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Abstract

Background

Volatile pyrethroid insecticides, such as transfluthrin, have received increasing attention for

their potent repellent activities in recent years for controlling human disease vectors. It has

been long understood that pyrethroids kill insects by promoting activation and inhibiting inac-

tivation of voltage-gated sodium channels. However, the mechanism of pyrethroid repel-

lency remains poorly understood and controversial.

Methodology/Principal findings

Here, we show that transfluthrin repels Aedes aegypti in a hand-in-cage assay at nonlethal

concentrations as low as 1 ppm. Contrary to a previous report, transfluthrin does not elicit

any electroantennogram (EAG) responses, indicating that it does not activate olfactory

receptor neurons (ORNs). The 1S-cis isomer of transfluthrin, which does not activate

sodium channels, does not elicit repellency. Mutations in the sodium channel gene that

reduce the potency of transfluthrin on sodium channels decrease transfluthrin repellency

but do not affect repellency by DEET. Furthermore, transfluthrin enhances DEET

repellency.

Conclusions/Significance

These results provide a surprising example that sodium channel activation alone is sufficient

to potently repel mosquitoes. Our findings of sodium channel activation as the principal

mechanism of transfluthrin repellency and potentiation of DEET repellency have broad

implications in future development of a new generation of dual-target repellent formulations

to more effectively repel a variety of human disease vectors.
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Author summary

Vector-transmitted human diseases, such as dengue fever, represent serious global health

burdens. Pyrethroids, including transfluthrin, are widely used as insecticides and repel-

lents due to their low mammalian toxicity and relatively benign environmental impact.

Pyrethroids target voltage-gated sodium channels for their insecticidal action. However,

the mechanism of pyrethroid repellency remains unclear and controversial. Insect repel-

lency is traditionally thought to be mediated by olfactory receptors. We made two impor-

tant discoveries in this study, showing that transfluthrin repellency is via activation of

sodium channels and transfluthrin enhances DEET repellency. Discovery of sodium chan-

nel activation as a major mechanism of pyrethroid repellency has broad significance in

insect olfaction study, repellents development, and control of human disease vectors.

Introduction

Pyrethroid insecticides are synthetic analogues of natural pyrethrins, which are major insecti-

cidal components of the pyrethrum extract from the flowers of Chrysanthemum species [1].

The insecticidal activity of pyrethroids is through their action on voltage-gated sodium chan-

nels, which are critical for electrical signaling in the nervous system. Pyrethroids promote acti-

vation and inhibit inactivation of sodium channels, resulting in repetitive firing and/or

membrane depolarization and eventual nerve conduction block and paralysis (i.e., knock-

down) [2,3]. Mutations in the sodium channel confer a major type of pyrethroid resistance,

known as knockdown resistance (kdr) [3–5].

Pyrethroids have been used extensively in the control of vectors of human diseases, includ-

ing malaria and dengue. Volatile pyrethroids are also used as popular repellents globally, in the

form of vaporizers, emanators, mats, and coils, against mosquitoes [6–15]. For example, as one

of the most widely used volatile pyrethroids, transfluthrin has been incorporated into a variety

of new mosquito control products and programs. When mosquito coils treated with 0.03%

transfluthrin were used either alone or in combination with long-lasting insecticide bed nets

(LLINs), malaria parasite prevalence was reduced by up to 94% [10]. Application of transflu-

thrin to hessian or sisal decorations/products, eave ribbons, eave-baffles and window screens

offers a promising method of mosquito contact/bit prevention in both indoor or outdoor set-

tings [11,13,14,16–20].

Despite the importance of pyrethroid-treated products in preventing mosquito biting and

reducing disease transmission, and laboratory behavioral assays showing transfluthrin-medi-

ated spatial (i.e., non-contact) repellency in Ae. aegypti mosquitoes [21–23], the mechanistic

basis of pyrethroid spatial repellency remains poorly understood and controversial. For exam-

ple, an earlier study showed that a pyrethroid (TL-I-73) inhibits the activities of odorant recep-

tors (Ors) induced by volatiles indole and R-(-)-1-octen-3-ol in Xenopus oocytes, suggesting

that the repellent activity of pyrethroids may be accounted for by their inhibitory effects on

Ors [24]. Another study showed that transfluthrin repellency was reduced in pyrethroid-resis-

tant Ae. aegypti mosquitoes carrying a kdr mutation [21] and proposed that neurotoxic irrita-

tion of mosquitoes by sublethal doses of transfluthrin as a mechanism of transfluthrin

repellency [21]. A more recent study [25] also showed reduced repellency by transfluthrin and

metofluthrin in another pyrethroid-resistant Ae. aegypti strain, Puerto Rico, carrying multiple

kdr mutations (V410L, V1016I, F1534C) [26,27]. However, surprisingly, these Puerto Rico

mosquitoes also exhibited resistance to repellency by mosquito repellents DEET, 2-undeca-

none and IR3535, which do not act on sodium channels. Furthermore, the same study [25]
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showed that transfluthrin and metofluthrin elicited electroantennogram (EAG) responses

(due to activation of olfactory receptor neurons in mosquito antennae) in adults of Ae. aegypti
mosquitoes and the amplitudes of EAG signals elicited by pyrethroids and non-pyrethroid

repellents were reduced in kdr mosquitoes. These authors [25] suggested that the reduced sen-

sitivity of Puerto Rico mosquitoes to pyrethroids and non-pyrethroid repellents may represent

a general fitness cost associated with the kdr mutations in Puerto Rico mosquitoes. Accord-

ingly, the fundamental questions of (i) whether pyrethroids activate or inhibit Ors activities

and (ii) whether activation of sodium channels per se mediates transfluthrin repellency remain

unclear.

In this study we took a combination of molecular genetics, electrophysiological and behavioral

approaches to understand the mechanism of transfluthrin repellency. Our results show that

sodium channel activation alone, not activation of olfactory receptors, is a principal mechanism of

repelling insects and transfluthrin enhances Or-mediated DEET repellency. Our findings have

significant practical implications for understanding the modes of action of pyrethroids as insect

repellents as well as for the development of a new generation of synergistic repellent mixtures that

may more effectively combat mosquitoes and other human disease vectors.

Methods

Insects and chemicals

Five Ae. aegypti mosquito lines were used: Two wild-type lines, Rockefeller and Orlando (BEI

Resources, NIAID, NIH); two pyrethroid-resistant lines KDR:ROCK [28], and Puerto Rico line

(BEI Resources, NIAID, NIH); and the olfactory defective orco-/- line (orco16) (BEI Resources,

NIAID, NIH) [29]. All the odorants used in this study and its sources are provided in S1 Table.

Hand-in-cage assay

The hand-in-cage behavioral assay followed similar procedures from Boyle et al [30]. Briefly, a

group of four to nine days-old females (about 40, mated, non-blood fed) inside a mosquito

cage (30 cm x 30 cm x 30 cm) (BioQuip, Rancho Dominguea, CA) were exposed to a human

hand wearing a modified glove with a window covered with two pieces of netting, as detailed

in Fig 1A. The bottom netting (5.5 cm x 6.5 cm) was treated with 500 μl of either solvent (ace-

tone), or test compounds. The top netting was not treated and prevented mosquitoes from

contacting the treated netting and the hand. A digital camera (e-con Systems Inc, San Jose,

CA, model: e-CAM51A) on the top of the cages recorded mosquito landing on the top netting

for five minutes. For each hand-in-cage experiment, 10 ± 2 cages were tested with acetone-

treated netting first, then in the same sequence, the ten cages were tested using test com-

pound-treated netting (i.e., treatment). The time interval of assays between the first trial (sol-

vent) and second trial (treatment) was at least 1.5 hours. Controls were from two trials of

solvent 1.5 hours apart to make sure that mosquitoes continue landing in the second trial at

the same rate. Repellency index was calculated using the following equation: Percentage repel-

lency = [1 - (cumulative number of landings on the window of treatment / cumulative number

of landings on the window of solvent treatment)] x 100). The assay was run at 27–30˚C and

relative humidity of 30–50% by at least two different hosts (i.e., testers) for each experiment.

Electrophysiology recordings

Electroantennogram were performed as described elsewhere [31,32] using a recording system

by Syntech company (Kirchzarten, Germany), which consisted of universal electrode holders,

a preamplifier (10x), an analog-to-digital signal converter (IDAC-4) and a stimulus controller
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(CS-55). The software EAGPro (Syntech) were used to visualize, record and analyze the data.

Insect antennae were bathed in a humidified air flow (1.2 l/min) under a microscope (100–

1000x, Nikon Eclipse FN1, Japan), and odorants were delivered by air flow (0.5 ml/min) into a

glass Pasteur pipet serving as an odorant cartridge. For delivery, 1 μl of pure odorants or trans-

fluthrin was applied at the inner wall of the glass cartridge.

To evaluate the activities of transfluthrin and its inactive 1S-cis isomer on mosquito wild-

type and mutant sodium channels, the wild-type AaNav1-1 and AaNav1-1 mutant carrying

two kdr mutations (S989P and V1016G) were expressed in Xenopus oocytes system and func-

tionally characterized using two-electrode voltage clamp as previously described [33,34]. Any

relevant detail is further denoted in the appropriate figure legend or text.

Data analysis and statistics

SigmaPlot 12.5 (Systat Software) was used to perform the statistics analysis and plot the figures.

After being plotted, figures were further edited (for color, labelling, etc.) and assembled in Cor-

elDRAW Graphic Suit 2020—version 22 (Corel Corporation, Ottawa, Canada). Unpaired Stu-

dent’s t-test was used to compare two sets of data. If data did not meet the normality or

equality of the variance assumptions needed for Student’s t-test, the equivalent Mann-Whitney

Rank Sum test was used instead. For paired comparison of multiple treatments on a same indi-

vidual against control a Friedman RM ANOVA on Ranks was used, with Dunnett’s multiple

comparison against a control treatment.

Results

Transfluthrin elicits spatial (i.e., non-contact) repellency in Ae. aegypti in a

hand-in-cage assay

To evaluate spatial repellency by transfluthrin in the presence of an attraction, a human hand,

we adopted a hand-in-cage assay developed by Boyle et al [30]. This assay setup involves place-

ment of a human hand with a modified glove in a mosquito cage (Fig 1A). When mosquitoes

in the cage are attracted to the human hand, the top netting serves as physical barrier prevent-

ing mosquitoes from direct contact with the bottom netting (above the hand) and the hand.

When the bottom netting was treated with acetone as control, the landing of mosquitoes on

Fig 1. Transfluthrin elicits spatial repellency in Ae. aegypti. (A) A schematic drawing of the hand-in-cage setup. (B) Dose-dependence of transfluthrin

repellency in Rockefeller; Student’s t-test, t = 0.25, df = 18, P = 0.802 for 0.1 ppm, Mann-Whitney Rank Sum test, U = 0, P< 0.001 for both 1, 10, 100 and

1000 ppm; NS = not significant, ���P< 0.001; n values for: control = 12, 0.1 ppm = 8, 1 ppm = 13, and the rest = 10. (C) Repellency by DEET (1 ppm) in

Rockefeller; Student’s t-test, t = 8.45, df = 21, P< 0.001; ���P< 0.001; n values for: control = 12 and DEET = 11. The control represents the baseline activity in

response to the solvent. Data are presented as mean ± SEM. Dots over the bars represent individual replicate values.

https://doi.org/10.1371/journal.pntd.0009546.g001
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the top netting was not affected. However, when the bottom netting was treated with transflu-

thrin, significantly less frequent landing of mosquitoes was observed (Fig 1B). This repellent

effect by transfluthrin vapor was observed at concentrations as low as 1 ppm of transfluthrin

(i.e., 20 ng/cm2) in Rockefeller (wild-type) mosquitoes (Fig 1B). Similarly, when the bottom

netting was treated with DEET (at 1 ppm), a gold-standard mosquito repellent, significant less

frequent landing of mosquitoes was observed (Fig 1C). Greater repellency was observed at

higher concentrations of transfluthrin (Fig 1B). However, at 100 ppm, about 10% of the mos-

quitoes exhibited uncoordinated locomotion, and at 1000 ppm, a small fraction of mosquitoes

(8.42 ± 2.2%) were knocked down during the assay. No such locomotive modifications were

observed at the lower concentrations. In the early stage of running the hand-in-cage assay

using transfluthrin, we continued monitor mosquito behavior in the cages every ten minutes

over a period of one hour, and the mortality over a period of 24h after the hand-in-cage assay

was done (i.e., after the hand with transfluthrin was removed). During this post-assay period,

we did not observe any abnormal behavior and mortality of the mosquitoes in the cages that

have been exposed to transfluthrin at 1 ppm or lower in the hand-in-cage assay. Therefore, in

subsequent experiments, we evaluated transfluthrin repellency only at 1 ppm or below to avoid

complications from the insecticidal and/or neurotoxic activity of transfluthrin.

Transfluthrin does not evoke any electroantennogram (EAG) signal

Yang and colleagues [25] recently reported that transfluthrin induces EAG responses in Ae.
aegypti, including Orlando (wild-type) and Puerto Rico (pyrethroid-resistant) mosquitoes.

During the early stage of this project, we also found that some transfluthrin samples, provided

by a former collaborator, elicited EAG responses in Ae. aegypti. However, we subsequently

found those transfluthrin samples contained impurities. When we repeated the experiment

using transfluthrin from Sigma-Aldrich (99.2–99.9% purity), we could not detect any EAG sig-

nals in either Rockefeller, Orlando or Puerto Rico mosquitoes, even when undiluted transflu-

thrin was delivered (Figs 2 and S1). Similarly, no EAG responses were detected by

transfluthrin from Jiangsu Yangnong Chemical Co. Ltd. (Jiangsu, China; 98.5% purity) (S1

Fig). In contrast (and as expected), DEET, 1-octen-3-ol and lactic acid all evoked EAG

responses (Figs 2 and S1). We speculate that impurities in our earlier transfluthrin samples

were responsible for eliciting EAG signals in our initial experiments.

Transfluthrin repellency is not reduced in orco-/- mosquitoes

Next, we evaluated transfluthrin and DEET repellency in an Ae. aegypti mutant, orco-/-, in

which the odorant receptor co-receptor gene (orco) was mutated resulting in impaired Or-

mediated olfactory pathways because Orco is essential for the function of Ors [29]. DEET

repellency was reduced in orco-/- mosquitoes (Fig 3) compared to the wild-type Ae. aegypti
strain Orlando, from which the orco-/- mutant was generated [29], consistent with the observa-

tion that DEET non-contact repellency is Or/Orco-dependent [29]. However, transfluthrin

repellency was not reduced in orco-/- mosquitoes (Fig 3), further indicating that transfluthrin

repellency is Or/Orco-independent (i.e., does not require activation of Or/Orco). Collectively,

results from EAG and the orco-/- mutant contradict the notion that transfluthrin activates

ORNs as part of its repellent mechanism.

Transfluthrin repellency depends on activation of voltage-gated sodium

channels

To determine the involvement of sodium channel activation in transfluthrin repellency,

we used Rockefeller (wild-type) and KDR:ROCK (pyrethroid-resistant, carrying the
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S989P+V1016G kdr allele, as the only mechanism of pyrethroid resistance within the genetic

background of Rockefeller (also called ROCK) [28]) strains in the hand-in-cage assay. KDR:

ROCK mosquitoes were 30-fold more resistant to knockdown by transfluthrin than Rockefel-

ler mosquitoes in a vapor toxicity bioassay (S2 Fig). We also confirmed that AaNav1-1 chan-

nels carrying the two kdr mutations were resistant to transfluthrin compared to AaNav1-1

wild-type channels (S2 Fig), similar to earlier studies reporting that the double mutation chan-

nel was resistant to permethrin and deltamethrin, two pyrethroids [35,36]. As shown in

Fig 2. Transfluthrin does not elicit electroantennogram in Ae. aegypti. Electroantennogram performed with two

wild-type lines, Orlando (A) and Rockefeller (B). A representative trace is shown above each plot; the asterisks

(�P< 0.05, ��P< 0.01) indicate significant differences against control within each mosquito line, Friedman RM

ANOVA on Ranks, χ2 = 46.49, df = 5, P< 0.001 for Orlando (A), and χ2 = 43.83, df = 5, P< 0.001 for Rockefeller (B);

n = 10 antennae. Boxes represents the 25th, 50th and 75th, whiskers the 10th and 90th, and white circles the 5th and 95th

percentiles of the data.

https://doi.org/10.1371/journal.pntd.0009546.g002

Fig 3. Transfluthrin repellency does not requires activation of Ors in Ae. aegypti. Repellency by 1 ppm of both

transfluthrin and DEET in Orlando and orco-/- mosquitoes; Student’s t-test, control: t = 0.05, df = 18, P = 0.963,

transfluthrin: t = 0.64, df = 17, P = 0.530, DEET: t = 5.17, df = 12, P< 0.001, NS = not significant, ���P< 0.001; n
values for: both controls and transfluthrin in orco-/- = 10, transfluthrin in Orlando = 9, DEET in Orlando = 6, and

DEET in orco-/- = 8. The controls represent the baseline activity in response to the solvent; Data are presented as

mean ± SEM. Dots over the bars represent individual replicate values.

https://doi.org/10.1371/journal.pntd.0009546.g003
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Fig 4A, transfluthrin repellency was reduced in KDR:ROCK compared to Rockefeller. Further-

more, we found that repellency by DEET was similar in Rockefeller and KDR:ROCK mosqui-

toes (Fig 4A), indicating that S989P+V1016G mutations did not reduce DEET repellency.

To further evaluate the role of sodium channels in transfluthrin repellency, we took advan-

tage of stereospecific effects of pyrethroids on sodium channels and toxicity [3,37]. Pyrethroids

possess alternative chiral configurations at C1 and C3 of the cyclopropane ring. 1R-cis and 1R-

trans isomers are active, whereas 1S-cis, and 1S-trans isomers are inactive [3,37]. Commercial

transfluthrin is in 1R-trans configuration (Fig 4B). Upon repolarization under voltage-clamp

conditions, transfluthrin induced tail-currents in the Ae aegypti sodium channel, AaNav1-1,

Fig 4. Transfluthrin repellency depends on its action on voltage-gated sodium channels. (A) Repellency by

transfluthrin and DEET in Rockefeller and KDR:ROCK mosquitoes. Student’s t-test, for control: t = 0.20, df = 19,

P = 0.840, for transfluthrin 1 ppm: t = 4.62, df = 21, P< 0.001, for transfluthrin 10 ppm: t = 6.39, df = 18, P< 0.001, for

DEET: t = 0.39, df = 17, P = 0.701, NS = not significant, ���P< 0.001; n values for: KDR:ROCK for DEET = 8, KDR:

ROCK for control = 9, Rockefeller for DEET = 11, Rockefeller for control = 12, Rockefeller for transfluthrin

1 ppm = 13, and the rest = 10. (B) Measurement of tail-current induced by 1R-trans (transfluthrin) or 1S-cis isomers

following a 100-pulse train of 5-ms depolarization from -120 mV to 0 mV with 5-ms interval from AaNav1-1 channels

in Xenopus oocytes [35]. (C) Repellency by 1S-cis isomer in Rockefeller; Student’s t-test, for 0 vs 1 ppm: t = 0.1, df = 20,

P = 0.922, for 0 vs 10 ppm: t = 0.16, df = 20, P = 0.871, NS = not significant; n values for: control = 12, and the rest = 10.

The controls represent the baseline activity in response to the solvent. Data in panels A and C are presented as

mean ± SEM. Dots over the bars represent individual replicate values.

https://doi.org/10.1371/journal.pntd.0009546.g004
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expressed in Xenopus oocytes (Fig 4B), indicating the prolonged opening of sodium channels

by transfluthrin. In contrast, 1S-cis isomer did not induce any tail current (Fig 4B), indicating

that 1S-cis isomer cannot act on sodium channels. As expected, 1S-cis isomer did not induce

knockdown in a vapor toxicity bioassay (S2 Fig). Importantly, 1S-cis isomer did not elicit spa-

tial repellency (Fig 4C). These results clearly showed that activation of sodium channels is

essential for transfluthrin to elicit repellency.

Transfluthrin enhances the potency of DEET

We were puzzled by the unexpected differences between our EAG results and those of Yang

and colleagues [25]. One possibility, we hypothesized, is that the effect of transfluthrin on

olfactory responses, as observed in our preliminary experiments and in the study of Yang

and colleagues [25], may be caused in part by some type of cross-interaction between transflu-

thrin and additional olfactory response-eliciting compounds that are fortuitously present in

certain transfluthrin samples. To test this hypothesis, we examined whether transfluthrin

affects DEET repellency in Rockefeller mosquitoes. Remarkably, transfluthrin at 0.1 ppm (i.e.,

2 ng/cm2), which did not elicit repellency alone, enhanced DEET repellency in Rockefeller

mosquitoes (Fig 5).

Commercial transfluthrin-based mosquito repellents possess both sodium

channel-mediated and Or-mediated repellencies

It is possible that commercial transfluthrin repellent products may contain impurities that

could activate Ors. To test that, we collected three commercial transfluthrin-based mosquito

repellent products from Brazil, China, and France. The percentage of the active ingredient

(i.e., transfluthrin) in these products ranged from 0.80 to 0.92%. We diluted each product to

the concentration of 1 ppm of transfluthrin for direct comparison with the Sigma-Aldrich

Fig 5. Transfluthrin potentiates the repellency by DEET in Rockefeller mosquitoes. Student’s t-test, for mixture vs
transfluthrin: t = 12.82, df = 13, P< 0.001, for mixture vs DEET: t = 5.57, df = 16, P< 0.001, ���P< 0.001; n values for:

mixture = 7, transfluthrin = 8, DEET = 11, and control = 12. The control represents the baseline activity in response to

the solvent. Data are presented as mean ± SEM, and dots over the bars represent individual replicate values.

https://doi.org/10.1371/journal.pntd.0009546.g005
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transfluthrin in the hand-in-cage assay. Remarkably, all three commercial transfluthrin

products elicited repellency greater than that by Sigma-Aldrich’s transfluthrin in Orlando

mosquitoes. Furthermore, while the repellency by the Sigma-Aldrich transfluthrin in orco-/-

mosquitoes remained intact (Fig 3), repellency by these products were significantly reduced in

orco-/- mosquitoes (Fig 6). Interestingly, the remaining percentage of repellency in orco-/- mos-

quitoes by the commercial products was comparable to that by the Sigma-Aldrich transfluthrin

in wild-type Rockefeller and Orlando mosquitoes (Figs 1B and 3). Together, these results sug-

gest that all examined commercial transfluthrin products contain additional compounds that

activate Ors, which contribute to repellency.

Discussion

Current understanding on how insect repellents, such as DEET, evoke spatial repellency can

be categorized into three major modes of action: activation of olfactory sensory receptors that

mediate repellent pathways [29,38–42], inhibition of olfactory sensory processing of attraction

cues from a host [24,43–45] and/or chemically masking attractants thereby reducing host

attraction [38,42,46]. In this study, we provide experimental evidence for a new mechanism of

spatial repellency via activation of sodium channels, independently of activation or inhibition

of ORNs, as a principal mechanism of transfluthrin repellency. Together with recent demon-

stration of activation of a transient receptor potential cation channel (TrpA1) by nepetalactone

as a basis of insect repellency [47], our study provides compelling evidence for an emerging

mechanism of insect repellency via activation of insect ion channels other than Orco/Ors.

Moreover, our discovery of potential synergism between sodium channel activating

Fig 6. Repellency by commercial transfluthrin products consists of both Or-mediated and Or-independent

repellency in Ae. aegypti. Dilutions were made in order to adjust the concentration of transfluthrin to 1 ppm,

accordingly to the original concentration indicated in the product label. The Orlando and orco-/- mosquito lines were

used. Student’s t-test, for control: t = 0.05, df = 18, P = 0.963, for France: t = 7.40, df = 12, P< 0.001, for Brazil: t = 8.31,

df = 16, P< 0.001, Mann-Whitney Rank Sum test, for China: U = 0.0, P< 0.001, NS = not significant, ���P< 0.001;

n = 9 cages for Brazil in both lines, n = 10 cages for both controls, and n = 7 cages for the rest. The controls represent

the baseline activity in response to the solvent. Data are presented as mean ± SEM. Each black circle over the bars

represents individual replicate values.

https://doi.org/10.1371/journal.pntd.0009546.g006
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transfluthrin and Or-activating DEET points to an exciting possibility to use natural pyre-

thrins, synthetic pyrethroids or other sodium channel activators as general synergists to

increase the potency of DEET and possibly other Or-activating insect repellents.

Repellency by insecticides that disrupt the function of the nervous system is often called

irritancy, which occurs as a sublethal neurotoxic event and often at direct contact with treated

surfaces [21,48,49]. Prior to this study, a common belief of the mechanism of pyrethroid repel-

lency is that pyrethroids causes a general neurotoxic effect, which consequently disables mos-

quitoes from finding hosts [42]. This is an attractive hypothesis, especially when pyrethroid

concentrations reach sublethal levels and mosquitoes are in direct contact and/or are very

close to pyrethroid vapor-emitting devices. Transfluthrin at such sublethal concentrations

would likely disrupt the normal function of electrical signaling by altering the gating of sodium

channels, resulting in certain behavioral impairments, as observed in our behavioral assay for

100 ppm or higher. In this study, we provide experimental evidence showing that transflu-

thrin-mediated spatial repellency can occur at nonlethal concentrations (e.g., at 1 ppm) at

which no behavioral impairment was observed during and after exposure. In a natural setting,

mosquitoes would encounter such low concentrations of transfluthrin vapor first at a distance,

before getting closer to the emanating source. Our results suggest that transfluthrin-mediated

spatial repellency via activation of sodium channels already occurs before mosquitoes encoun-

ter higher transfluthrin concentrations.

Our results from the experiments using the inactive isomer and Orco mutant mosquitoes

show that activation of sodium channels alone is sufficient for transfluthrin repellency. Reduced

repellency in KDR:ROCK mosquitoes is most likely due to the presence of the two kdr mutations

(S989P and V1016G) which reduce the action of transfluthrin on sodium channels. Possible

genetic differences other than the kdr allele are possible, but still unknown between Rockefeller

and ROCK:KDR strains (Smith et al., 2018). How activation of sodium channels alone evokes

repellency remains to be further investigated. Differential sensitivity of insect sodium channel var-

iants (generated via alternative splicing or RNA editing) to pyrethroids has been well-documented

[5]. We predict that transfluthrin may activate hypersensitive sodium channel variants in certain

neural circuits which control repellency or inhibit mosquito’s ability to find host. Activation of

such a circuit(s) directly or indirectly potentiate neuronal excitability of specific Or-mediated

repellent pathways. Functional identification and localization of transfluthrin–hypersensitive

sodium channel variants will be necessary to advance further mechanistic understanding of the

transfluthrin synergism in insect olfaction. Future research should also use direct imaging of neu-

ral circuits in the mosquito brain to gain further insights into how transfluthrin-mediated sodium

channel-activation impacts olfactory signal processing in the insect brain.

Results from this study likely have immediate and significant practical implications. In par-

ticular, the synergism between sodium channel-activating pyrethroids and DEET as discov-

ered in this study, could provide a basis for reciprocally augmenting the potency of two classes

of insect repellents and lowering the concentration of each repellent used. This would be espe-

cially significant in terms of minimizing both, the costs and the toxic effects of transfluthrin

and other repellent products, while maintaining adequate repellency and durability of com-

mercial synthetic insect repellents. Fortuitously, current commercial transfluthrin repellent

products may already exploited the hidden synergism in repellency by sodium channel-medi-

ated transfluthrin and unknown Or-activating component(s) in these products. Future deter-

mination of these components that potentially synergize transfluthrin repellency may provide

new lead compounds for the development of more potent insect repellent mixtures.

Reduced transfluthrin repellency against kdr mosquitoes as reported in our study and oth-

ers’ studies [21,25] suggests potential reduction in the effectiveness of pyrethroid-based prod-

ucts in repelling pyrethroid resistant insect populations. Further studies are needed to

PLOS NEGLECTED TROPICAL DISEASES Transfluthrin repellency in Aedes aegypti

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009546 July 8, 2021 10 / 14

https://doi.org/10.1371/journal.pntd.0009546


investigate whether extensive use of volatile pyrethroids as spatial repellents influences the

selection of pyrethroid resistance in natural populations. Better understanding of mosquito

behaviors in response to volatile pyrethroids could provide valuable information for develop-

ing more judicious strategies to use this unique class of insecticides in the control of vector-

borne human diseases. Our findings could also spur renewed interests in discovering new

sodium channel activators with unique receptor sites on sodium channels that are distinct

from the pyrethroid receptor sites [50,51]. Such new chemistries could be more effective in

repel kdr mosquitoes. Overall, results from this study illustrate the first example of sodium

channel activation-based repellent mechanism in insects, and provide a novel framework for

future development of synergistic insect repellent mixtures to combat mosquitoes and other

human disease vectors.
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