= 2.2e —16. (e) WTand KO spread spermatocytes were immunolabelled for Sycp3 (red) and MIh1 (green). MIh1 marks late-recombination nodules
in WT spermatocytes, whereas no Mih1 staining was seen in KO spermatocytes (n =150, 3 mice). Scale bars, 10 um; inset, 1um. The median is indicated by
the thick line and the first and third quartiles of the box plot by thin lines. Asterisks indicate the statistical significance (****P value <0.0001) determined

by the unpaired two-way Wilcoxon rank-sum test.

cluster?®. This is believed to facilitate homologue pairing and
govern subsequent steps of prophase I. Hence, interfering with
any of these steps will result in aberrant prophase 1.

We found that the DNA telomere repeat binding protein Trfl
localized to the telomeres in RingoA KO spermatocytes (Fig. 6a)
and oocytes (Supplementary Fig. 3b). However, about 70% of
the telomeres appeared fused together both in spermatocytes
(Fig. 6b) and in oocytes (Supplementary Fig. 3b, arrowheads),
indicating that the absence of RingoA impaired the integrity of
telomeres. To assess the binding of telomeres to the NE, we
used squashed spermatocytes to preserve the volume of nuclei
and then scored by confocal imaging for Trfl signals at the
circumference of nuclear sections, as an indicator of the telomeres
attached to the NE. We obtained z-stacks of entire nuclei and
determined the top, equator and bottom planes (Fig. 6¢). In WT
spermatocytes, telomeres at the cell equator were mostly at the
ends of SCs, indicating that they were properly attached to the NE
(Fig. 6¢,d and Supplementary Movie 1). In contrast, 55% of
the telomeres in RingoA KO spermatocytes were scattered within
the nucleus, indicating that they were probably not attached
to the NE (Fig. 6¢c,d and Supplementary Movie 2). To test if the
remaining 45% of the telomeres that were located close to the NE
in RingoA KO spermatocytes were properly attached, we used

electron microscopy. We found that around 30% of telomeres
found in the vicinity of the NE in RingoA KO spermatocytes were
properly attached; the other 70% were unattached and either did
not reach the inner nuclear membrane and did not form an
attachment plate (AP), or were bound to a membrane vesicle just
before reaching the NE (Fig. 6e).

Terbl and Sunl are two key proteins linking the meiotic
telomeres to the NE. Terbl participates in telomere fortification
by recruiting cohesins to the site*’, whereas Sunl tethers
telomeres to the inner nuclear membrane®®. We found that
neither the localization of Terb1 (Fig. 7a) nor that of its associated
cohesins Smc3 and Rad2lL (Supplementary Fig. 5) were
affected in the RingoA KO pachytene-like spermatocytes. On
the other hand, the absence of RingoA resulted in the lack of
detectable telomere-bound Sunl in spermatocyte spreads
(Fig. 7b). However, when analysed in RingoA KO squashed
spermatocytes, most Sunl was detected as a polarized cap, as in
Cdk2 KO spermatocytes®’, with one or two signals sometimes
observed within the nuclei (Supplementary Fig. 6). The difference
between spermatocyte spreads and squashes indicates that
some telomeric Sunl protein might remain in RingoA KO
spermatocytes but not as tightly bound to the telomeres as
in the WT spermatocytes. In vitro kinase assays using purified
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Figure 4 | RingoA is required for Cdk2 localization and co-localizes with Cdk2 at telomeres in prophase | spermatocytes. (a) WT and KO spread
spermatocytes were immunolabelled for Sycp3 (red) and either RingoA (green) or Cdk2 (green). In WT pachytene spermatocytes, RingoA localizes at
telomeres and the axial elements of sex chromosomes (star). Cdk2 localization at telomeres, the axial elements of sex chromosomes (star), and at late-
recombination nodules is completely lost in KO spermatocytes. RingoA and Cdk2 are not detected in KO pachytene-like spermatocytes. (b) WT pachytene
spread spermatocytes were immunolabelled for Sycp3 (blue), RingoA (red) and Trfl (green). RingoA co-localizes with Trf1 at telomeres. (¢) WT leptotene
spread spermatocytes were immunolabelled for Sycp3 (blue), RingoA (red) and Cdk2 (green). Cdk2 and RingoA co-localize at the telomeric regions.
(d) WT late pachytene and diplotene spermatocyte spreads were immunolabelled for Sycp3 (blue), RingoA (red) and Cdk2 (green). RingoA and Cdk2
co-localize until late pachytene. RingoA is absent upon entry into diplotene, while Cdk2 signal gets more dispersed within the nucleus. (e) Testis lysates
from 18 dpp WT (n=3) or RingoA KO (n=3) mice were analysed by immunoblotting with Cdk2 antibody. The arrowheads indicate Cdk23 (upper) and
Cdk2a (lower). Scale bars, 10 um; inset, 2 um. The uncropped immunoblot is shown in Supplementary Fig. 7.

recombinant proteins showed that incubation with RingoA
substantially boosted the ability of Cdk2 to phosphorylate the
N-terminus of Sunl (Fig. 7c), which is responsible for telomere
binding®®*. Moreover, the phosphorylation of the Sunl
N-terminus by Cdk2-RingoA was strongly reduced by the
mutation of Ser48 to Ala (Fig. 7c). It has been reported that
Cdkl can phosphorylate Sunl on Ser48 in mitosis®® but the
physiological role of this phosphorylation in meiosis is unknown.

6

Disrupted telomere architecture in the absence of RingoA. The
lack of telomere attachment in RingoA KO spermatocytes could
be explained by a lack of Sunl interactions at the inner nuclear
membrane, but it is unlikely to account for the telomere
fusions observed in pachytene-like spermatocytes since Sunl KO
mice do not show this phenotype’. Interestingly, Cdk2 KO
spermatocytes show telomere fusions and changes in distribution
of histone H3 trimethylated on Lys9 (H3K9-3me) (ref. 29),

| 7:11084 | DOI: 10.1038/ncomms11084 | www.nature.com/naturecommunications


http://www.nature.com/naturecommunications

ARTICLE

N
O

(L
W
P & < P

O

29
IB: RingoA

Yo & N
FESE P

IP: \QO

29
32P

S - Rb

CBB

"“"""?"’"’r"" Rb

45

I1B:Cdk2

29

WT-1 KO-1 KO-2

1004 100

80

60

40 36.7

20

24.4

Kinase activity

WT-1 KO-1 KO-2

Figure 5 | RingoA interacts with Cdk2 and regulates Cdk2 kinase activity
in testis. (@) Immunoprecipitates from WT testis lysates using RingoA or
Cdk2 antibodies and control IgGs were analysed by immunoblotting for
RingoA. The arrowhead indicates RingoA and the asterisks IgGs. (b) WT
and KO 18 dpp old testis lysates were immunoprecipitated with Cdk2
antibodies or control 1gGs. The immunoprecipitates were assayed in an

in vitro kinase assay using y—32P—ATP and Rb protein as a substrate (upper
row) and the gel was stained with Coomassie (middle row). An aliquot of
the immunoprecipitates was analysed by immunoblotting with Cdk2
antibodies (bottom row). The phosphorylated Rb protein was quantified
using ImageJ and was referred to the amount of RB protein detected in the
Coomassie staining. The experiments were reproduced two to three times.
The uncropped images are shown in Supplementary Fig. 7.

a histone modification involved in telomere maintenance*! as

well as in homologous pairing during early prophase 1243, We
found H3K9-3me staining highly concentrated at chromocentric
regions of pachytene WT spermatocytes, which was significantly
reduced in RingoA KO spermatocytes from early leptotene
(Fig. 8a). H3K9-3me chromatin is believed to be more compacted
and therefore in a repressed state’*. Furthermore, histone H3
trimethylated on Lys4 (H3K4-3me), which usually indicates
active chromatin®®, was substantially increased in RingoA KO
spermatocytes (Fig. 8b).

Loss of telomere compaction and fusion can be connected to
telomere shortening?® or in the meiosis context to the lack of
proper elongation*!3, We assessed telomere length by
measuring the intensity of telomeric FISH signals and Trfl
immunostaining signal in WT and RingoA KO spermatogonia
and spermatocytes throughout prophase I. We found that the WT
spermatocytes had progressively longer telomeres as prophase
I progressed, compared with the spermatogonia (Fig. 8c,d). This

trend was maintained in RingoA KO spermatocytes, but to a
much lesser degree, and RingoA KO spermatocytes overall had
shorter telomeres than the WT spermatocytes at the same stage
(Fig. 8c,d).

We hypothesized that shorter and more ‘open’ chromatin at
the telomere could render them fragile, so that telomeres would
get torn and damaged during the attachment and pulling of early
leptotene to try to form the ‘bouquet’ leading to the observed
effects. Therefore, we assessed whether the RingoA KO
spermatocytes retain the ability for telomere attachment and
bouquet formation in late leptotene/zygotene using squashed
10 dpp spermatocytes. We were able to detect bouquets in 76% of
WT spermatocytes but none in RingoA KO (Fig. 8e). These
results indicate RingoA KO meiotic telomeres are essentially non-
functional with reduced length, impaired chromatin compaction
and largely unable to attach to the NE, as it has been reported in
Cdk2 KO spermatocytes®’.

Discussion

Our results show that RingoA KO mice have a meiotic
phenotﬁ)e that is strikingly similar to that shown for Cdk2 KO
mice!”1$2%37 In both cases, adult mice have no overt phenotype
but both male and female are sterile. Moreover, RingoA or Cdk2
KO spermatocytes are arrested in a pachytene-like stage and show
non-homologous pairing with partner switching and telomere
attachment failure, DSB repair block and sex-body absence.
Importantly, RingoA co-localizes at telomeres with Cdk2 and the
telomeric localization of Cdk2 is impaired in RingoA KO
spermatocytes. Taken together, our results indicate that RingoA
is a likely key activator of Cdk2 in the prophase I of male and
female meiosis, and that Cdk2-RingoA is critical for telomere
maintenance and tethering to the NE as well as for accurate SC
formation.

The idea that the meiotic Cdk2 function depends on RingoA is
further supported by the observations that no cyclins have been
detected at meiotic telomeres and that none of the cyclin KO mice
reported so far have exactly the same phenotype as the male and
female Cdk2 KO mice!*20222347 Recent work has shown that
the combined deletion of cyclins E1 and E2 results in male
infertility with impaired DSB repair, loss of telomere integrity and
Cdk2 mislocalization but, in contrast to Cdk2 KO mice, females
are fertile?!. This suggests that cyclins E1 and E2 might function
in the same pathway as RingoA during spermatogenesis, perhaps
contributing to the telomeric location of the Cdk2-RingoA
complex or as part of a more tightly regulated checkpoint control.
As female meiosis is less stringent, Cdk2-RingoA activity might
suffice, in the absence of cyclins E1 and E2, for some cells to
complete prophase I.

The complex phenotype observed upon RingoA depletion
suggests that RingoA either can independently regulate several
processes or maybe just controls a key event whose deregulation
triggers the rest. By comparing the phenotypes of mouse mutants
that are affected in prophase I of meiosis, we noted that the
RingoA KO phenotype is very similar to that of the Sunl KO
mice. Absence of Sunl produces a meiotic phenotype with
aberrant telomere attachment to the NE and SC formation,
including non-homologous pairing and accumulation of unre-
paired DSBs in pachytene spermatocytes®. It has been recently
shown that some telomeres in Sunl deficient spermatocytes,
which are located close to the NE, are still connected via Sun2 and
can move to form the bouquet, strongly suggesting that full
telomere attachment is required to support progression through
prophase 1“8, We have found that RingoA deficiency abrogates
the telomeric localization of Sunl, but not that of Terbl, which
connects Sunl to Trfl (ref. 34). Thus, RingoA-dependent Sunl
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Figure 6 | RingoA loss negatively affects meiotic telomere function. (a) WT and KO spread spermatocytes were immunolabelled for Sycp3 (red) and Trfl
(green). In pachytene-like KO spermatocytes, Trfl can be seen along the SC threads, instead of at the ends, indicating chromosome fusions (arrowheads).
(b) Quantification of the number of free and fused telomeric Trf1 signals in pachytene WT (n=27) and pachytene-like KO spermatocytes (n=35 cells).
Out of 1,100 telomeres scored, two were fused in WT and 763 in KO spermatocytes. Average with s.d. is represented. (¢) A scheme of a 3D preserved
(squashed) pachytene spermatocyte nucleus. (d) Squashed WT pachytene and KO pachytene-like spermatocytes were immunolabelled for Sycp3 (red)
and Trf1 (green). Telomere Trf1 signals were found at the rim of the cell nucleus at the equator of the WT spermatocyte (tethered to the NE) (arrowheads).
In KO spermatocytes, many telomeres (arrowheads) were seen inside the nucleus at the cell equatorial region. Quantification of peripheral and
internal telomeres at the equatorial region of squashed WT (n =20 cells) and KO (n=18 cells) spermatocytes. Average with s.d. is represented. Scale bar,
5 um. (e) Electron micrographs showing telomeres (white arrowheads) and inner nuclear membrane (red arrows) in WT pachytene and KO pachytene-like
nuclei, with schematic illustrations of the structures. AP, attachment plate; CH, chromatin; INM, inner nuclear membrane; MV, membrane vesicle;

SC, synaptonemal complex. Scale bar, 250 nm.

recruitment to the telomere could be a crucial function whose Cdk2-RingoA to phosphorylate the N-terminus of Sunl, suggests
disruption might entail all the downstream phenotypes that could a phosphorylation-dependent mechanism. It should be noted
be observed in RingoA KO mice. How RingoA controls the that although loss of Sunl might explain several features of
localization of Sunl is currently unknown. The ability of the RingoA-deficient spermatocytes, it is unlikely to explain the
endogenous Cdk2 to bind to Sunl (ref. 49) and of recombinant telomere fusion phenotype.
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Figure 7 | RingoA regulates Sun1 telomeric localization. (a) WT and KO
spread spermatocytes were immunolabelled for Sycp3 (red) and Terbl
(green). Terb1 signals at telomeres were unperturbed in RingoA KO
spermatocytes. (b) WTand KO spread spermatocytes were immunolabeled
for Sycp3 (red) and Sun1 (green). Telomeric localization of Sunl was
abolished in KO spermatocytes. Scale bar, 10 um. (¢) Purified MBP-fused
proteins including amino acids 1-217 (either WT or with the mutation S48A)
or amino acids 456-916 of Sun1 were incubated with Cdk2 and RingoA in
the presence of [«/-32P]ATP. Proteins were analysed by SDS-PAGE, stained
with Coomassie Brilliant Blue (CBB) and subjected to autoradiography
(32P). The experiments were reproduced three times. The uncropped
autoradiography is shown in Supplementary Fig. 7.

The reduction in heterochromatin markers and FISH signals
on telomeres suggests reduced chromatin compaction and
diminished elongation of telomeres in RingoA-depleted sperma-
tocytes. Telomere elongation can be achieved by two mechan-
isms, de movo synthesis by telomerase and elongation by
recombination (ALT). The ALT mechanism has been studied in
telomerase negative tumour cells and was shown to involve DSB
repair proteins®® and Cdk2 (ref. 41). It is interesting that KO mice
for the topoisomerase-like enzyme Spoll or the repair proteins
Msh5 and Dmcl (ref. 43) all show meiotic chromosome fusions,
although detailed studies are missing. A study in mouse
ES cells has proposed that Spoll and Dmcl might work in
telomere maintenance outside of the meiosis context’! and the
‘meiotic’ pathway could have adapted to maintain telomeres in
tumours®>. Homologous recombination in general requires Cdk1
and Cdk2 activity>>>*, In somatic cells, this function is carried
out by cyclin A2 but mitotic cyclins and Cdkl should be
maintained at low levels during prophase I to avoid premature
entry into pro-metaphase I. Thus, RingoA could substitute for
cyclin A in prophase I and perhaps do the same function in
somatic cells whenever cyclin A expression is low, for example
when DNA damaged cells are arrested in G2-phase. It would be
interesting to test whether RingoA has a function in telomere
maintenance in telomerase negative tumours or in homologous
recombination.

In summary, our work identifies the atypical CDK activator
RingoA as a physiological regulator of Cdk2 in prophase I of
meiosis and supports a role for Cdk2-RingoA in the establish-
ment of functional meiotic telomeres, NE tethering and
homologous recombination. Although Cdk2 can be potentially
activated by many cyclins and several of them are expressed in
meiotic prophase I, RingoA seems to be the only Cdk2 activator
that is expressed at the right time (leptotene to pachytene) in the
right place (telomeres and sex-body), and that shows the same
loss-of-function phenotype as Cdk2.

Methods

Generation and analysis of RingoA KO mice. To generate mice deficient in
RingoA, we constructed a targeting vector with two loxP sites flanking the exon 3
of the Spyda gene encoding RingoA (Supplementary Fig. 1). Splicing from exons 2
to 4 is predicted to cause a frameshift that results in a premature STOP codon. The
targeting vector was generated by Gene Bridges GmbH (Heidelberg, Germany)
using a C57BL/6 bacterial artificial chromosome and was verified by sequencing. ES
cells (129/SV]) were electroporated with the linearized targeting vector and correct
chromosomal insertion was verified by Southern blot analysis of Ncol-digested
genomic DNA using external probes. Injection of a positive clone into blastocysts
generated chimeras, which transmitted the recombinant locus. Spdya'®’* mice
were crossed with Sox2-Cre mice to remove the loxP-flanked exon 3 and generate
Spdyat’/~ mice, which were inter-crossed to produce RingoA KO animals. Mice
were maintained in C57BL/6 background. Genotyping was performed by PCR
using tail genomic DNA and primers: p1 (5-TGGGCCATTAGCATTTTGTG
AGCT-3') and p2 (5-TGCTTTGGGGCCAGTGAGATGA-3') to detect the WT
allele (298 bp); p1 and p3 (5'-GGCTGCTAAAGCGCATGCTCCA-3') to detect
the floxed allele (197 bp); p4 (5-GCCGCATAACTTCGTATAAT-3') and p5
(5'-CCACCACTCTGGGATAGATA-3') to detect the KO allele (296 bp). The
Cre transgene was detected using the primers CreF (5'-CCCACCGTCAGTAC
GTGAGAT-3') and CreR (5'-GTGGCAGATGGCGCGGCAACAC-3') (450 bp).
Fertility was assessed by keeping KO mice with WT C57BL/6 mice of the opposite
sex over 3—6 months. The C57BL/6 partners were subsequently mated with WT
animals and gave birth to offspring. Mice were housed in a temperature-controlled
facility using individually ventilated cages, standard diet and a 12 h light/dark cycle,
according to national and European Union regulations. Mouse protocols were
approved by the Ethics Committee for Animal Experimentation of the Barcelona
Science Park (CEEA-PCB). We made every effort to minimize and refine our
experiments to avoid animal suffering. Blinded experiments were not possible since
the phenotype was very obvious between WT and RingoA KO samples for all of the
experimental procedures used.

Histology and TUNEL staining. For histological examination, whole mouse testes
were fixed in Bouin’s solution (Electron Microscopy Sciences) and ovaries in 10%
paraformaldehyde (PFA, neutral buffered, Sigma), at 4 °C overnight, washed in
PBS, and then were paraffin embedded and stained with hematoxylin and eosin
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(H&E). For apoptosis detection, testis were fixed in 10% PFA (neutral buffered,
Sigma) and sections (9 pm) were stained using the TUNEL in situ Cell Death
Detection Kit (Roche, 11684795910) following the provided protocol.

Meiotic spreads and squashes. Testes from 16 to 22 dpp WT and RingoA KO
littermate mice were used for spermatocyte spreads and seminiferous tubules
squashes, unless indicated otherwise. Tissue was macerated using a razor blade and
the pieces were collected in 1 ml of Dulbecco’s Modified Media (DMEM) supple-
mented with protease inhibitor cocktail (1 tablet per 50 ml of DMEM, Roche,
11873580001). After thorough resuspension using a pipette, 5ml of DMEM were
added and the mixture was left on ice until the big pieces settle at the bottom of the
tube. The supernatant (1 ml) was put into an Eppendorf tube and spun down for
5min at 5,000¢ at room temperature. The supernatant was removed and the pellet
was resuspended in 40 pl of 0.1 M sucrose solution supplemented with protease
inhibitors. We dropped 20 pl of this solution onto slides previously layered with
65 pl of 1% PFA, 0.1% Triton X-100 with protease inhibitors. The slides were
allowed to dry and then were rinsed with Photoflo solution (1:250) in a Coplin jar.
Stainings were usually performed right away or the slides were stored at — 80°C
until further use.

Seminiferous tubules squashes were essentially done as in ref. 55 and
immediately immunolabelled. In short, freshly extracted 10 dpp testes were
minced into small pieces with tweezers in 2% PFA, 0.05% Triton X-100 and
fixed for 10 min. A small piece was then put on each slide previously rinsed with
ethanol:chloroform (1:1), covered with a coverslip and gently pressed to distribute
the material. The slides were immersed into liquid nitrogen. Then the coverslip was
removed, washed in PBS and used immediately.

Immunostaining and telomere FISH. The spermatocyte spreads and seminiferous
tubules squashes were blocked for 30 min with 1% BSA and 0.05% Tween in PBS
(PBS-T) and then were incubated overnight at 4 °C with the following primary
antibodies: Sycp3 (Abcam, ab15093 and ab97672, 1:800; and Santa Cruz, sc-20845,
1:20); Sycpl (Abcam, ab15087, 1:800) Dmcl (Santa Cruz, sc-22768, 1:50); Trfl
(Alpha Diagnostics, TRF12-S, 1:50); Sunl (Abcam, ab103021, 1:50); H1t (gift from
Dr Mary Ann Handel, The Jackson Laboratory, Bar Harbor, Maine, USA, 1:200)
H3K9-3me (Milipore, 05-1250, 1:2000); YH2AX (Milipore, 05-636, 1:300); Mlh1
(Becton Dickinson, 551091, 1:100); Rad51 (Santa Cruz, sc-8349, 1:100) Terb-1
(affinity-purified rabbit antiserum, 1:100)3* and Cdk2 (Abcam, ab7954, 1:50).
RingoA was detected using the R55A mouse monoclonal antibody'2, which
recognizes the sequence NDHQSNK corresponding to amino acids 283-289
(hybridoma supernatant, 1:1). The slides were then washed in blocking buffer and
incubated for 1h at 37 °C with appropriate Alexa Fluor-labelled secondary
antibodies (Invitrogen, A21442, A31571, A21441, A21468, A21203, A11017,
1:300). Finally, the slides were washed and mounted in ProLong Gold antifade
reagent (Molecular Probes).

For telomere FISH staining, Telomere PNA FISH kit/cy3 (Dako, K5326) was
used on 16 dpp testis spreads following the protocol described by the manufacturer.

Microscopy. Confocal images were taken on the Leica TCS SPE microscope
(Leica, Mannheim, Germany) using an HCX PL APO lambda blue x 63, NA 1.3,
oil UV objective, 405-, 488-, 543- and 635-nm laser excitation at a pixel resolution
of 71 nm. Images were processed using Image] and Adobe Photoshop CS6.

Transmission electron microscopy. Testes from 2-month-old mice were pre-
pared as described in ref. 56. In short, the testes were collected and disintegrated
with a scalpel to 3 X 3 mm pieces and fixed for 1h at 4°C in 2.5% glutaraldehyde
solution in cacodylate buffer (50 mM cacodylate, 50 mM KCl, 2.5 mM MgCI2, pH
7.2). After five washes in cacodylate buffer, they were further fixed for 2h at 4°C in
2% osmium tetraoxide, washed three times in water, and incubated in 0.5% uranyl
acetate overnight. Finally, the samples were dehydrated in ethanol and embedded
in propylene oxide/Epon (1:1) at room temperature. Ultrathin sections were
mounted on the copper grids, incubated with 2% uranyl-acetate at room
temperature for 20 min, followed by counterstain in Reynold’s lead citrate for

10 min. The images were acquired on TEM Jeol 1010 operated at 80kV.

Statistical analysis. Graphics with error bars represent average * s.d. The
statistical significance was determined by unpaired two-way Wilcoxon rank-sum
test. Scatterplots in Figs le, 3d and 6a,b show individual values with the average
and s.d. indicated (except in Fig. le). Asterisks denote statistical significance:
**P value <0.01, ***P value <0.001 and ****P value <0.0001.

Immunoprecipitation and immunoblotting. Mouse testes were lysed in cold IP
buffer containing 20 mM Tris-HCI (pH 7.5), 150 mM NaCl, 1% NP-40, 5%
glycerol, 5mM 6-(Dimethylamino) purine, 10 mM EDTA, 5mM NaF, 1 mM
Na;VO4, 1 mM DTT, 1 uM microcystin, 25 pM MG132, 400 uM PMSF,

10 pugml ~ ! each of aprotinin, leupeptin and pepstatin. Lysates were centrifuged at
maximal speed (Eppendorf) for 10 min at 4 °C and the supernatants were used for
immunoprecipitation or immunoblotting.

Immunoprecipitations were performed using bead-coupled commercial
antibodies against Cdk2 (Santa Cruz, sc-163 AC) and either control rabbit IgGs or
RingoA rabbit antiserum (#1870, raised against the peptide
AVRNYNRDEVHLPRGP corresponding to amino acid 205-220) that were
coupled to protein G beads (Pierce, 20398) with DMP (Sigma, D8388).
Bead-coupled antibodies were incubated for 1h at 4 °C with lysates of testis
(3.3 mg) and then were washed twice with IP buffer and twice with IP buffer
without NP-40 and glycerol.

For immunoblotting, samples were separated by SDS-polyacrylamide gel
electrophoresis (SDS-PAGE), transferred to nitrocellulose and incubated for 1h at
room temperature with antibodies against RingoA (R55A hybridoma supernatant,
1:10) or Cdk2 (Santa Cruz, sc-163-G, 1:1,000). Membranes were washed three
times with PBS-T for 10 min. Immunoblots were developed using antibodies
labelled with Alexa Fluor 680 (Molecular Probes) or Li-cor IRDye 800 (Rockland)
(1:5,000) and the Odyssey Infrared Imaging System (Li-Cor). Original scans of the
immunoblots indicating the cropped area are provided in Supplementary Fig. 7.

Recombinant protein production. Human Sunl amino acids 1-217, either WT or
the $48A mutant, and amino acids 456-916 were fused to MBP*’. Human Cdk2
(ref. 6) and human RingoA2 (ref. 10) were fused to GST. Recombinant proteins
were purified by standard methods®. In brief, a single colony transformed with the
appropriate construct was grown in 5 ml LB medium with 100 pg ml ~ ! ampicillin
overnight at 37 °C. The culture was then diluted 1:100 into 500 ml fresh medium
and incubated for 4 h at 37 °C followed by the addition of 1 mM IPTG for 3h at
37°C. Cells were collected in 25 ml of ice-cold PBS containing 0.2% Triton X-100,
1 mgml ~! Lysozyme, 100 uM PMSEF, 10 g ml ~ ! each of aprotinin, leupeptin and
pepstatin and were sonicated 6 x 15s. Lysates were centrifuged at maximal speed
for 10 min and supernatants were transferred to another tube containing
glutathione-agarose beads (GE Healthcare, 17-5132) or dextrin sepharose beads
(GE Healthcare, 28-9355-97), and were rotated for 1 h at 4 °C. Beads were collected
by centrifugation and washed four times in 10 ml of ice-cold PBS-T. GST proteins
were eluted in 20 mM glutathione and 50 mM Tris-HCI pH 8.0, and MBP proteins
in 10 mM Maltose and 10 mM Tris-HCI at pH 7.5.

Kinase assays. For in vitro kinase assays, purified MBP-Sunl proteins (1 ug) were
incubated in a final volume of 30 pl of kinase buffer (50 mM Tris-HCl at pH 7.5,
10 mM MgCl,, 1 mM DTT, 3 pM cold ATP, 1 mM NaF, 1 mM Na;VO,, 200 uM
PMSF, 10 ugml ~ ! each of aprotinin, leupeptin and pepstatin) containing 5 pCi of
[y-32P]ATP with GST-Cdk2 (0.5 ug) and GST-RingoA (0.5 pg) for 90 min at 37 °C.
The reactions were stopped by adding sample buffer and boiling, and were analysed
by SDS-PAGE and autoradiography.

To assay the kinase activity of the endogenous Cdk2, testes from 20 dpp WT or
RingoA KO mice were homogenized with the Precellys 24 tissue homogenizer
(Bertin technologies) in IP buffer (50 mM Tris-HCI at pH 7.5, 50 mM NaCl and
0.5% Nonidet P-40) supplemented with protease inhibitor cocktail (Millipore
539134). Homogenized lysates were clarified by centrifugation and the supernatant
(1 mg) was incubated with 15 pig of a rabbit anti-Cdk2 antibody-conjugated agarose
beads (Santa Cruz Biotechnology, sc-163 AC) for 2h at 4 °C. Immunoprecipitates
were washed three times with 1 ml of IP buffer and three times with kinase buffer
(50 mM Hepes pH 7.5, 50 mM urea, 10 mM MgCl2, 5mM MnCI2 and 1 mM
DTT). The beads were suspended in 30 pl of kinase buffer containing 1 pg of Rb
protein (amino acids 773-928, Millipore, 12-439) and 10 uCi of [y-3*P]ATP
(Perkin Elmer). After incubation for 30 min at 30 °C with mixing, reactions were
stopped with sample buffer and analysed by SDS-PAGE and autoradiography.

Real-time quantitative PCR. Dissected testes were collected and snap frozen in
liquid nitrogen. For total RNA preparation, the testes were disrupted in lysis buffer
with the mechanical tissue disruptor (Precellys 24, Bertin Technologies) using the
Ambion PureLink RNA mini kit. The reverse transcriptase reaction was performed
with 4 ug of RNA. Amplification of the cDNA was done on a thermocycler (C1000
Thermal Cycler, Bio-Rad). Spdya expression was detected using three sets of pri-
mers to amplify a fragment corresponding to amino acids 85-195 (including the
deleted exon 3): pl (5-TTCTTGTGGATGGACTGCTG-3') and p2 (5'-TTGCC
AGATGTAATGGGTTG-3'), the 5’UTR: p3 (5'-GCAACCGCCTGAGGTA
GAT-3') and p4 (5-TGATTATGCCGCATTTTAGC-3'), and a C-terminal
fragment downstream of exon 3 (corresponding to amino acids 147-187): p5
(5'-GGGCTTTAGGGAAAAACTGG-3') and p6 (5'-AATGGCCATGACCTCTT-
CAC-3'). As control, we used primers to amplify the housekeeping genes Gapdh:
p7 (5'-CTTCACCACCATGGAGGAGGC-3') and p8 (5'- GGCATGGACTGT
GGTCATGAG-3'), and Hprt: p9 (5'- TCAGTCAACGGGGGACATAAA -3') and
p10 (5'- GGGGCTGTACTGCTTAACCAG-3'). Data were plotted using Bio-Rad
CFX Manager. The amplification products were analysed by 2 — AACT method.
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