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Abstract

The maize (Zea mays L.) husk consists of multiple leaf layers and plays an important role in grain growth and development. Despite significant
achievements in physiological and morphological research, few studies have focused on the detection of genetic loci underlying husk-related
traits due to the lack of efficient tools. In this study, we constructed an ultra-high-density linkage map using genotyping by sequencing based
on a recombinant inbred line population to estimate the genetic variance and heritability of 3 husk traits, i.e. husk length, husk width, and husk
layer number in 3 field environments and the combined environment. The 3 husk traits showed broad phenotypic variation and high heritabil-
ity; the broad-sense heritability (H2) was 0.92, 0.84, and 0.86. Twenty quantitative trait loci were consistently detected more than 1 environ-
ment, including 9 for husk length, 6 for husk width, and 5 for husk layer number. These loci were considered as stable quantitative trait loci.
Based on the quantitative trait loci mapping in the recombinant inbred line population, qHL6 and qHN4 were detected across all environ-
ments and inferred to be reliable and major-effect quantitative trait loci for husk length and husk layer number, respectively. In addition, sev-
eral predicted candidate genes were identified in the region of qHL6 and qHN4, of which 17 candidate genes potentially play a role in biolog-
ical processes related to development process and energy metabolism. These results will be as a useful resource for performing functional
studies aimed at understanding the molecular pathways involved in husk growth and development.
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Introduction
Maize (Zea mays L.) is one of the most important cereal and forage

crops grown worldwide (Cui et al. 2018). Maize husk, a leaf-like

tissue covering the outside of a maize ear, consists of multiple

leafy layers, and it has important functions. The husk can pro-

vide a good environment for the development of kernels and pro-

tect them from birds, pests, and pathogen infections (Wang et al.

2012; Cao et al. 2014; Cui et al. 2020). The husk is also a temporary

storage for nutrients from other organs; it participates in photo-

synthesis to provide energy for kernel development, and it di-

rectly or indirectly provides plentiful sources of anthocyanins

and fiber for industrial production (Li et al. 2008). Furthermore,

the husk has a higher conversion efficiency for photosynthetic

products than other leaves under the same area, and it signifi-

cantly contributes to the development of the ears (Cantrell and

Geadelmann 1981; Fujita et al. 1995). Despite the importance of

maize husk for crop yield and industrial production, there is lim-

ited information on its genetic and molecular mechanisms that

govern husk architecture.

The husk architecture has several main traits such as husk
layer number (HN), husk length (HL), and husk width (HW) that
influence the level of husk function. A fairly close relationship
exists between husk phenotypes and corresponding features of
the ear (Cui et al. 2016). The moisture content of the maize kernel
at the harvest stage has shown significant positive correlations
with HN and HL (Zhou, Hao, et al. 2016). When compared with
leaves that initiate from the shoot apical meristem, these husk
traits are affected by initiation and elongation of the lateral meri-
stem, which involves cell division, differentiation, and metabo-
lism (Avramova et al. 2015). Despite significant achievements in
physiological and morphological research, the genetic and molec-
ular mechanisms underlying husk-related traits are still largely
unknown.

To date, several quantitative trait loci (QTLs) and genes have
been found to regulate the development of husk architectural
traits. For example, Zhou, Hao, et al. (2016) identified 8 and 9 sta-
ble single-nucleotide polymorphisms (SNPs) for husk number
and weight, respectively, in a genome-wide association study
(GWAS). In addition, Cui et al. (2016) identified 9 SNPs
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significantly associated with 4 husk traits in a GWAS and then
performed a combination of linkage analysis and GWAS to pre-
dict 5 candidate genes for husk traits (Cui et al. 2018).
Furthermore, Cui et al. (2020) used a recently developed GWAS
method (BLINK) to identify markers associated with husk traits
and revealed 6 genetic loci associated with HN and husk thick-
ness above the Bonferroni multiple-test threshold. Zhou et al.
(2020) fine-mapped a major-effect QTL (qHN7) for husk number
and predicted 4 genes associated with plant growth and develop-
ment. However, given that the lack of fundamental knowledge on
the genetic basis underlying husk architecture, more QTL and
candidate genes involved in the regulation of husk development
need to be identified.

Linkage maps have been constructed for maize husk traits us-
ing a range of molecular markers including amplified fragment
length polymorphisms, simple sequence repeats (Zhou, Hao, et al.
2016; Cui et al. 2016), and genome resequencing (Cui et al. 2018,
2020). Genotyping by sequencing (GBS) has recently been the
method of choice for building linkage maps in maize to allow
more complex traits to be mapped and selected for using marker-
assisted selection in the future (Romay et al. 2013; Wang, Yuan,
et al. 2020). Thus, to understand the genetic basis and regulatory
mechanisms responsible for the husk traits, we constructed an
ultra-high-density linkage map by GBS method from a recombi-
nant inbred line (RIL) population whose parents exhibit signifi-
cant differences in husk traits to estimate the genetic variance
and heritability of 3 husk traits, i.e. HL, HW, and HN, in both 3
field environments and combined environment. We identified
stably expressed QTLs that significantly affect the 3 husk traits.
Furthermore, we predicated candidate genes involved in maize
husk growth and development. The findings of this study will
help us to understand the genetic basis of and molecular mecha-
nisms that govern husk development.

Materials and methods
Plant materials and field experiments
An RIL population composed of 310 lines, developed from a cross
between maize inbred lines PD80 and PHJ65, was used for the
QTL mapping population. The parents have been publicly re-
leased by the national technical system of the maize industry.
PD80 with slow field grain drying rate exhibits more HN, longer
HL, and wider HW than related traits of PHJ65 with fast grain de-
hydration rate (Zhang et al. 2020). In 2020, the RIL population and
parents were planted at 3 field environments in China: Zhoukou
(E1, 108�E, 18�N), Xinxiang (E2, 113�E, 35�N), and Anyang (E3,
114�E, 36�N). Each line was grown in double rows (3.0 m in length
with 0.6 m between rows), at a planting density of 65,000 plants
ha�1, following a randomized complete block design with 2
replications per field environment. The plants, along with the
guard rows, were under standard irrigation and fertilization
management throughout the developmental period. Agronomic
management of the field experiments was identical in each
field environment. All plants were grown under open-pollination
conditions.

Phenotyping and statistical analyses
HN was counted from the outermost to innermost layers of the
husk. HL was defined as the longest layer of the husk from the tip
to the base. HW was determined by measuring the middle section
of the third layer of the husk (Cui et al. 2016), which is more repre-
sentative and stable for studying the husk-related trait, and it is
not easy to be affected by the external environment, such as

pests and diseases. The 3 husk traits of each line were measured
from 6 well-pollinated plants grown in the same block at the ma-
turity stage. The mean of these 6 individual trait values was cal-
culated as the trait value for each line in per block. Then, the
mean values from 2 block replications was taken as the pheno-
typic value of each field environment.

The statistical analysis was performed using R 3.1.1 (https://
www.R-project.org/). Analysis of variance of HN, HL, and
HW was performed using the lmer function of the lme4
package of R (Bates et al. 2014) based on the following model:
yijk ¼ lþ envi þ repðenvÞij þ genotypek þ env� genotypeik þ eijk,
where l is the grand mean of husk traits, envi is the environmen-
tal effect of the ith environment, repðenvÞij is the effect of the jth
replication within the ith environment, genotypek is the geno-
typic effect of the kth line, env� genotypeik is the effect of inter-
action between the environmental and genetic effects, and eijk is
the residual error containing all the experimental factors above.
All terms were fitted as random effects with the exception of l.
All of the variance components in the mixed model were to cal-
culate the broad-sense heritability H2 for the 3 husk traits:
H2ð%Þ ¼ r2

g=ðr2
g þ r2

ge=nþ r2
e=nrÞ � 100%, where r2

g, r2
ge, and r2

e rep-
resent the genotypic variance, the variance of the interaction of
genotype with environment, and the residual error, respectively,
whereas n is the number of environments, and r is the number of
replications (Hallauer et al. 2010). The descriptive statistics for
the RIL population and parents were measured using SPSS 22.0
(SPSS, Chicago, IL, USA). The R software was used to analyze the
correlation between various traits. To minimize the effects of the
environment, the best linear unbiased predictor (BLUP) for the 3
husk traits across the 3 field environments was estimated using
the same package of R. For each trait, the phenotype data from 6
block in 3 field environments was used to calculate the BLUP as
combined environment. All phenotype data from each field envi-
ronment and BLUP were used for subsequent analyses.

Library preparation and sequencing
The genomic DNA of the 2 parents and RIL plants was extracted
from fresh leaf tissue by using the cetyltrimethyl ammonium
bromide method with minor modifications (Liu et al. 2003). GBS
Library construction and sample indexing were performed as de-
scribed previously (Elshire et al. 2011) and, then, developed using
the ApeKI restriction enzyme and set of 96 barcodes. For each
sampling, a single individual was used for genome sequencing on
the Illumina HiSeq PE150 platform. Reads with �10% unidentified
nucleotides and >50% bases with Phred quality <5 were filtered
before alignment. Paired-end reads were mapped to the maize
DNA reference genome with the Burrows-Wheeler Aligner (Li and
Durbin 2009). Only the reads mapped uniquely to the reference
genome sequence were used to call SNPs.

Genotyping and construction of genetic linkage
maps
SNP identification was performed using TASSEL 3.0 GBS
Discovery Pipeline with B73 as the reference genome (http://
www.maizegenetics.net/tassel/docs/TasselPipelineGBS.pdf). Bins
serving as genetic markers were used for the construction of the
genetic linkage map with JoinMap version 4.0, recombination fre-
quency <0.4, and minimum logarithm of odds (LOD) score of 6
(Van Ooijen 2006), followed by a chi-square test to exclude the
markers with segregation distortion. The Kosambi mapping func-
tion was used to calculate the genetic distance between markers
(Kosambi 1943). QTL mapping in a single environment was per-
formed with windows QTL cartographer 2.5 and the composite
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interval mapping (CIM) method (Basten et al. 1997). The entire ge-
nome was scanned every 0.5 cM, with a window size of 10 cM.
Model 6 of the Zampqtl module was selected to detect QTLs and
their effects. Forward–backward stepwise regression with 5 con-
trolling markers was used to control the background from flank-
ing markers. The confidence interval of QTL positions was
estimated with the 1.5-LOD support interval method. To detect
QTL � environmental interaction effects, joint mapping analysis
was performed using ICIM-ADD of the MET functional module in
QTL IciMapping v4.1 software (Meng et al. 2015). The threshold
LOD value was determined empirically at a significance level of
P < 0.05 by 1,000 permutations. Any QTL with an explained
phenotypic variation (R2) of >10% was defined as a major QTL.

Candidate gene analysis
According to the physical position of the SNP markers on both
sides of each QTL position, a QTL physical interval was set up,
and the genes in these intervals were predicted using the
Gramene database (http://www.gramene.org/). The sequences
in these intervals were then aligned in the MaizeGDB database
to find the matching EST sequence and annotated the genes.
Next, the biological function of these predicted gene was predi-
cated in agriGO website (http://systemsbiology.cau.edu.cn/
agriGOv2/).

Results
Phenotypic analysis
In this study, t-tests were performed to determine whether there
were any significant differences in these husk traits (HL, HW, and
HN) between the parents of RIL population. Significant differen-
ces were detected between the parents in 3 field environments
(Table 1). Based on the BLUP values, HL was �15% shorter, HW
was �29% narrower, and HN was �38% lower in P2 (HL was
17.70 cm, HW was 5.75 cm, and HN was 6.46 cm) compared with
those of P1 (HL was 20.71 cm, HW was 8.02 cm, and HN was
10.28). In addition, broad phenotypic variation was observed in
the RIL population, ranging from 6.27 to 15.80 cm in HN, 4.99 to
10.85 cm in HW, and 14.39 to 24.81 cm in HL. Analyses of the
BLUP values showed that the mean values of the husk traits in

the RIL population were close to the mid-parent values. The var-
iances of genotype, environment, and genotype � environment
(G�E) interactions were significant (P < 0.01) for HL, HW, and
HN, repetition within the environment (env/rep) was no-
significant (Table 2). Analysis of variance revealed that there was
statistically significant variance effect of genotype and environ-
ment on these husk traits in 3 field environments. Broad-sense
heritability (H2) estimates were calculated, and the results
revealed moderate heritability for all 3 husk traits, HL (H2 ¼ 0.92),
HW (H2 ¼ 0.84), and HN (H2 ¼ 0.86), indicating that it is largely de-
termined by genotype (Table 2). Furthermore, HL, HW, and HN
approximately fitted normal distributions with little skewness
and kurtosis, except for HN in Yuanyang (Supplementary Fig. 1).
These results indicate that most of the phenotypic variations in
husk phenotypes are controlled by genetic factors and are suit-
able for further QTL mapping.

HL was positively correlated with HW (r¼ 0.271, P � 0.01),
whereas HW was negatively correlated with HN (r¼�0.128,
P � 0.01); the BLUP values of HL and HN were not correlated
(Fig. 1). Similar results were observed in each of single field envi-
ronment (Supplementary Fig. 1), suggesting that the growth and
development of the husk was coordinated with respect to length
and width and the number of husk layers had a spatial impact on
husk extension.

The construction of high-density linkage map
To construct a high-resolution genetic linkage map, 310 RIL indi-
viduals and the parental lines was performed using GBS method.
In total, 71.336 Gb and 71.662 Gb clean reads were generated for
the 2 parents, respectively. A total of 243.3 Gb clean reads were
generated for the 310 RIL individuals (Supplementary Table 1). A
total of 3,548,904 homozygous SNPs were detected between the 2
parental lines. The SNPs were filtered on the basis of the genotyp-
ing criteria, and 8,384 SNPs were retained to generate bin markers
among the RIL population. A high-density genetic map was con-
structed by mapping these 8,384 SNPs into the 10 maize chromo-
somes (Fig. 2). The total genetic distance of the bin map was
2,718.02 cM, with an average distance of 0.32 cM (Table 3). For
chromosome 2, there were 1,136 bin markers covering a genetic
length of 428.80 cM, which was the longest genetic length covered

Table 1. Summary of the trait data for the RIL mapping population compared to parental performance in 3 field environments and
combined environment.

Traita Environmentb Parents RILs

P1 6 SD P2 6 SD P-valuec Mean 6 SD Range Skewness Kurtosis

HL E1 (Zhoukou) 20.63 6 0.41 17.66 6 0.29 0.004 18.89 6 0.12 13.30–24.40 0.04 �0.13
E2 (Yuanyang) 19.97 6 0.33 17.08 6 0.13 0.010 19.61 6 0.12 14.00–25.70 0.07 �0.07
E2 (Anyang) 21.52 6 0.29 18.36 6 0.68 0.008 19.74 6 0.14 13.94–25.72 0.04 �0.07
Combined (BLUP) 20.71 6 0.34 17.70 6 0.37 19.43 6 0.11 14.39–24.81 0.03 �0.09

HW E1 (Zhoukou) 8.26 6 0.21 5.56 6 0.24 0.000 7.43 6 0.07 4.60–11.14 0.31 0.35
E2 (Yuanyang) 7.59 6 0.28 5.92 6 0.41 0.000 7.14 6 0.06 4.50–10.84 0.22 �0.17
E3 (Anyang) 8.22 6 0.37 5.76 6 0.30 0.000 8.26 6 0.06 5.86–11.28 0.29 �0.16
Combined (BLUP) 8.02 6 0.29 5.75 6 0.32 7.61 6 0.32 4.99–10.85 0.32 0.06

HN E1 (Zhoukou) 11.80 6 0.40 6.36 6 0.25 0.000 9.40 6 0.08 6.40–15.00 0.5 0.24
E2 (Yuanyang) 11.93 6 0.38 6.60 6 0.24 0.000 8.99 6 0.09 6.00–15.80 0.87 �0.89
E3 (Anyang) 10.10 6 0.46 6.42 6 0.32 0.002 9.42 6 0.09 6.00–16.60 0.67 0.75
Combined (BLUP) 10.28 6 0.41 6.46 6 0.27 9.27 6 0.08 6.27–15.80 0.71 0.95

SD, standard deviation.
a Trait is the name of the component of husk: HL, HW, and HN.
b Environment: E1 is Zhoukou; E2 is Yuanyang; E3 is Anyang; and combined is the best linear unbiased predictions values (BLUP) for each trait of each line

across 3 field environments.
c P-value based on a t-test evaluating 2 parental lines.
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among the 10 maize chromosomes. In contract, for chromosome
8 there were 578 bin markers that covered 160.21 cM, the shortest
genetic length covered in this map. There were 10 gaps that
ranged from 5 to 26 cM in length and the largest gap of 25.89 cM
was on chromosome 4.

To assess the quality and accuracy of this genetic map, the
locations of bin markers on the genetic map were compared
with the maize B73 RefGen_V4 reference genome (Fig. 3). A
high degree of collinearity was observed between the genetic
map and the corresponding chromosome. However, there were
still few regions displayed inconsistence on several chromo-
somes. The order of bin markers on the distal ends of chromo-
somes 2, 4, 5, and 7 was inconsistent with the genetic map
(Table 3 and Fig. 3).

QTL mapping of HL, HW, and HN in each
environment
To explore the genetic basis of husk, we performed QTL mapping
for HL, HW and HN in 3 field environments and combined envi-
ronment. QTLs for the 3 husk traits were detected using the CIM
method in windows QTL cartographer 2.5. A total of 26 QTLs
were identified: 11 QTLs were identified for HL on chromosomes
1, 2, 5, 6, 7, 9, and 10; 8 QTLs for HW on chromosomes 1, 2, 5, and
9; and 7 QTLs for HN on chromosomes 1, 2, 3, 4, 6, and 9 (Table 4,
Supplementary Table 2, and Supplementary Figs. 2–4). The confi-
dence intervals for these 26 QTLs spanned physical distances
from 0.4 to 16.14 Mb, with an average of 5.42 Mb when compared
with the B73 RefGen_v4 genome. The phenotypic variation
explained by each QTL ranged from 3.19% to 13.95% of the varia-
tion in a trait (Table 4 and Supplementary Table 2).

Twenty QTLs were consistently detected many times. In which, 3
QTLs were identified in 2 field environments, 10 QTLs were identified
in both single field environment and combined environment, and 7
QTLs were identified in both multiple field environments and com-
bined environment. Thus, they were viewed as stable QTLs in this
study. Nine of the 20 stable QTLs influence HL; 6, HW; and 5, HN. For
HL, the QTL on chromosome 6, qHL6, was detected in all environ-
ments (including 3 field environments and combined environment)
and explained 11.51–13.95% of the phenotypic variation, and it had
the largest effect of the 9 stable QTLs for that trait. The genetic length
of the qHL6 region was about 1.27 cM, which corresponds to a physi-
cal distance of about 2.75Mb in B73 RefGen_v4. Moreover, qHL5-2
was detected in the 3 environments, including 2 field environments
and combined environment. For HN, qHN4 was detected in all envi-
ronments, which explained 10.65–11.66% of the phenotypic variation

Fig. 1. Frequency distributions and correlation of 3 husk traits (BLUP values). Plots on diagonal line show phenotypic distribution of each trait as
indicated; values above diagonal line are Pearson’s correlation coefficients between traits; plots below diagonal line are scatter plots of compared traits.
*Significant at P � 0.05, **Significant at P � 0.01.

Table 2. Variance components estimate, significance tests, and
broad-sense heritability of 3 husk traits in RIL population.

Variance HL HW HN

E1 0.66a 0.32a 0.79a

Rep (Env)1 0.00 0.00 0.00
G1 3.50a 0.86a 1.50a

G � E1 0.60a 0.31a 0.53a

Heritability2 0.92 0.84 0.86

Variance components estimate, significance tests, and broad-sense heritability
based on the mean values from 2 block replications in 3 field environments.
All data from all field environments was used for the analysis presented in the
table.

1 G and E indicate genotype and environment, respectively, Rep (Env)
indicates replication within environment, and G� E indicates interaction
between G and E. aSignificant at P�0.05.

2 Family mean-based broad-sense heritability.
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in HN, had the largest effect of the 5 stable QTLs for the trait. The ge-

netic length of the qHN4 region was about 1.48 cM, corresponding to

a physical distance of about 0.89 Mb.

Joint mapping for HL, HW, and HN in multiple
environments
The phenotype data from 3 field environments and combined

environment was used for the Joint mapping. A total of 51

additive QTLs associated with the 3 husk traits were identified.
The phenotypic variation explained by each additive QTL ranged
from 1.04% to 13.34%: with sums of 94.76%, 47.26%, and 51.17%
for HL, HW, and HN, respectively (Supplementary Table 3).
Contributions of the interaction between each additive QTL and
environment (AE) ranged from 0.92% to 8.23% for HL, HW, and
HN. Eighteen additive QTLs for HL were mapped on chromo-
somes 1, 2, 5, 6, 7, 9, and 10 and included 5 stable QTLs identified
using the single-environment analyses. The phenotypic variance
explained by each additive QTL was higher than that explained
by AE. Thirteen additive QTLs for HW were mapped on chromo-
somes 1, 2, 4, 6, 7, 8, 9, and 10 and included 4 stable QTLs identi-
fied using single-environment mapping. The phenotypic variance

explained by each additive QTL was higher than that explained
by AE, except for 1 QTL. Twenty additive QTLs for HN were
mapped on chromosomes 1, 2, 3, 4, 5, 6, 9, and 10 and included
5 stable QTLs identified using single-environment mapping.
The phenotypic variance explained by each additive QTL was
higher than that explained by AE.

Candidate gene prediction
On the basis of the QTL mapping in the RIL population, qHL6 and
qHN4 were inferred to be reliable and major-effect QTLs for HL and
HN, respectively. qHL6 was mapped between markers mk5328 and

mk5332, and it spans a genetic distance of 1.27 cM and corresponds
to a physical distance of 2.75 Mb in the B73 RefGen-v4 genome as-
sembly. Through homologous alignment and functional annotation,
7 candidate genes were identified in the QTL region (Table 5). These
genes were classified into 2 different functional groups: development
process (Zm00001d052240, Zm00001d052245, and Zm00001d052254)
and energy metabolism (Zm00001d052242, Zm00001d052243,
Zm00001d052247, and Zm00001d052260). For qHN4, which was
mapped between markers mk3783 and mk3787, 19 genes were
predicted using the available annotation of B73 RefGen-v4 in the
0.89-Mb target region. These genes were functionally classified
into 4 different groups: development progress (Zm00001d036631),
energy metabolism (Zm00001d036552, Zm00001d036557,
Zm00001d036564, Zm00001d036579, Zm00001d036583,
Zm00001d036608, and Zm00001d036608), metabolic process

(Zm00001d036550, Zm00001d036556, Zm00001d036570,
Zm00001d036575, Zm00001d036597, and Zm00001d036626), and re-
sponse to stimulus (Zm00001d036571, Zm00001d036593,
Zm00001d036613, Zm00001d036623, and Zm00001d036630). These
results will lay the foundation for analyzing candidate genes related
to HL and HN and indicate whether the husk traits are associated
with various biological processes.

Fig. 2. Distribution map of linkage group marker. a) The left scale is
relative genetic distance. b) LG 1–10: chromosome number; the
horizontal line on the map indicates marker location.

Table 3. Characteristics of the high-density genetic map.

Linkage group
(LG)

Number of
bin marker

Physical distance (Mb) Genetic distance (cM) Average length (cM) <5 cM gap Max gap (cM) R2a

LG01 1018 307.01 398.65 0.39 1009 15.22 0.89
LG02 1136 242.05 428.8 0.38 1123 20.23 0.49
LG03 867 234.82 239.43 0.28 863 6.68 0.81
LG04 941 246.36 358.02 0.38 927 25.89 0.74
LG05 965 223.67 301.36 0.31 956 16.46 0.74
LG06 625 173.87 171.54 0.27 621 16.92 0.91
LG07 882 182.29 261.23 0.3 874 15.08 0.64
LG08 578 180.91 160.21 0.28 570 9.76 0.83
LG09 558 159.71 200.93 0.36 550 11.98 0.84
LG10 814 150.881 197.85 0.24 805 13.91 0.76
Total 8,384 2,101.571 2,718.02 0.32 8,298 25.89

a R2 Determination coefficient between genetic map and physical map.
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Discussion
Husk is a lignocellulosic-rich agricultural waste abundantly
available throughout the year. Researchers have found that this
waste material is profitable from an environmental and eco-
nomic point of view. For example, husk is used as an animal feed;
the fiber, for industrial raw materials; and anthocyanins, for
medicine and pigments (Li et al. 2008). With machine harvesting,
the main economic impact of husk is harvestability. Moisture
that evaporates from the kernels must pass through the husk at
the dehydration stage (Zhou, Zhang, et al. 2016). Unfavorable
husk traits, such as too many layers surrounding the ear, limit
the speed of dehydration of kernel moisture content at the drying

stage. This impedes mechanical harvesting, especially in the
northern maize-growing area of China. Thus, understanding the
genetic basis of husk traits is beneficial for the genetic improve-
ment of maize husk traits for mechanical harvesting of the ker-
nels (Zhou et al. 2020). In this study, a total of 26 QTLs and several
candidate genes associated with 3 husk traits, HL, HW, and HH,
were detected, which will greatly expand our understanding of
the genetic architecture of maize husk.

Furthermore, among the identified QTLs, only 2 QTLs (qHL6
and qHN4) for HL and HN were insensitive to the 3 field environ-
ments; these QTLs were also detected in combined environment,
which indicates that QTL-by-environment interaction had a

Fig. 3. Collinearity analysis between genetic map and physical map. a) The left scale is relative genetic distance. b) 1–10: chromosome number;
lg 01–10: linkage group number. c) The left scale (lg 01–10) is linkage group and the right scale (1-10) is chromosome of reference genome maize B73.

Table 4. QTL identified for HL, HW, and HN in combined environment.

Trait namea QTL nameb Chr. Flanking markerc Intervald (cM) Physical lengthe (Mb) LODf PVEg ADDh

HL qHL2-1 2 mk1520–mk1534 166.14–167.40 1.42 9.32 11.19 0.80
qHL5-2 5 mk4648–mk4675 187.50–194.93 5.09 6.65 6.40 �0.52
qHL6 6 mk5328–mk5332 55.65–56.92 2.75 10.65 11.51 �0.49

qHL7-1 7 mk6267–mk6276 123.71–126.08 15.6 4.86 4.93 �0.42
qHL9-2 9 mk7549–mk7558 130.38–145.60 5.05 3.57 3.89 0.41
qHL10 10 mk8213–mk8233 103.27–107.51 6.06 5.01 5.74 0.50

HW qHW1-1 1 mk844–mk848 286.73–291.16 1.11 3.98 4.83 0.28
qHW1-2 1 mk973–mk981 352.30–358.34 5.30 3.45 5.12 0.23
qHW2-1 2 mk1087–mk1109 76.46–80.99 10.48 4.74 5.70 0.27
qHW2-2 2 mk1112–mk1118 82.05–86.34 10.47 4.89 5.49 0.23
qHW5-3 5 mk4344–mk4383 192.25–192.68 0.89 2.84 3.19 0.21
qHW9 9 mk7086–mk7088 49.50–51.50 0.65 3.70 3.98 0.20

HN qHN3-1 3 mk2187–mk2198 20.06–24.79 6.22 5.52 5.74 0.32
qHN4 4 mk3783–mk3787 256.58–258.06 0.89 9.36 11.1 0.40
qHN6 6 mk5555–mk5564 164.91–166.91 2.14 4.10 5.09 0.30

qHN9-1 9 mk7338–mk7372 91.18–94.23 16.14 9.16 10.09 0.47
qHN9-2 9 mk7428–mk7458 105.18–109.73 6.53 4.06 4.91 0.35

Chr., chromosome.
a Trait is the name of the component of husk: HL, HW, and HN.
b The name of each QTL is a composite of the influenced trait: HL, HW, and HN.
c Flanking markers, the markers to the left and right of the QTL.
d Interval, confidence interval between 2 markers. 1.5-LOD support interval in cM unit.
e Physical length, interval between the 2 markers on the B73 genome.
f LOD, the logarithm of odds score.
g PVE, the phenotypic variance explained by individual QTL.
h ADD, the additive effect value: a positive value indicates that the allele from the female parent (PD80) increased the index of traits, whereas a negative value

indicates that the allele from male parent (PHJ65) increased the index of traits.
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lower effect. This could be because QTLs that explain higher phe-
notypic variation also have higher direct effects on phenotypes
and lower genotype-by-environment interaction effects (Stuber
et al. 1992). Therefore, information on QTL � environment inter-
action should be considered carefully, especially for more
environment-specific QTLs. These stable and consistent QTLs
could be considered priority candidates for molecular marker-
assisted selection. In addition, the 3 husk traits in the 3 field envi-
ronments were found to have wide phenotypic variations with
normal distributions, indicating that the heritability was high.
The genetic contributions and genetic � environmental interac-
tion effects were also observed to be significant, with positive cor-
relations between HL and HW in the 3 field environments. This
indicates an endogenous character, i.e. the growth and develop-
ment of the husk are coordinated with respect to length and
width. In contrast, HN was significantly negatively correlated
with HW, supporting the conclusion that the superimposed out-
growth of husk layers could hypothetically limit HL because of
the limitation of photosynthetic products (Cui et al. 2018).

With the rapid development of high-throughput sequencing
technology, various sequencing technologies have been widely
used in various research fields (Soon et al., 2013; Wang, Tian,
et al., 2020; Wang et al., 2021). GBS is a new and popular method
for developing high-density SNPs used for constructing genetic

linkage maps, and it has been successfully utilized for genetic
studies of complex quantitative traits in maize (Zhou, Zhang,
et al. 2016; Wang et al. 2018; Cui et al. 2020). This means that a
GBS-based SNP genetic map can detect more recombination
events, which would increase the total number of bins and re-
duce bin size (Zhou, Zhang, et al. 2016). In this study, we con-
structed a genetic map of a maize RIL population derived from
PD80 and PHJ65 on the basis of GBS results. The high-density ge-
netic map with 8,384 bin markers was constructed, and it covered
2,718.02 cM with an average marker interval of 0.32 cM. When
compared with same population-based genetic maps described
in previous studies (Cui et al. 2016; Zhou et al. 2020), our genetic
map covered a similar distance in terms of genome size but had
more markers and higher resolution. High-density markers can
greatly facilitate the identification of recombinant events and ex-
act recombinant breakpoints, which significantly affects the ac-
curacy of QTL mapping. Increasing the density of markers
distributed around the entire genome improves the resolution of
genetic maps (Zou et al. 2012).

We identified a new series of QTLs and pinpointed candidate
genes associated with the husk traits. Twenty-nine candidate
genes were identified in the region of qHL6 and qHN4, of which 17
candidate genes potentially play a role in biological processes re-
lated to metabolism. Previous studies have shown that

Table 5. Genes located in the intervals of qHL4 and qHN6.

Gene ID Chr Start End Description Biological process

qHL4
Zm00001d052240 chr4 184,369,041 184,371,794 Pentatricopeptide repeat 5 Development process
Zm00001d052245 chr4 184,611,231 184,665,800 Exocyst complex component SEC6 isoform X2 Development process
Zm00001d052254 chr4 184,820,400 184,821,661 DNA-binding protein Development process
Zm00001d052242 chr4 184,373,518 184,374,270 ATP synthase delta chain isoform X1 Energy metabolism
Zm00001d052243 chr4 184,464,169 184,467,579 Putative laccase precursor Energy metabolism
Zm00001d052247 chr4 18,466,6747 184,669,386 Shikimate kinase Energy metabolism
Zm00001d052260 chr4 185,139,277 185,141,193 Probable galacturonosyltransferase 9 Energy metabolism

qHN6
Zm00001d036631 chr6 95,649,670 95,655,779 Phosphatidylinositol synthase 2 Development process
Zm00001d036552 chr6 91,845,982 91,849,911 Fructose-1,6-bisphosphatase, cytosolic-like Energy metabolism
Zm00001d036557 chr6 92,017,713 92,023,571 External alternative NAD(P)H-ubiquinone

oxidoreductase B1, mitochondrial-like
isoform X1

Energy metabolism

Zm00001d036564 chr6 92,506,962 92,508,996 Thiamine-repressible mitochondrial transport
protein THI74-like

Energy metabolism

Zm00001d036579 chr6 93,630,607 93,642,846 BEACH domain-containing protein lvsC
isoform X1

Energy metabolism

Zm00001d036583 chr6 93,694,598 93,724,480 BEACH domain-containing protein lvsC
isoform X1

Energy metabolism

Zm00001d036608 chr6 94,231,654 94,235,649 Probable alpha-glucosidase Os06g0675700
isoform X2

energy metabolism

Zm00001d036624 chr6 95,234,528 95,240,368 Twinkle homolog protein, chloroplastic/
mitochondrial-like

Energy metabolism

Zm00001d036550 chr6 91,656,993 91,657,445 Lipid binding protein precursor Metabolic process
Zm00001d036556 chr6 91,870,931 91,874,865 TPA: putative peptidase C48 domain family

protein
Metabolic process

Zm00001d036570 chr6 93,085,359 93,085,772 60S ribosomal protein L27-3-like Metabolic process
Zm00001d036575 chr6 93,371,896 93,375,751 Putative ribosomal protein S4 (RPS4A) family

protein
Metabolic process

Zm00001d036597 chr6 94,022,705 94,023,738 sm protein Metabolic process
Zm00001d036626 chr6 95,462,355 95,463,470 Tubulin beta-7 chain-like Metabolic process
Zm00001d036571 chr6 93,093,255 93,103,441 LOW QUALITY PROTEIN: heat shock 70 kDa

protein 16-like
Response to stimulus

Zm00001d036593 chr6 93,920,665 93,928,357 Auxin response factor 22 Response to stimulus
Zm00001d036613 chr6 94,473,770 94,496,176 Probable LRR receptor-like serine/

threonine-protein kinase At3g47570
Response to stimulus

Zm00001d036623 chr6 95,057,231 95,057,635 SAUR25—auxin-responsive SAUR family
member

Response to stimulus

Zm00001d036630 chr6 95,643,471 95,646,716 Filamentation temperature-sensitive H 2B Response to stimulus
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metabolism is an indispensable part of a plant life cycle and con-

tributes to a large part of plant phenotype performance (Hunter

et al. 2012; Xiao et al. 2016). Some metabolic pathways influence

plant growth and development (Kramer and Ackelsberg 2015).

Therefore, it is not surprising to find that a large number of can-

didate genes involved in metabolism are associated with HL and

number because husk growth is a dynamic process that involves

an interconnected series of metabolic pathways. Our findings can

be used as a useful resource for performing functional studies

aimed at understanding the molecular pathways involved in

husk growth and development.
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