RESEARCH ARTICLE

Taylor & Francis

OPEN ACCESS Check for updates

Report on a New Truffle Species, Tuber koreanum sp. nov., from Korea

Hyeok Park^{a,b} (b), Ju-Hui Gwon^a (b), Jong-Chul Lee^a (b) and Ahn-Heum Eom^a (b)

^aDepartment of Biology Education, National University of Education, Cheongju, Republic of Korea; ^bDivision of Bioresource Bank, Honam National Institute of Biological Resources, Mokpo, Republic of Korea

ABSTRACT

The truffle and ectomycorrhizal roots formed by *Tuber* sp. were collected from the rhizosphere of *Quercus aliena* in Korea. The morphological characteristics of the ascoma, and molecular phylogenetic analysis using sequences from the internal transcribed spacer (ITS) and large subunit (LSU) of ribosomal DNA, translation elongation factor 1-alpha (TEF), and RNA polymerase second largest subunit (RPB2) regions confirmed the distinct morphology of the truffle. This truffle belongs to a monophyletic clade among the other *Tuber* species in the phylogeny. This study describes the truffle, *Tuber koreanum*, as a new species reported from Korea.

ARTICLE HISTORY

Received 6 August 2021 Revised 29 September 2021 Accepted 7 October 2021

KEYWORDS Ectomycorrhiza; *Quercus aliena*; taxonomy; truffle

1. Introduction

The genus *Tuber* P. Micheli ex F. H. Wigg. belongs to the family Tuberaceae, order Pezizales, and division Ascomycota. *Tuber* species produce hypogenous fruiting bodies called truffles. Truffles have several ascospores in a hyaline ascus, and the ascospores have an alveolate-reticulate or a spino-reticulate shaped surface [1]. Some truffles are edible and have commercial value because of their unique aroma [2]. *Tuber* species have an ectomycorrhizal (ECM) relationship with the roots of some woody plants belonging to the families Betulaceae, Cistaceae, Corylaceae, Fagaceae, and Pinaceae [3,4].

More than 180 *Tuber* species have been recorded in the MycoBank database (http://mycobank.org) and new species are continuously being reported worldwide [5]. However, *Tuber* species have been poorly studied and only five species have been reported till date in Korea: *T. aestivum* subsp. *uncinatum*, *T. borchii*, *T. himalayense*, *T. huidongense*, and *T. indicum* [6–9]. During a survey of *Tuber* species in Korea, *Tuber* ascoma were collected from the rhizosphere of oak trees. Based on their morphological characteristics and molecular analysis, the ascoma did not represent any previously described species of the genus *Tuber*. Therefore, in this study, we report a novel *Tuber* species from Korea.

2. Materials and methods

2.1. Sampling

Fresh specimens of fruiting bodies and ECM roots were collected from the rhizosphere of oak trees,

Quercus aliena Blume., in Gyeongju (N35°43'10.8", E129°20'36.3") in September 2020. The specimens were transported to the laboratory, where the morphological characteristics of ascoma and ascospores were observed under a dissecting microscope and an optical microscope. The ascocarps examined were deposited in the Herbarium of Korea National University of Education, Cheongju, Korea.

2.2. Morphological analysis

Mycorrhizal roots were observed under a microscope, and the mycorrhizal cross sections were obtained using a microtome (Leica Microsystems Nussloch GmbH, Nussloch, Germany). Morphological characteristics such as the color, branching systems, texture, and hyphae of the mycorrhiza were recorded [10].

2.3. Phylogenetic analysis

The genomic DNA of the ECM root tips and ascomata were extracted and amplified using PCR. ITS1F/ITS4 primers were used to amplify the internal transcribed spacer (ITS) region of ribosomal DNA (rDNA) [11]. In addition, LR0R/LR16 primers to amplify the large subunit (LSU) region[12], EF1 α Tuber-f/EF1a Tuber-r that amplifies translation elongation factor 1-alpha (TEF) region [5], and fRPB2-5F/fRPB2-7cR primers that amplify RNA polymerase second largest subunit (RPB2) region [13] were used for ascomata. After PCR, each DNA band was confirmed through polymerase gel electrophoresis and sent for DNA sequencing (SolGent Co. Ltd., Daejeon, Korea). The DNA sequence

CONTACT Ahn-Heum Eom 🖾 eomah@knue.ac.kr

^{© 2021} The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of the Korean Society of Mycology.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

information was used to find similarities using the BLAST search program from the National Center for Biological Information (NCBI). The phylogenetic trees of aligned DNA sequences (Table 1) were constructed using maximum likelihood (ML) method by Kimura 2-parameter (K2P) substitution model [14]. The ambiguous characters were excluded from the analysis, and the gaps were treated as missing data. The ML bootstrap replicates (1000) were computed for the best scoring ML tree. Bayesian analysis [15] was performed for calculating posterior probabilities (>50% majority rule consensus trees) on the branches of phylogenetic tree.

3. Results and discussion

3.1. Taxonomy

Tuber koreanum H. Park & A. H. Eom, sp. nov. [#MB840072] (Figure 1).

Type: KOREA. Gyeongsangbukdo: Gyeongju-si, in rhizosphere soil under *Quercus aliena*, 9 September 2020, collected by Hyeok Park, GB20004 (holotype), GB20011 and GB20046 (isotype). GenBank no.: OK275104 (ITS), OK275105 (LSU). *Etymology:* The first new truffle species discovered in Korea

ASCOMATA globose to subglobose, rarely ovoid, irregularly rugged surface, bright white to yellowish beige, $(5-20) \times (4-15)$ mm in diameter. GLEBA grayish brown to yellowish brown, bright white mycelia mixed in partially, pale brown in the part with mature ascospores. PERIDIUM (61.0-)71.2(-92.8) µm in thickness, dark beige to grayish brown, divided into two layers, outer layer yellowish brown and thicker than inner layer, inner layer mucoid, dark brown, white mycelia distributed in several places. ASCI hyaline, squashed, ellipsoid to conical, with smooth margin, aseptate, size differing based on the number of ascospores (2-4 spores) in each ascus, (22.6-)38.5(-51.2)× (20.1-)29.8(-34.8) µm in diameter. ASCOSPORE initially bright ivory or pale gold, reddish brown to pale brown in mature spore, glittering, subglobose to ovoid, sometimes ellipsoid (13.2-)17.2(-21.9) × (13.2-)15.9(-19.6) µm in diameter. The polygonal pieces on the surface of the mature ascospore form a reticulate ornament with several spines on the external surface; spines are usually curved, with sharp end, (1.9–)2.7(–3.4) μm high.

Table 1. List of Tuber sequences used in the phylogenetic analysis.

	lsolate/voucher	ITS	GenBank accession No.		
Species			LSU	TEF	RPB2
Tuber koreanum	GB20011	OK275104	OK275105		
Tuber asa	M1828			JX022569	
Tuber beyerlei	JT32597			JX022570	
Tuber bernardinii	M44				KY420132
Tuber borchii	AH39139	JN392230	JN392291	JX022571	
Tuber brennemanii	RH1279			MH159204	MH032561
Tuber californicum	JT28058			JX022574	JQ954496
Tuber canaliculatum	OSC59072				JQ954498
Tuber cistophilum	AH39275	JN392231	JN392293		
Tuber dryophilum	GB35	JQ925644	JQ925687	JX022578	JQ954501
Tuber flavidosporum	K213	AB553446	AB553520		AB553560
Tuber floridanum	MES654				MH032563
Tuber gennadii	BM667				JQ954502
Tuber gibbosum	JT26632	FJ809862	FJ809834		JQ954505
Tuber huizeanum	BJTC FAN186	JQ910651	KT067703	KT067720	
Tuber japonicum	K228	AB553434	AB553519		AB553559
Tuber jinshajiangense	BJTC FAN451	KX575845	KX575849		
Tuber latisporum	BJTC FAN125			KT067725	
Tuber lijiangense	BJTC FAN307	KP276188	KP276203		
Tuber liyuanum	BJTC FAN162	JQ771191	KT067698	KT067719	
Tuber İyonii	GA21				JQ954510
Tuber melanosporum	GB200	KM659874	JQ925703		-
Tuber mexiusanum	ITCV181			JX022602	
Tuber nitidum	BM105				JO954517
Tuber oreaonense	GB284	FJ809874	FJ809835		J0954519
Tuber pseudomaanatum	BJTC FAN315			KT067711	-
Tuber puberulum	ZB1077	JF261376	JF261339		
Tuber shearii	OSC51052				JO954521
Tuber sinosphaerosporum	BJTC FAN136	JX092087	KP276196		
Tuber sphaerosporum	JT12487			JX022609	
Tuber subalobosum	BJTC FAN222	KF002728	MH115324		
Tuber wumengense	BJTC FAN292			KT067716	
Tuber zhonadianense	BJTC FAN176	KP276178	KP276201	KT067723	
Venturia pyrina	CBS 120825	MH863093	MH874652		
Morchella americana	IN15-13			KY637207	
Epicoccum latusicollum	JZB380037				MN991305

Figure 1. Morphological characteristics of *Tuber koreanum*. Ascoma (A, B), gleba and peridium (C), asci (D), and ascospores (E, F) (scale bars: B, $C = 1000 \mu m$, $D = 100 \mu m$, E, $F = 10 \mu m$).

Figure 2. Morphological characteristics of ectomycorrhiza colonized by *Tuber koreanum* from root of *Quercus aliena*. Mycorrhizal root tips (A, B); Fungal mantle layer (E) (scale bars: A, $B = 500 \,\mu\text{m}$, C, $D = 20 \,\mu\text{m}$).

Figure 3. Maximum-likelihood phylogenetic tree of *Tuber koreanum* based on the alignment of the internal transcribed spacer (ITS) rDNA sequences obtained from ectomycorrhizal root tip. *Choiromyces meandriformis* was used as an outgroup. Numbers on branches indicate bootstrap values (1,000 replicates). Sequences from the present study were in bold.

Mycorrhiza: The ECOM root tips were straight, rarely curved, pale yellow to ivory, vertically branched, and the length of the branch from the side was generally shorter than that of the forward branch (Figure 2). The fungal mantle layer showed an interlocking-synenchyma structure (Figure 2). The ITS rDNA sequence of ECM root tip showed a coincidence with the sequences of the ascoma and the mycelium. Furthermore, they formed a monophyletic group on the phylogenetic tree (Figure 3).

The morphological characteristics of GB20004 ascoma were compared with the other truffle species that have similar appearances (Table 2). The GB20004 ascoma have beige or light white peridium, light grayish-brown or yellowish-brown gleba, and conical or irregular oval ascus, whereas

Tuber borchii showed reddish-brown or dark brown peridium, dark brown gleba, and an oval-shaped ascus tapering at the base [16]. Some characteristics of GB20004 ascoma were similar to Tuber flavidosporum or Tuber japonicum, a truffle discovered in Japan [17]. The ascospores of GB20004 were mainly ovoid, and sometimes ellipsoid, while the ascospores of T. flavidosporum or T. japonicum were close to perfect globose shaped. The color of GB20004 ascospores was ivory or light gold, initially but changed to reddish-brown or pale brown as the spores matured. T. flavidosporum and T. japonicum showed white or pale yellow ascospores [17]. In addition, the peridium thickness of T. flavidosporum and T. japonicum was more than 200 µm [17], while that of GB20004 was less than 100 µm. GB20004 showed

Table 2. Morphological characteristics of Tuber koreanum with the allied Tuber species.

	T. koreanum GB20004	T. borchii [16]	T. flavidosporum [17]	T. japonicum [17]
Ascoma	Globose to subglobose, rarely ovoid, irregularly rugged surface, bright white to yellowish beige	Subglobose to irregular, surface dry, glabrous, initially paler, darkening to brown, rarely with red-brown patches	Subglobose, light brown to brown	Subglobose or lobed, firm, whitish to pale yellow
Size	(5–20) $ imes$ (4–15) mm in diam.	25×5 mm in diam.	20 mm in diam.	10–40 mm in diam.
Gleba	Grayish brown to yellowish brown, bright white mycelia mixed in partially, pale brown in the part with mature ascospores	Grey when young, becoming dark brown with maturity, marbled throughout with irregularly branching white veins	Whitish to pale yellow	Whitish to pale yellow, marbled with white sterile veins
Peridium	(61.0–)71.2(–92.8) μm in thickness, 2-layers, dark beige to grayish brown	140–260 μm thick, hyaline, 2-layers	Smooth, 2-layers. 200–250 μm thick	Smooth, 2-layers, 240–280 μm thick
Asci	Hyaline, ellipsoid to conical, with smooth margin, 2–4 spored, $(22.6-)38.6(-51.3) \times$ $(20.2-)29.9(-34.8) \mu m$ in diam.	Subglobose to ellipsoid, tapering toward base, 1–4 spored, 76–99 × 63–85 μm in diam.	obovate to broadly ellipsoid, 1–2 spored, (73–97) \times (56–77) μm in diam.	spindle to obovate, (1–) 2(–3) spored, (75–133) \times (47–106) μm in diam.
Ascospores	Initially bright ivory or pale gold, reddish brown to pale brown in mature, glittering, subglobose to ovoid, sometimes ellipsoid, reticulate ornaments, $(13.2-)17.2(-21.9) \times$ (13.18-)15.89(-19.61) um in diam.	Subglobose to ellipsoid, yellow-brown, ornamentation densely reticulate-alveolate $(23-)27-47(-55) \times (19-)21-41(-44) \ \mu m$ in diam.	globose, reticulate, light yellow, reticulate ornaments, 32–45 μm in diam.	Globose, whitish to yellow, reticulate ornamentation, 25–50 μm in diam.

Figure 4. Phylogenetic tree of *Tuber koreanum* ascoma inferred using the maximum likelihood method based on alignment of ITS and LSU DNA sequences. *Venturia pyrina* was used as an outgroup. Strains used in this study are in bold.

0.05

Figure 5. Phylogenetic tree of *Tuber koreanum* ascoma inferred using the maximum likelihood method based on alignment of TEF DNA sequences. Bootstrap values and Bayesian posterior probabilities are indicated below branches. *Epicoccum latusicollum* was used as an outgroup. Strains used in this study are in bold.

Figure 6. Phylogenetic tree of *Tuber koreanum* ascoma inferred using the maximum likelihood method based on alignment of RPB2 DNA sequences. Bootstrap values and Bayesian posterior probabilities are indicated below branches. *Morchella americana* was used as an outgroup. Strains used in this study are in bold.

morphological characteristics that were clearly distinguishable from *T. borchii*, *T. flavidosporum*, and *T. japonicum*.

On the ML phylogenetic tree, GB20004 formed a monophyletic group distinct from other species. The analysis of the ITS-LSU region and the TEF DNA sequences showed that GB20004 was closer to *Tuber liyuanum*, *Tuber huizeanum*, and *Tuber zhongdianense* than to *T. borchii*, *T. flavidosporum* and *T. japonicum* (Figures 4 and 5). An analysis of the RPB2 DNA sequence also showed that GB20004 was clearly located apart from *T. borchii*, *T. flavidosporum* and *T. japonicum* (Figure 6), implying that GB20004 is distinctly different from these three species both morphologically and molecularly. Based on these results, we determined *Tuber koreanum* GB20004 as a novel truffle species that has not been recorded yet.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA) [IPET319106052HD050].

ORCID

 Hyeok Park ()
 http://orcid.org/0000-0003-1387-4201

 Ju-Hui Gwon ()
 http://orcid.org/0000-0003-4856-2101

 Jong-Chul Lee ()
 http://orcid.org/0000-0003-0581-8154

 Ahn-Heum Eom ()
 http://orcid.org/0000-0002-6821-1088

References

- Bonito G, Gryganskyi A, Trappe J, et al. A global meta-analysis of Tuber ITS rDNA sequences: species diversity, host associations and long-distance dispersal. Mol Ecol. 2010;19(22):4994–5008.
- [2] Trappe JM. The orders, families, and genera of hypogeous Ascomycotina (truffles and their relatives). Mycotaxon. 1979;9:297–340.
- [3] Bulman SR, Visnovsky SB, Hall IR, et al. Molecular and morphological identification of

truffle-producing *Tuber* species in New Zealand. Mycol Prog. 2010;9(2):205–214.

- [4] Pacioni G, Comandini O. Tuber. Ectomycorrhizal fungi key genera in profile. In: Cairney WG, Chambers SM, editors. Berlin, Germany: Springer Verlag; 1999. p. 163.
- [5] Bonito G, Smith ME, Nowak M, et al. Historical biogeography and diversification of truffles in the Tuberaceae and their newly identified Southern hemisphere sister lineage. PLoS One. 2013;8(1): e52765.
- [6] Shin KS, Park JS, Yoshimi S. Note on *Tuber aestivum* subsp. *uncinatum* newly recorded in Korea. Kor J Mycol. 1995;23:10–13.
- [7] Park H, Gwon JH, Lee JC, et al. Report on *Tuber huidongense*, a truffle species previously unrecorded in Korea. Kor J Mycol. 2020;48:505–510.
- [8] Park H, Gwon JH, Lee JC, et al. Morphological and phylogenetic characteristics of *Tuber himalayense* collected from rhizosphere of *Quercus dentata* in Korea. Kor J Mycol. 2021;49:101–108.
- [9] Seok SJ, Lim YW, Kim CM, et al. List of mushrooms in Korea. Seoul: The Korean Society of Mycology; 2013.
- [10] Goodman D, Durall D, Trofymow J, et al. Concise descriptions of some North American ectomycorrhizae. Victoria, BC: Victoria: Canada-BC Forest Resource Development Agreement, Canadian Forest Service; 1996–1999.
- [11] Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol. 1993;2(2):113–118.
- [12] Moncalvo JM, Lutzoni FM, Rehner SA, et al. Phylogenetic relationships of agaric fungi based on nuclear large subunit ribosomal DNA sequences. Syst Biol. 2000;49(2):278–305.
- [13] Liu YJ, Whelen S, Hall BD. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Mol Biol Evol. 1999;16(12): 1799–1808.
- [14] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7): 1870–1874.
- [15] Drummond AJ, Suchard MA, Xie D, et al. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29(8):1969–1973.
- [16] Elliot TF, Türkoğlu A, Trappe JM, et al. Turkish truffles 2: eight new records from Anatolia. Mycotaxon. 2016;131(2):439–453.
- [17] Kinoshita A, Sasaki H, Nara K. Two new truffle species, *Tuber japonicum* and *Tuber flavidosporum* spp. nov. found from Japan. Mycoscience. 2016; 57(5):366–373.