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Abstract

Background: Pathway analysis is one of the later stage data analysis steps essential in interpreting high-throughput
gene expression data. We propose a set of algorithms which given gene expression data can recognize which
portion of sub-pathways are actively utilized in the biological system being studied. The degree of activation is
measured by conditional probability of the input expression data based on the Bayesian Network model constructed
from the topological pathway.

Results: We demonstrate the effectiveness of our pathway analysis method by conducting two case studies. The first
one applies our method to a well-studied temporal microarray data set for the cell cycle using the KEGG Cell Cycle
pathway. Our method closely reproduces the biological claims associated with the data sets, but unlike the original
work ours can produce how pathway routes interact with each other above and beyond merely identifying which
pathway routes are involved in the process. The second study applies the method to the p53 mutation microarray
data to perform a comparative study.

Conclusions: We show that our method achieves comparable performance against all other pathway analysis
systems included in this study in identifying p53 altered pathways. Our method could pave a new way of carrying out
next generation pathway analysis.

Keywords: Topological Pathway Analysis, Bayesian Network, Depth First Search

Background
In this era of biomedical big data, a noticeable trend
is that newly acquired genomics data (specifically, gene
expression data) is compared with the prior known gene
regulation relationships which are typically organized into
curated molecular pathways (e.g., KEGG [1], Biocarta [2],
Reactome [3], Wikipathways [4]). In general, gene expres-
sion data is first processed to identify significant differ-
entially expressed (DE) genes using statistical methods
like Limma [5], SAM [6], SPH [7], etc. These identified
DE genes are then divided into groups of similar patterns
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using clustering programs [8] or pattern based programs
[9, 10]. Each group of similarly behaving genes is then
examined to test if each group includes genes known for
any particular biological function (e.g., GOStat [11]) or
molecular pathway at unusually high frequencies (e.g.,
DAVID [12], GSEA [13]). Although these gene enrich-
ment analysis methods are useful in recognizing some
basic nature of perturbed signals of the biological system
under study, they do not discern if any specific pathway
is activated or suppressed other than the fact that some
pathway could be highly involved in the experimental sys-
tem being studied. The next generation pathway analysis
methods aimed at overcoming such deficiency of gene
enrichment methods by organizing known gene-gene
interaction relationships into topological pathways and
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analyze gene expression data on top of them so that the
activated or suppressed state of the pathway can be com-
putationally revealed (e.g., PARADIM [14], SPIA [15]).

We previously published topology-based pathway anal-
ysis methods belonging to this next generation pathway
analysis system [16–19]. Specifically, our method pre-
sented in [18, 19] departs from the conventional topology-
based systems like PARADIM or SPIA in the sense that
our method dynamically encodes pathway routes as a
Bayesian network and uses both gene expression and
mutation data as input and identifies not only if any path-
way is activated or suppressed but also through which
route(s) of the pathway such gene expression perturba-
tion could be propagating. However, one limitation of our
previous work is that the method requires preselection
of the start and end of pathway routes to be analyzed.
In addition, through empirical studies, we discover that
our previous method tends to identify “choppy” pathway
routes that are partially activated or suppressed, thus less
useful if one’s goal is to find overall patterns of path-
way route usages. The goal of this paper is to report the
extension of our previous work [18, 19] in which multiple
new algorithms are introduced to isolate highly regulat-
ing (activation and/or suppression) sub-components of
the pathways and conveniently visualize the overall pat-
terns of pathway activation or suppression directly over
the pathway diagrams. We call this system Deep Pathway
Analyzer (DPA).

Among existing gene set enrichment analysis meth-
ods, GSEA is one of the most popular software pack-
ages in which computing the enrichment score is done
by a variation of the weighted Kolmogorov-Smirnov-like
statistic [13]. SPIA by [15] is a topology-based system
and it proposes to measure pathway significance by per-
forming statistical tests against random permutation. An
improvement over SPIA is PARADIGM [14] which mod-
els the pathway as a factor graph and uses a statistical
method to compute a sample specific inference, specif-
ically for genomics data obtained from cancer patients.
Two recent systems by [20] and [21] also encode the path-
way as a Bayesian network. After removing cycles in the
graph, they train the model with expression data. Signif-
icance of the score is produced by bootstrap-generated
data. DRAGEN by [22] detects differentially express-
ing genes by performing a hypothesis testing designed
to figure out if linear model has identical parameters.
Most recently, Altered Pathway Analysis tool (APA) by
[23] aims to detect altered pathways by dynamically
calculating pathway rewiring through analyzing correla-
tion between genes, but this system does not use prior
knowledge. Our work is different from these existing
topology-based systems by the feature, what we call,
route-based recognition capability, and using this feature
we can produce deeper analysis outcomes suggesting how

identified "perturbed" pathway routes may interact with
each other.

The rest of this paper is organized as follows. “Meth-
ods” section briefly reviews existing pathway analysis
methods and introduces the Bayesian network model and
the algorithms newly developed. Section III describes
the results of our algorithm being tested using a pub-
lic domain temporal microarray data set from the cell
cycle experiment [24]. Afterwards we show the outcome
of applying our algorithm to the p53 mutation microar-
ray data and specifically compare our analysis outcome
with the similar analysis done by [23]. Two case studies
are shown to demonstrate the generality of our enhanced
method. Lastly, Section VI is the conclusion.

Methods
In this section we first briefly review the methodology
proposed in our previous work [19] for the sake of com-
pleteness and then present two new algorithms that are
designed to improve deficiencies of the earlier system.

Review of the previous Model
The key idea of DPA is identifying “routes” of aber-
rant pathways. Each pathway route G∗ is encoded as a
Bayesian Network G which is initialized with a sequence
of conditional probabilities which are designed to encode
directionality of regulatory relationships encoded in the
pathways, i.e., activation and inhibition relationships. The
transformation process from G∗ to the corresponding
Bayesian Network G is illustrated in Algorithm.1. Next we
show the biological interpretation logic behind the con-
ditional probability table for eij. Consider the activation
table given in (Table.1) (for the inhibition table, refer to
(Table 2) which is built in a similar way): If the parent gene
of gj, gi, has function gain mutation, and overly expressed,
namely Mi = Ri = +1, then the target gj would also be
highly likely to overexpress, i.e. Rj = +1, given the edge
between them in G∗ is ‘activation’. As a result,

P(Rj = +1|Mi = Ri = +1) = 1 − ε

where ε is the error rate we can tolerate and is close to
zero. Similarly, if the parent gene of gj has function loss
mutation, or its expression level is down-regulated in test
case, then the downstream regulation towards gj would
be likely not functioning. Therefore, gj would tend to be

Table 1 Activation

Mi Ri Rj = +1 Rj = −1

+1 +1 1 − ε∗ ε

−1 +1 γ 1 − γ

+1 −1 1 − γ γ

−1 −1 ε 1 − ε
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Table 2 Inhibition

Mi Ri Rj = +1 Rj = −1

+1 +1 ε 1 − ε

−1 +1 1 − γ γ

+1 −1 γ 1 − γ

−1 −1 1 − ε ε

∗ε ∈ (0, 0.5) is the error rate we could tolerate

underexpressive, namely Rj = −1, and the corresponding
probability is flipped.

Let the pathway of interest be converted into a gene
regulation network GB = (VB, EB), where VB = {gi|i =
1 . . . |VB|} and EB = {(gi, gj)|gi, gj ∈ VB}. Consider a given
pathway route G∗ = (V ∗, E∗) in GB where V ∗ = {gik |k =
1 . . . |V ∗|} and E∗ = {(gi, gj)|gi, gj ∈ V ∗} ⊂ EB.

Once the Bayesian Network G is generated from
G∗, the pathway route is ranked by conditional prob-
ability of the observed data given G normalized by
P(R, M are consistent|G) as shown in (1) [19] where rs,
ms are, respectively, the expression observation and the
mutation observation for the sample s.

Advantages of this measure are: (i) the analysis could
allow biologists to easily pinpoint which biological pro-
cesses are likely to be overly activated or suppressed; and
(ii) even though some expression values are flipped due to
random errors from the genomic data (it is observed to be
−1 when it is actually +1), the whole path would still have
a high score since the majority of other genes could have
consistent expression observations.

Score(G∗, rs, ms) = P(R = rs, M = ms | G)

P(R, M are consistent | G)
(1)

THE REGULATION PROCESS FOR eij IN G∗
Then the score is extended to be a signed score by (2)

which varies from −1 (highly suppressed) to +1 (highly
enhanced). The definition of a pathway route being “acti-
vated” or “suppressed” is the following.

sScore(G∗, rs, ms) =Ĩ(r|G∗|
s , ṙ|G∗|

s ) · Score(G∗, rs, ms)

Ĩ(x, y) =
{

+1 x = y
−1 x �= y

(2)

where r|G∗|
s is the observed expression level of the last

available node for the input sample s in the route G∗ and
ṙ|G∗|

s is the expected expression level of the same node
calculated by the interpretation logic.

Aggregating the scores for routes in a pathway, we
define the pathway score in (3). We simply measure the
significance of this pathway, GB, by using the propor-
tion of routes that have an average of all the patients’

scores, calculated by equation (1), that is larger than some
threshold t. Each perturbed route is weighted by its length.

pScoreS(GB) = 1∑
G∗∈GB wG∗∑

G∗∈GB

wG∗ I(
1
|S|

∑
s∈S

Scores(G∗) ≥ t)
(3)

Statistical Significance Measure on the Route Score
In this section, we introduce a new measure to quantify
the statistical significance for the route score: the proba-
bility of route score being one in (1) conditioning on the
observation for each gene in route G∗ being randomly
generated. The formula is shown in (4). Mutation data
ms is sparse and the probability of observing given ms by
chance is close to zero, thus it is not proper to consider
the randomness of ms here. Based on this assumption, ms
is treated as prior parameter. Thus the score is reduced to
(5).

SigScore(G∗, rs, ms) =P(rs, ms are consistent | P0)

P0 : R =
{

+1 p = 0.5
−1 p = 0.5

(4)

SigScore(G∗, rs, ms) = P(rs are consistent | P0, Ms = ms)

(5)

Suppose w is the number of genes in the route, then

SigScore(G∗, rs, ms)=P(rs are consistent | P0, Ms = ms)

=2(0.5)w = (0.5)w−1

In order to measure the significance of the pathway score
in (3), we calculate the probability of observing Q dif-
ferentially regulated routes in a pathway GB given the
observations are selected randomly. The number Q fol-
lows Poisson Binomial Distribution [25] and this probabil-
ity can be approximated by (6) [26] assuming GB consists
of k routes.
SigScoreGB = Pr(Q = q) ≈ Binom

(
n,

μ

k

)
μ =

∑
G∗∈GB

∏
s

SigScore(G∗, rs, ms)

(6)

This probability can serve as the p-value of the hypoth-
esis test whose null hypothesis is that the observation is
generated randomly by P0. Thus low SigScoreGB indicates
rejection of null hypothesis, and the lower the SigScore is,
the more significant the calculated pathway score is.

Hyper Parameter Analysis and Dynamic Parameter Setting
In this section, we discuss issues related to setting the
hyper-parameters. The key idea behind setting the hyper
parameters is to make the false discovery rate associated
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with route score controllable. Consider a pathway route
G∗ with length of |G∗| having |G∗| − 1 edges. The route
score in (4) can be approximated by a simpler formula (7)
involving the number of inconsistent edges, K. This for-
mula is to capture the intuition that whenever an inconsis-
tent edge is discovered according to data, we penalize the
score by the hyper-parameter ε, and otherwise we reward
the score by 1 − ε.

SigScore(G∗, K) = εK (1 − ε)|G∗|−1−K

(1 − ε)|G∗|−1 = (
ε

1 − ε
)K

(7)

Next we proceed to derive the distribution of K assum-
ing that each edge is discovered inconsistent indepen-
dently by chance. That is, for each edge ei, i = 1 . . . |G∗| −
1, we define Bernoulli random variable Xi = 1 if ei is
inconsistent; Xi = 0 otherwise. Thus P(Xi = 1) =
0.5, Xi i.i.d. ∼ Bernoulli(0.5). Then K = ∑

i Xi fol-
lows Binomial distribution Bin(0.5, |G∗|− 1) since Xi’s are
independent. Based on this distribution, one can pick ε

such that the majority of the scores generated under null
hypothesis (the portion ≥ 1 − α) is less than some thresh-
old t, namely, P(SigScore(G∗, K) ≥ t) < α. Since SigScore
in (7) is monotonically decreasing by K, we have

P((
ε

1 − ε
)K ≥ t) < α (8)

P(K ≤ (log
ε

1 − ε
)−1 log t) < α ∀ε ∈ (0, 0.5)

Since K ’s distribution is known, we can assign
(log ε

1−ε
)−1 log t to be no larger than qα , which is exactly

the quantile value such that P(K ≤ qα) = α as shown in
Fig. 1. The quantile value is available from the binomial
probability table. Actually since binomial distribution
offers limited confidence level options, one can use the
quantile of the normal approximation of the binomial
distribution instead [27]. By solving the equation, we have:

(log
ε

1 − ε
)−1 log t ≤ qα

Here when t = 1, K ≡ 0 (entirely consistent) should
hold according to the equation (8) since ε ∈ (0, 0.5). This
indicates that independent of ε, only routes with no incon-
sistency are discovered if t = 1, but this arrangement
would be too strict.

In case when t ∈ (0, 1),

ε ≤ B(t, α) = 1 − 1
1 + qα

√
t

∈ (0, 0.5) (9)

The intuition behind this formula is the following. The
formula (9) clearly indicates that the upper bound of ε,
B(t, α), increases if either t or α increases. If we keep
the upper bound fixed, increasing t will make α decrease
while providing a better confidence level and thus result-
ing in a smaller false positive rate.

As far as the hyper-parameter γ is concerned, given
any edge eij in the route, the marginal probability P(Rj =
+1|Ri = +1) = ∑

Mi P(Rj = +1|Ri = +1, Mi)/P(Ri =
+1) = (1 + γ − ε)/2 if no mutation information is avail-
able. To penalize inconsistency, one can set γ larger than
ε. However, the inconsistency should also be penalized if
mutation information is present as shown in Table 1-2,
and in that case γ decreases making γ ∈ (ε, 0.5). This also
explains why the setting ε = 0.1 and γ = 0.25 gives a good
result as such outcome has been presented in one of our
previous works [18]. In this paper, we choose to set γ to
be the midpoint between ε and 0.5, namely, (ε + 0.5)/2.

For all the experiments in this work, we dynamically
calculate ε using the upper bound provided by (9) with
threshold t = 0.8 and α = 0.05 so that at most 5%
scores generated randomly under the null hypothesis can
become larger than 0.8 as such condition is guaranteed
by (8).

Algorithmic Approach to Deeper Pathway Analysis
Here we propose a set of algorithms which aim to recog-
nize all the “perturbed” portion of a pathway based upon
input omics data which may include not only gene expres-
sion data but also mutation data. We label “perturbed”
portion as the sub-network whose gene-gene interaction
relationships are recognized as “perturbed” within the
network topology when the input expression data is com-
pared to the known relationships captured in the pathway
network. It uses a Depth-First-Search[28] to extract all
possible routes starting from a given node in the path-
way and calculates the signed score using (2) at each step
so that the perturbed portion, i.e., the subnetworks falling
outsides of some threshold scores close to +1 for “acti-
vated” (−1 for “suppressed”) can be isolated. This process
is described formally in Algorithm.2. Due to space limita-
tion, only the algorithm calculating the “activated” portion
of the pathway is shown. Identifying the suppressed por-
tion of the pathways can be obtained by replacing line 5 in
Algorithm.2 with ‘if r|G∗| == −ṙ|G∗| AND score == 1’.

The motivations for developing the algorithm are man-
ifold. First, the route computation of a given pathway
can be done dynamically. Second, this dynamic route
computation and the generation of Bayesian network real-
time allows performing the analysis comprehensively but
efficiently because all small sub-segments of each long
pathway route are examined independently and checked
if any of sub-segments exceed the thresholds for deter-
mining significantly “activated” or “suppressed”. Third, our
algorithm solution is conducive to running the analysis
in parallel for speed up. The complexity of examining
all possible pathway sub-segments by running process
GetRoutes with all existing nodes in the pathway (vi, i =
1 . . . |VB|) as starting node is exponential. But since exam-
ining each possible starting node in a given pathway is
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Fig. 1 Distribution of K, the number of the edges being penalized, confidence level α and quantile for threshold t

independent of each other, the |VB| processes can be easily
parallelized. The time complexity of this algorithm is ana-
lyzed briefly. Since the algorithm runs depth first search
through the pathway graph GB, this takes O(|E|) steps.
For each step, we need to build the Bayesian Network
and calculate the conditional probability (4). For n ran-
dom variables each possibly having d different possible
values, the calculation takes O(dn) in the worst case. How-
ever, in our application, our route setting makes d ≤ 2
and n ≤ 3 for each edge, meaning at most 3 nodes
(Ri, Mi and Rj for eij) each having at most 2 possible val-
ues are considered. In this case, calculating the probability
takes O(1) time. In summary, the algorithm takes linear
time O(|E|).

Results
Cell Cycle Study
Our first experiment is to apply our algorithms to the
microarray data set by [24] which aimed to compare the
gene expression pattern of well-publicized cell cycling
phases, G1, S, G2, and M. Our method shows — for the
first time — how the involved genes are interacting with
each other in each phase over the pathway topology and
how that interacting pattern changes over time revealing
the repeating pattern of cell cycling phases.

Algorithm 1 Converting pathway interaction G∗ to
Bayesian Network G

1: procedure ConvertRoute(G∗ = (gi, gj))
2: For gi, k = 1 . . . |V ∗| in G∗, two nodes, Ri and Mi, are

created in the Bayesian Network G. The former represents
expression level of gi and the latter represents the mutation
information.

3: For each edge eij ∈ E∗ leads to the generation of two
edges targeting at Rj : Ri → Rj and Mi → Rj. The condi-
tional probability tables (CPT) corresponding to these two
edges are determined by the type of edge eij in G∗: acti-
vation or inhibition. These two relationships corresponds
to two different conditional probability tables as shown in
Table 1 and Table 2[19]. ε is set dynamically by (9).

4: return G
5: end procedure

Data Description
The cell cycle data set by [24] used synchronized HeLa
S3 cells. The microarray data was processed and log2
test-over-control RNA expression ratio was provided by
the authors. We transformed the log2 ratios into expres-
sion observation r by (10). Log2 (Cy5/Cy3) was retrieved
for each data point and used for all analyses, where
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(Cy5/Cy3) is the normalized ratio of the background-
corrected intensities, as defined in [29]. Algorithm.2 is run
with input GB: KEGG Cell Cycle pathway gene regulation
network and D = (r, m). Since no mutation information
is available for the S3 HeLa cell, m is set as a null vector.
The procedure is run on all possible starting nodes in GB.

ri =

⎧⎪⎪⎨
⎪⎪⎩

+1 log2
(

Cy5i
Cy3i

)
> 0

−1 log2
(

Cy5i
Cy3i

)
< 0

missing otherwise

(10)

Result and Discussion
After extracting all possible pathway routes from KEGG
Cell Cycle pathway, we calculate the scores at each time
point. The network diagram shown in Fig. 2 is the Cell
Cycle pathway from KEGG in which genes are displayed
as nodes and prior known relationships of activation or
inhibition are shown as directed edges. One important
observation from this network diagram is that the changes
of perturbed patterns closely match the anticipated tran-
sition of four cell cycling phases of G1, S, G2, and M
as reported in the literature. The human cell cycle is a
finely-tuned regulatory system consisting of multiple cel-
lular checkpoints that allow the cell to progress through
each phase, ensuring proper division. A network of pro-
teins such as cyclins (CCNs), cyclin-dependent kinases
(CDKs), and CDK inhibitors (CDKNs) regulate the cell’s
transition into each phase. Changes in gene expression at
the transcriptional level can be seen throughout the cell
cycle, with certain genes being expressed temporally at
either higher or lower levels depending on the phase of the
cycle the cell is in [31]. According to the literature, mRNA
levels of most of these genes correlate with their function
[32]. The patterns presented in Fig. 2 could be regarded
as “signatures” of pathways at different time points during
the cell cycle.

Next is to report that the route scoring scheme pre-
sented by (1) successfully captures the information for
each cell cycle phase. A multinomial regression LASSO
model [33] is fitted to predict each cell cycle phase given
the route scores calculated at different time points. By set-
ting the penalty coefficient of 0.32, we compute the top
features for each phase and the result is shown in Table 3.

Although the Cell Cycle pathway shown in Fig. 2 is from
KEGG, it was rendered into a network to emphasize its
repeating patterns using Rgraphviz package. Since scien-
tists who use KEGG graphs are not familiar with this
rendering, we show in Fig. 3 the original KEGG Cell Cycle
graph with routes identified in Table 3 for each cell cycle
annotated in different colors, purple for G1, blue for S,
yellow for G2 and orange for M. What is noticeable in
this color coded display over the original KEGG Cell Cycle
graph is that all four routes for G1 through M phases

Algorithm 2 Enhanced Pathway Routes Algorithm
1: procedure IfActive(vi, vj, D)
2: G∗ := {vi, vj}
3: G := ConvertRoute(G∗)
4: score := P(R=r,M=m|G)

P(R,M are consistent|G)

� calculating (1)
5: if r|G∗| == ṙ|G∗| AND score == 1 then
6: return TRUE
7: else
8: return FALSE
9: end if

10: end procedure
11:
12: procedure GetRoute(vi, GB = (V , E), D = (r, m))
13: Let S be an empty array
14: Let rt be an empty array
15: rt.push(vi)
16: Let tracing be an empty array
17: GetNext(vi, GB, D)

18: return S
19: end procedure
20:
21: procedure GetNext(vi, GB, D)
22: for j = 1 → |V | do
23: if eij /∈ E then
24: continue
25: else
26: if vj ∈ tracing then
27: continue
28: else
29: tracing.push(vj)
30: end if
31: if IfActive(vi, vj, D)==TRUE then
32: rt.push(vj)
33: rtt := GetNext(vj)
34: if length(rtt) > length(rt) then
35: return rtt � rtt has new nodes appended
36: else � rtt has no new nodes
37: S.push(rt)
38: rt.pop()
39: tracing.pop()
40: end if
41: end if
42: end if
43: end for
44: return rt
45: end procedure

clearly coincide with the nodes mapped by their respec-
tive colors. What is also noticeable in this figure is that
the color coding of four routes (G1, S, G2 and M) approx-
imately reveal their respective positions from left to right
of the graph. This pattern clearly matches that this par-
ticular KEGG graph is designed to show the transition of
G1 through M left to right as such temporality is actu-
ally annotated at the bottom of the original graph. We also
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Fig. 2 Pathway behavior by time with part of Thy-Thy Synchronization data. KEGG Cell Cycle pathway is drawn by Rgraphviz package[30]. The
activated pathway routes are highlighted in red. The cell cycle phase is notated by [24]. The notation in [24] is fuzzy thus the phase on transition
time point between different phases may not be completely accurate. Periodical pathway activation behavior can be observed. From the
visualization, we can also see that the pathway routes has an up and down behavior pattern. And the same phase time point share similar pathway
behavior as the same section of pathway gets highlighted. The biological markers for each phase are drawn as rectangles instead of circles

note that the yellow and orange color overlay of routes for
G2 and M phases lands almost at the same set of nodes.
This is expected since the two phases are usually not sep-
arable and for that reason they are generally denoted as
G2/M phase[24].

Lastly, we show the result of performing hierarchical
clustering on the identified routes and scores in Fig. 4a.
Noticeable in this heat map is the clear consistency
between the transition of cell cycling phases and what has
been reported in the original publication of the data set
[24].

Comparison with Other Tools on P53 Mutation Dataset
In this section, same pathway analysis [23] on p53 muta-
tion dataset[34] is performed with Deep pathway analy-
sis (DPA). The corresponding results is then compared

Table 3 Top features selected for each cell cycle phase

β Routes Class

0.5596 BUB1, BUB3, ANAPC10, PTTG2, ESPL1, STAG1 M

0.3688 TFDP1, CCNE1, RB1 S

0.3222 BUB1, BUB3, ANAPC10, PTTG2, ESPL1, SMC1A G2

0.0894 CUL1, CDKN1A, CDK6 G1

against the APA[23], ORA[35], GSCA[36], GSNCA[37],
ESEA[38], SPIA[15], PWEA[39] and DRAGEN[22].

Data Description
The p53 mutation microarray dataset has been widely
used as a pathway enrichment analysis benchmark, con-
taining 33 test samples having mutated p53 and 17 wild
type control samples. First, the test vs control data is pro-
cessed with LIMMA[5] using the same parameter settings
as [23] and the detected significantly (LIMMA p-value<
0.05) Differentially Expressed(DE) genes logFC score is
used as r data for DPA. Since TP53 is known mutated
in this sample, we set m = −1 for TP53 and m =
NULL for all others. We attempted to follow the exact
same procedure used for the pathway analysis described
in [23] as our objective was to make a direct compari-
son between APA [23] and our work DPA. The pathways
having at least one target gene of p53 is labeled as 1
and the other pathways are labeled as 0 where the tar-
gets of p53 are obtained from [40]. Unfortunately, both
KEGG pathway database and p53 target gene list have
been updated since APA has been published. Thus we only
used 148 pathways of which 66 labeled as 1 and limited our
comparison against the proportion of pathways correctly
predicted in [23].
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Fig. 3 Visualization of identified KEGG Cell Cycle pathway routes. Each node is highlighted with four squares corresponding to G1, S, G2, and M
phases. The four phases are respectively colored purple, blue, yellow, orange

Result and Discussion
We use the pathway score, pScore, given in (3) to rank
the pathways. We calculate the true positive rate and
false positive rate in which pathways with scores higher
than some threshold is declared to be class 1. By tak-
ing different thresholds, ROC curve is obtained and the
result is shown in Fig. 4b. The best Area Under Curve
(AUC) for DPA is 0.78 and this value is close to 0.8
which has been reported for APA [23]. The proportion
of correctly predicted “altered” pathways for each study
is shown in Fig. 4c. In this figure, the data for ORA,
ESEA, GSNCA, PWEA, SPIA, DRAGEN and APA are
directly imported from [23] and included for the compar-
ison purpose. Noticeable in this figure is that DPA reports
higher percentage of p53 altered pathways than APA (i.e.,
0.80 vs. 0.75). Specifically, DPA predicted 53 out of 66
(0.80) as altered pathways where key known ones such
as “Pathways in cancer”, “Jak-STAT signaling pathway”,
“Prostate Cancer pathway”, and “p53 signaling pathway”
are all included. We note that there are 61 pathways iden-
tified as altered by both APA (DR ≥ 0.05) and DPA
(pScore > 0). In that regard, the accuracies of both sys-
tems can be seen quite comparable. As an alternative com-
parison study, APA and DPA have been compared using
only 132 pathways from the newest version of KEGG, 66
for class 1 (i.e., containing p53 targets) and 66 for class
0 (i.e., containing no p53 target). The results are 0.76 for

APA and 0.78 for DPA making DPA outperforms APA
by 0.02.

In terms of delivering explanation for the biologists,
DPA offers a far greater benefit over APA by presenting
the prior knowledge in a manner that biologists are famil-
iar with, i.e., gene regulatory relationships organized into
topological pathways. One reason that previous pathway
analysis tools fails to work well is because they mainly try
to discover perturbed pathways by individual differentially
expressed genes instead of gene to gene interactions [23].
Both APA and DPA are newer generation pathway analysis
systems which exploits gene-gene interaction relation-
ships in calculating the degree of pathway perturbation,
but there is one major difference between APA and DPA
in the mechanisms of identifying altered pathways. APA
constructs pathway networks dynamically based on gene
co-expression whereas DPA uses activation relationship
and inhibition relationship as two different forms of prior
knowledge. APA measures the perturbation in a pathway
by the “similarity” between gene expression test data and
control data but DPA measures the “consistency” between
expression data and the regulatory relationships encoded
into the pathway diagrams.

Lastly, to show the effectiveness of SigScore given
in (6), we calculate the −log(SigScore) for false posi-
tive (pathways not having p53 targets but identified) vs
true positive (pathways having p53 and identified) and



Zhao et al. BMC Genomics 2019, 21(Suppl 1):834 Page 9 of 11

a

b c d
Fig. 4 (a) The heatmap for Cell Cycle pathway route scores: the columns corresponds to time points and the rows corresponds to pathway routes.
Red indicates enhancement while blue indicates suppressiveness. Periodically up and down behavior can be observed as the time flows. Certain
route scores behaves distinctly during different phases. (b) Receiver operating characteristic (ROC) curve for p53 mutation pathway prediction. The
orange, red, blue, green and purple curve corresponds to t = 0.1, 0.3, 0.5, 0.7, 0.9 in (3) respectively. The threshold is picked from [0,1] with a step of
1/10000. (c) Proportion of pathways correctly predicted for each pathway analysis tools. (d) False positive vs True positive −log(SigScore) box plot

produce a box plot comparison, as shown in Fig. 4d. The
Welch two sample t-test[41] performed for these two
groups of SigScores produces the p-value 0.008634, clearly
suggesting that the SigScores for the true positive group
are significantly lower than those for the false positive
group. This result indicates that SigScore can recognize
pathways that acquire a high score by chance.

Conclusions
We proposed a set of algorithms which given a gene
expression data set can compute and score the “per-
turbed” portion of biological pathways. This method
identifies overly regulating routes (or "axes") of pathways
by calculating the conditional probabilities of regula-
tory relationships encoded into Bayesian networks which
are constructed from known biological pathways. Our
method has been tested with two well-known, publicly
available microarray data sets. In our application to the
cell cycling microarray data, our method can “recognize”
specific portions of pathways clearly revealing cell cycle
phase transition with which biologists can easily iden-
tify the localized perturbation patterns. We demonstrated

through pathway network visualization that our method
can clearly reveal how activated pathway routes changes
over time and if such pattern change repeats as cell
cycling progresses. In our comparison study with APA,
our approach demonstrates a comparable accuracy in
recognizing perturbed pathways as our method algorith-
mically identifies isolated sub-network of the pathway
as opposed to computing pathway’s perturbation status
using enrichment statistics. The name DPA (Deep Path-
way Analyzer) originates from the novelty of our method
that can deeply recognize perturbed portions of the path-
ways. Our method of programmatically identifying ”local-
ized” regulating portion of the pathways could pave a new
way to carry out future pathway analysis.
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