
Jing Wen 1,2,3 , Jian鄄  Hua Fu 2,3 , Wei Zhang 1 and Ming Guo 1 

Abstract 
Lung cancer is the leading cause of cancer death in men and women worldwide, with over a million 

deaths annually. Tobacco smoke is the major etiologic risk factor for lung cancer in current or previous 
smokers and has been strongly related to certain types of lung cancer, such as small cell lung carcinoma 
and squamous cell lung carcinoma. In recent years, there has been an increased incidence of lung 
adenocarcinoma. This change is strongly associated with changes in smoking behavior and cigarette 
design. Carcinogens present in tobacco products and their intermediate metabolites can activate multiple 
signaling pathways that contribute to lung cancer carcinogenesis. In this review, we summarize the 
smoking鄄  activated signaling pathways involved in lung cancer. 
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Lung cancer is the leading cause of cancer death in 
men and women worldwide, with over a million deaths 
annually [1] . Tobacco smoke is the predominant etiologic 
risk factor for lung cancer. Approximately 80% to 90% of 
lung cancer patients in the United States involve smoking [2] . 

Histopathologically, lung cancer is classified as 
squamous cell carcinoma, small cell carcinoma, 
adenocarcinoma, or large cell carcinoma with other types 
accounting for a small percentage of cases [3] . Small cell 
carcinoma and squamous cell carcinoma are strongly 
related to cigarette smoking. Recent increases in the 
incidence of lung adenocarcinoma also appear to be 
associated with cigarette smoking and are probably due 
to changes in smoking behavior and lower tar content in 
cigarettes [4,5] . 

Cigarette smoke contains over 60 chemicals that 
have been identified as carcinogens by the International 
Agency for Research in Cancer. The most potent 
carcinogens are polycyclic aromatic hydrocarbons, such 
as benzo [a]pyrene and the tobacco­specific nitrosamine 

known as nicotine­derived nitrosoaminoketone (NNK) [6] . 
Carcinogens present during smoking or produced in their 
intermediate metabolites can activate cell proliferation 
and survival signals, resulting in preneoplastic changes 
in bronchial epithelial cells and inducing lung cancer in 
laboratory animals [6] . 

鄄  Adrenergic Receptor -Mediated Sig鄄  
naling 

茁  ­Adrenergic receptors (茁  ­ARs) are members of the 
G­protein­coupled receptor family. The tobacco­specific 
nitrosamine, nicotine­derived NNK, is structurally similar 
to the classical 茁  ­AR agonist [7,8]  and can bind 茁  ­AR on 
pulmonary epithelial cells. This binding stimulates cell 
proliferation signaling pathways by triggering 茁  ­AR 
activation [9] , suggesting that 茁  ­ARs play an important role 
in NNK­induced lung cancer (Figure 1). Once 
G­protein­coupled receptor family signaling is activated 
in NNK­treated lung adenocarcinoma cells, it can trigger 
the activation of adenylyl cyclase and cyclic AMP (cAMP) 
and the subsequent activation of protein kinase A (PKA). 
PKA further activates phospholipase­A2 and causes an 
NNK concentration­dependent release of arachidonic 
acid (AA) from cell­membrane phospholipids, increasing 
DNA synthesis and cell proliferation in adenocarcinoma. 
This signaling pathway can be completely blocked by 
茁  ­AR antagonists  [7] . In addition, both aspirin, a 
cyclooxygenase (COX) inhibitor, and ML­886, a 
lipoxygenase inhibitor, can partially inhibit DNA synthesis 
in cells after being exposed to NNK, suggesting that the 
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Figure 1. Binding of nicotine鄄  derived nitrosoaminoketone (NNK) to 茁  鄄  adrenergic receptors 
(茁  鄄  AR) on pulmonary epithelial cells results in cAMP/PKA activation. Protein kinase A (PKA) causes arachidonic acid (AA) release by activating 
phospholipase鄄  A2, leading to increased DNA synthesis. Epidermal growth factor receptor (EGFR) and PI3K/Akt pathways may be activated as 
downstream of 茁  鄄  AR to promote cell proliferation and inhibit cell apoptosis. 
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AA­dependent mitogenic signaling transduction cascade爷 
s role in smoking­related lung carcinogenesis involves 
both COX­ and lipoxygenase­ dependent messengers [7] . 
Highsystemic levelsofAA­metabolizingenzymesCOX­2 [10] , 
AA metabolites prostaglandin E2 and leukotriene B4 [11] 
have been identified in lung cancers in NNK­treated 
mice. Consistently, COX­2­positive tumors are more 
common in smokers (32%, 29 of 90) than in non­ 
smokers (10%, 1 of 10,  = 0.15) [10] . 

In addition to AA metabolites, several transcription 
factors can be stimulated as downstream targets of 
茁  ­AR/PKA signaling, such as the PKA­dependent 
overexpression and phosphorylation of cAMP response 
element binding protein (CREB). Phosphorylation of 
CREB induced by NNK in human small airway epithelial 
cells and adenocarcinoma cells [12]  and overexpression of 
p­CREB in NNK­induced adenocarcinomas [13,14] have been 
reported. CREB regulates the expression of certain genes, 
including cyclins, Bcl­2 family members and  , 
whose aberrant expression promotes oncogenesis [15] . An 

inhibitor of the CREB signaling pathway can block CREB 
activation in lung cancer cells by arresting the cell cycle 
at the G 2 /M phase and by inducing apoptosis through 
suppression of Bcl­2 and Bcl­XL  expression [16] . However, 
CREB activation may not be specific in smoking­related 
lung cancers. An immunohistochemical analysis of a 
tissue microarray containing adenocarcinoma, 
bronchioloalveolar carcinoma, and squamous cell 
carcinoma specimens collected from 310 patients 
revealed a significant association between decreased 
survival and CREB or p­CREB overexpression in 
non­smokers but not in current or former smokers with 
lung cancer [17] . 

茁  ­AR­initiated cAMP signaling may transactivate the 
epidermal growth factor receptor (EGFR) pathway, 
including overexpression of EGFR­specific 
phosphorylated tyrosine kinase, Raf­1, and extracellular 
signal­regulated kinase 1/2 (ERK1/2) and ERK1/2 
phosphorylation (Figure 1). cAMP signaling and the 
EGFR/Raf­1/ERK1/2 pathway can synergistically regulate 
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the growth and development of NNK­induced lung 
adenocarcinomas  [12,13] . NNK phosphorylates EGFR at 
tyrosine residues 991, 1068 and 1173 via 茁  ­adrenergic 
stimulation [12] . However, in one study, no mutations were 
detected in  exons 18­21, which typically occur 
in non­smokers with lung adenocarcinomas [12] . The 
phenomenon suggests that the EGFR pathway plays an 
important role in carcinogenesis through distinct 
mechanisms in smoking­ and non­smoking­related lung 
adenocarcinomas. 

Another signal transduction pathway, 
phosphatidylinositol 3­kinase (PI3K)/Akt, is reported to 
induce Bad phosphorylation downstream of 茁  ­AR/PKA 
signaling (Figure 1). In human lung adenocarcinoma 
A549 cells, nicotine induces ERK1/2, Akt, and PKA 
activation through an upstream 茁  ­AR to trigger multi­site 
Bad phosphorylation. Bad phosphorylation blocks 
apoptosis and subsequently promotes cell survival [18] . 

Nicotin ic Acetylcholine Receptor-Me鄄  
diated Signaling 

Nicotinic acetylcholine receptors (nAChRs) are ion 
channels located in the plasma membrane of 
mammalian cells. Initially identified at the neuromuscular 
junction, nAChRs are classified as neuronal or muscular. 

Neuronal nAChRs are composed of five identical 琢  7, 琢  8, 
or 琢  9 subunits or a combination of 琢  2­琢  6 or 琢  10 
subunits and 茁  2­茁  4 subunits, whereas muscle nAChRs 
are composed of combinations of 琢  1 subunits with 茁  1, 酌  , 
啄  , or 着 subunits [19] . Binding of agonist to nAChRs results 
in conformational changes to the receptors, with 
consequent ion influxes. These can result in the release 
of neurotransmitters or the stimulation of various 
intracellular signaling cascades [20] . Nicotine can mimic the 
actions of acetylcholine as an agonist by binding to the 
α  subunits of nAChRs [20] . Up­regulated expression and 
activation of nAChRs has been reported in both lung 
cancer and normal bronchial epithelial cells by exposure 
to nicotine or NNK [21­24] . 

Raf/mitogen鄄  activated protein kinase signaling 

Recent studies have found that the proliferation of 
pulmonary neuroendocrine cells and small cell 
carcinoma can be regulated by neuronal nAChR, which 
contains the 琢  7 subunit [25­27] . In small cell carcinoma cells, 
binding of nicotine or NNK to 琢  7 nAChR on the cell 
membrane results in cation ( primarily Ca 2+ ) influx 
and activation of the mitogenic signal transduction 
pathway [28,29]  (Figure 2). Specifically, increased intracellular 
Ca 2+  can trigger the release of serotonin, an autocrine 

Figure 2. 

In fetal pulmonary 
neuroendocrine cells and small cell 
carcinoma cells, binding of NNK to 
琢  7 nAChR on the cell membrane 
results in Ca 2+ influx and serotonin 
release, which activates protein kinase 
C (PKC) and the downstream Raf鄄  1 
mitogen-activated protein kinase/MAPK 
kinase cascade, leading to DNA 
synthesis and cell proliferation. 

琢  

m 
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growth factor. Serotonin activates protein kinase C 
(PKC) and the downstream kinase cascade that involves 
overexpression and activation of the serine­threonine 
protein kinase (Raf­1), and mitogen­activated protein 
kinase (MAPK), leading to DNA synthesis and cell 
proliferation in fetal pulmonary neuroendocrine cells and 
small cell carcinoma cells  [29,30] . The serotonin re­uptake 
inhibitor 琢  ­BTX (imipramine), the PKC inhibitor 
(sphingosine), and the MAPK kinase inhibitor (PD98059) 
block NNK­induced DNA synthesis and mitogenesis [30,31] . 

Unlike small cell carcinoma, which primarily 
expresses 琢  7 nAChR, squamous cell carcinoma, 
adenocarcinoma, and benign bronchial and small airway 
epithelial cells express multiple nAChR subtypes [21,27,32,33] . 
These subtypes (琢  3茁  2 and 琢  4茁  2), along with 
琢  7­containing nAChR, participate in smoking­induced 

squamous and adenocarcinoma cell proliferation and 
invasion [32,33]  (Figure 3). Unlike activation via Ca 2+  influx 
stimulated PKC in small cell carcinoma, nAChR­ 
mediated MAPK activation in squamous cell carcinoma 
and adenocarcinoma is mediated by the scaffcolding 
protein, 茁  ­arrestin, which is independent of PKC [34,35] . 
茁  ­arrestin binds and recruits Src to the receptors; 
activated Src further stimulates the Raf/MAPK pathway [35] . 

MAPK activation can induce phosphorylation and 
activate transcription factors, such as c­Myc  [30]  and 
activator protein­1 [36] , further regulate downstream gene 
transcription and protein expression, including bcl­2 [34,37] , 
cyclin D1 [38] , proliferating cell nuclear antigen [36] , interleukin 
(IL)­8 [39] , hypoxia­inducible factor­1琢  [40] , fibronectin [23] , and 
contactin­1 [41] . MAPK­associated extracellular signal­ 
regulated kinases (ERK1/2 ) can also activate bcl­2 [42] , 

Figure 3. nAChR鄄  mediated mitogen鄄  activated protein 
kinase (MAPK) activation in squamous cell carcinoma and adenocarcinoma is mediated by the scaffolding protein 茁  鄄  arrestin, which binds 
to and recruits Src to the receptors and stimulates the Raf/MAPK pathway. MAPK activation functions with the PI3K/Akt and the EGFR/ 
Raf/MAPK signaling pathways, both activated by Ca 2 + influx through nAChRs, to induce phosphorylation and activation of transcription 
factors, further regulate downstream gene transcription and protein expression, provoke cell proliferation, anti鄄  apoptosis, tumor invasion, 
and therapy resistance. 

茁  

琢  

m 
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p90RSK [43] , m­calpains and 滋  ­calpains [44,45] , cyclin D/cdk4 
and cyclin E/cdk2  [35,38]  cascades. Raf­1, which is 
activated by Src [35] , inactivates retinoblastoma (Rb) gene 
products and enhances Rb爷s dissociation with and 
E2F1爷s recruitment to proliferation promoters, such as 
cdc6 and cdc25A  [35] . Therefore, nicotine stimulation 
affects various components to provoke cell proliferation, 
anti­apoptosis, tumor invasion, and therapy resistance. 

Some MAPK downstream proteins have been found 
to be related to lung squamous cell cancer and 
adenocarcinoma in smokers. Cyclin D1 is expressed 
more often in lung carcinomas in smokers (77%) than in 
those from non­smokers (57%) [46] . In another study, cyclin 
D1 expression in lung squamous cell cancer and 
adenocarcinoma was associated with heavy smoking 
(>40 pack­years;  = 0.02) and a shorter overall survival 
duration (  = 0.01) [47] . 

nAChR­mediated, MAPK signaling­induced mitogenic 
effects varied by CO2  level in normal pulmonary 
neuroendocrine cells derived from fetal hamster lungs 
and cell lines derived from human neuroendocrine lung 
carcinoma [26] .  , exposure to NNK under hyperoxic 
conditions induced small cell carcinoma­like 
neuroendocrine lung tumors in hamsters, whereas under 
ambient air conditions, 茁  ­AR­regulated lung 
adenocarcinoma developed [48,49] . The finding of suboptimal 
O 2  level and nAChR activation levels has important 
clinical implications . Because small cell carcinoma 
is more strongly associated with smoking than are 
other lung cancer types, smokers with chronic 
obstructive pulmonary disease usually have high nAChR 
expression and are at high risk of developing small 
cell carcinoma [50] . 

Researchers have also studied the roles of another 
two major mammalian MAPKs, c­Jun N­terminal kinase 
(JNK) and p38 MAPK, in nicotine­mediated 
carcinogenesis. ERK, JNK, and p38 MAPK were all 
activated by nicotine in rat lungs [36,51] , although in one 
report [34]  nicotine activated the ERK1/2 MAPK signaling 
pathway had no effect on JNK and p38 MAPK activity. A 
gene expression profile analysis of human bronchial 
epithelial cells revealed that ERK1/2 and JNK, but not 
p38 MAPK, are activated in response to nicotine [39] . This 
variation in MAPK activation may be a result of different 
extracellular stimuli with distinct downstream targets and 
cellular responses. For instance, MAPK activation was 
reported to provoke smoking­induced apoptosis in rat 
lung tissues by up­regulating FasL, Bax, t­Bid, 
cytochrome C and caspase 3, down­regulating bcl­2, and 
increasing Fas and p53 phosphorylation  [51] . However, 
JNK and p38 MAPK activation is more common in 
non­smokers than in smokers [52] . The selective activation 
of p38 MAPK contributes to cell growth in 
adenocarcinoma cell lines from non­smokers [53] . 

PI3K/Akt signaling 

The PI3K/Akt pathway may be activated by nicotine 
or NNK binding to 琢  7 nAChR or 琢  3茁  2/琢  4茁  2 nAChRs [54] 

(Figure 3). Akt activity maintenance is necessary for the 
survival of preneoplastic and transformed lung epithelial 
cells [55] . The identified downstream proteins of this 
nicotine­ or NNK­activated pathway include glycogen 
synthase kinase­3, ribosomal protein S6 kinase, 
eukaryotic translation initiation factor 4E binding protein 
1, forkhead transcription factor [32] , Bax [56] , Bad [57] , XIAP [33,37] , 
survivin [33] , hypoxia­inducible factor­1琢  , vascular endothelial 
growth factor [40]  and fibronectin  [23] , contributing to cell 
proliferation, anti­apoptosis, differentiation, cell migration, 
and tumor invasion. 

Activated Akt was detected in lung cancers from 
NNK­treated A/J mice and human lung cancer cells 
derived from smokers [32] . However, one study revealed 
no association between phosphorylated Akt expression 
and adenocarcinoma in smokers or smoking status [58] . In 
another report, higher phosphorylated Akt levels were 
observed in non­smokers with lung adenocarcinoma than 
in smokers [59] . Further research is needed to clarify the 
role of Akt in smoking­related lung cancers. 

Nuclear Factor-资  B Signaling 
Nuclear factor­资  B (NF­资  B) is a ubiquitous nuclear 

transcription factor. The activation of NF­资  B by smoke 
may be mediated by ERK1/2 signaling [60,61]  or through a 
pathway similar to that of tumor necrosis factor [62] . NF­资  B is 
in the inactive state in the cytoplasm as a heterotrimer 
consisting of p50, p65, and I资  B琢   subunits. Upon 
activation, I资  B琢 undergoes sequential phosphorylation by 
I资  B琢  kinase and ubiquitination and degradation; the 
p50/p60 heterodimer is released and translocated to the 
nucleus, where it binds to specific sequences in the 
promoter regions of target genes [63] . 

In squamous cell lung cancer and lung 
adenocarcinoma, smoke has been reported to induce 
NF­资  B activation, which regulates the expression of 
downstream molecules such as COX­ 2 [62] , cyclin D1, 
matrix metalloproteinase ­9 [64,65] , p21, c­IAP2, Bcl­2, and 
Bad [61,62,66] , consequently promotes cancer cell proliferation 
and survival. 

Furthermore, NF­资  B directly exerts carcinogenic 
effects to enhance cancer cell growth. Cigarette smoking 
induces the production of pro­inflammatory factors, such 
as COX­2, prostaglandin E2 [67] , IL ­ 8 [68] , IL­6, and 
macrophage inflammatory protein 2 [69] , via NF­资  B 
activation in normal human lung fibroblasts and alveolar 
macrophages, creating a pro­inflammatory environment. 
Long­term smoking induces chronic inflammatory lung 
diseases. Emerging evidence suggests that chronic 
inflammation plays a significant role in lung cancer 
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pathogenesis by promoting tumor formation [70]  and NF­资  B 
activation may be a link between chronic inflammation 
and lung cancer. 

EGFR Signaling 
EGFR may be activated by its autocrine ligands, 

which are produced by oxygen radicals during cigarette 
smoking. In lung cancer cells, tobacco smoke­generated 
oxygen radicals stimulate the tumor necrosis 
factor­琢  ­converting enzyme, resulting in an increased 
shedding of EGFR pro­ligands, such as transforming 
growth factor­α  , heparin­binding EGF­like growth factor, 
and amphiregulin. By binding to EGFR, these ligands 
activate EGFR phosphorylation and induce the 
expression of downstream targets such as IL­8 and 
mucin, resulting in lung cancer cell proliferation [71­73] . 

Gamma鄄  Aminobutyric Acid Signaling 
Gamma­aminobutyric acid (GABA) is the most 

common inhibitory neurotransmitter in the central 
nervous system. In a recent study, significant GABA 
underexpression was reported in NNK­induced hamster 
lung adenocarcinoma  [74] . An  study using the 
immortalized human small airway epithelial cell line 
HPL1D and human lung adenocarcinoma cell line 
NCI­H322 revealed that signaling via the GABA receptor 

strongly inhibited base­level and isoproterenol­induced 
cAMP, p­CREB, element­luciferase and pERK1/2, 
effectively blocking DNA synthesis and cell migration [74] . 
Therefore, GABA may have a tumor­suppressor function 
in small airway epithelial cells and lung 
adenocarcinomas. GABA down­regulation by NNK may 
contribute to cancer development in smokers. 

Conclusions 
The number of smokers in the United States is 

decreasing. However, tobacco smoke is still the major 
etiologic risk factor for lung cancer, which is more 
common in previous smokers than in current smokers. A 
comprehensive understanding of the signals activated by 
smoking­related carcinogens may help us develop 
targeted therapy for lung cancer patients with a history of 
smoking. 
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