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C A N C E R

Phenotypic heterogeneity driven by plasticity 
of the intermediate EMT state governs disease 
progression and metastasis in breast cancer
Meredith S. Brown1, Behnaz Abdollahi2, Owen M. Wilkins2,3, Hanxu Lu1, Priyanka Chakraborty4, 
Nevena B. Ognjenovic1, Kristen E. Muller5, Mohit Kumar Jolly4, Brock C. Christensen1,3,6, 
Saeed Hassanpour2,3, Diwakar R. Pattabiraman1,3*

The epithelial-to-mesenchymal transition (EMT) is frequently co-opted by cancer cells to enhance migratory and 
invasive cell traits. It is a key contributor to heterogeneity, chemoresistance, and metastasis in many carcinoma 
types, where the intermediate EMT state plays a critical tumor-initiating role. We isolate multiple distinct single-cell 
clones from the SUM149PT human breast cell line spanning the EMT spectrum having diverse migratory, tumor- 
initiating, and metastatic qualities, including three unique intermediates. Using a multiomics approach, we 
identify CBF as a key regulator of metastatic ability in the intermediate state. To quantify epithelial-mesenchymal 
heterogeneity within tumors, we develop an advanced multiplexed immunostaining approach using SUM149- 
derived orthotopic tumors and find that the EMT state and epithelial-mesenchymal heterogeneity are predic-
tive of overall survival in a cohort of stage III breast cancer. Our model reveals previously unidentified insights 
into the complex EMT spectrum and its regulatory networks, as well as the contributions of epithelial-mesenchymal 
plasticity (EMP) in tumor heterogeneity in breast cancer.

INTRODUCTION
The epithelial-to-mesenchymal transition (EMT) is a developmental 
cellular program frequently co-opted by cancer cells (1) and is a key 
contributor to intratumoral heterogeneity (2–4), chemoresistance, 
and metastasis (5, 6). Rather than being a switch from an epithelial 
to a mesenchymal state, increasing evidence points to the existence 
of intermediate EMT states, wherein cells coexpress both epithelial 
and mesenchymal traits (7–13). These robust stable and metastable 
transition states have unique characteristics (7, 8, 14, 15) and 
contribute to the complex heterogeneity of tumors and their overall 
metastatic behavior (16, 17). While much work has been carried out 
identifying and characterizing EMT-inducing transcription factors 
(18–21), the transcriptional and epigenetic networks responsible 
for the stability and maintenance of the midpoints along the EMT 
spectrum are poorly defined. In addition, there are currently no 
approaches to identifying and quantifying intermediate EMT sub-
populations within patient tumors to evaluate their prognostic 
significance. Using single-cell clonally isolated derivatives of the 
SUM149PT breast cancer cell line, we systematically interrogate 
how each EMT state independently contributes to heterogeneity 
and influences metastatic progression, uncovering the role of CBF 
in stabilizing and maintaining metastatic capability in certain inter-
mediate states. We develop an entropy-based model to quantify 
phenotypic heterogeneity and EMT status and primary patient 
tumors using SUM149PT-derived tumors stained with a panel of 

six EMT markers as a training set. The cell states captured in the 
SUM149PT model are represented in a cohort of patient tumors 
and are predictive of overall survival in these patients, laying the 
foundation for the quantification of epithelial-mesenchymal hetero-
geneity (EMH) and understanding the role of the intermediate 
EMT state in tumor progression.

RESULTS
Generation of a model to study EMT
Single-cell clones reside in multiple distinct EMT states
We derived single-cell clones from the SUM149PT estrogen and 
progesterone receptor-negative (ER−/PR−) inflammatory breast 
cancer cell line (22, 23) stratified by expression of CD44 and CD104 
(Integrin  4) (fig. S1A) (14). Six single cell–derived clonal popula-
tions were isolated, ranging from epithelial-like (E) to mesenchymal 
(M1 and M2), including three distinct intermediate states (EM1, 
EM2, and EM3)—hereafter referred to as “EMT clones” (Fig. 1A and 
fig. S1A). Briefly, the SUM149PT cell line was sorted into three pop-
ulations stratifying the EMT spectrum (fig. S1A), and single cells 
were sorted into 96-well plates from which 14 single cell–derived 
clonal populations were chosen and isolated on the basis of mor-
phological characteristics. Of these 14, 6 were chosen to best repre-
sent the spectrum of states within the SUM149PT parental cell line. 
These clones, which stably retained their EMT states in vitro, were 
ranked along the EMT spectrum relative to one another based 
on expression of hallmark epithelial and mesenchymal markers such 
as Vim (vimentin), CDH1 (E-cadherin), ZEB1, and SNAI1 (Snail) 
(Fig. 1, C and D), as well as by variable migratory and invasive char-
acteristics in vitro (Fig. 1B). While the mesenchymal clones exhibited 
greater migratory and invasive ability than the epithelial clone, 
the intermediate clones displayed 2- to 10-fold higher migratory 
and invasive potential than the mesenchymal clones. These data 
suggest that earlier EMT studies did not discern intermediate states 
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Fig. 1. The heterogeneous cell line SUM149PT contains multiple distinct EMT states that can be isolated as single-cell clones. (A) A schematic of the flow cytometry 
method used to isolate single-cell clones that present as an epithelial (E), three distinct intermediate (EM1, EM2, and EM3), and two mesenchymal (M1 and M2) EMT states. 
(B) In vitro assessment of clonal migratory and invasive characteristics as measured in a standard transwell assay (n = 3, SD, ****P < 0.0001, and *P < 0.05). Canonical EMT 
marker expression levels as determined by (C) quantitative RT-PCR (SD, n = 4) or (D) immunoblotting to rank SUM149 clones along the EMT spectrum. (E) Bright-field 
and (F) immunofluorescent images of EMT clones in vitro stained with vimentin and E-cadherin displaying cell morphology and marker expression and localization, 
respectively. (G) EMT signature of EMT clones and parental line generated from the ordinal multinomial logistic regression method of gene scoring and (H) distribution 
of EMT score of the EMT clones among other breast cancer cell lines from the CCLE. (I) Immunofluorescent staining for E-cadherin (red), vimentin (green), and KRT8 (white) 
of four triple-negative breast cancer lines (two intermediate, HCC38 and Cal-51; one epithelial, HCC1143; and one mesenchymal, MDA-MB-231) from the CCLE displaying 
heterogeneous phenotypes.
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from mesenchymal ones when assessing these specific characteris-
tics. Classic flow cytometry approaches using two to three mark-
ers were insufficient to distinguish between the intermediate states 
(fig. S1D). By other measures, however, the intermediate clones 
exhibit differences in cell migration (Fig. 1B), EMT marker expres-
sion (Fig. 1, C and D), cell morphology (Fig. 1E), and expression of 
vimentin and E-cadherin (Fig. 1F). The three intermediate clones 
most closely resemble the characteristics of the parental line in mi-
gratory and invasive ability in vitro (Fig. 1B) and coexpression of 
E-cadherin and vimentin (Fig. 1F), as well as their overall transcrip-
tional profiles determined by unsupervised hierarchical clustering 
of Pearson’s correlation coefficients following RNA sequencing 
(RNA-seq) (fig. S1E). Notably, there were no substantial genetic 
differences between clones E, EM1, EM2, EM3, and M1, with M2 
exhibiting some SNP and INDEL variations (fig. S1, B and C), 
indicating that the phenotypic and functional differences be-
tween these intermediate clones are likely driven by nongenetic 
mechanisms (24).

Various methods have been developed to quantify the extent to 
which cells undergo an EMT and determine an absolute compara-
ble EMT score (25–27), which have been reviewed recently (28). 
When applied to our model, all three methods—multinomial logis-
tic regression-based scoring (MLR) (27), Kolmogorov–Smirnov (KS) 
(26), and 76 gene signature (76GS) (25)—predict that E through 
EM3, i.e., the epithelial and three intermediate clones, fall within the 
intermediate state, while M1 and M2 are mesenchymal (Fig. 1G and 
fig. S1, F and G). When plotted among the 59 breast cancer cell lines 
from the Cancer Cell Line Encyclopedia (CCLE), these clones fall 
along the intermediate and more mesenchymal end of the spectrum 
(Fig. 1H; fig. S1, F and G; and table S1). This spread of EMT states 
is most relevant in the context of studying metastasis as many highly 
epithelial breast cancer cell lines such as those seen in this comparison 
(Fig. 1H) exhibit less migratory and invasive characteristics (29), 
which contribute significantly to metastatic potential. Notably, the 
parental line scored closer to the epithelial (E) clone in most 
methods (Fig. 1G and fig. S1, F and G).

Heterogeneity in breast cancer cell lines and the presence of 
intermediate states have been validated across many breast cancer 
cell lines and EMT models (8, 30). To further corroborate these 
findings in the SUM149PT model, we validated the presence of 
multiple EMT states in four canonical breast cancer cell lines, which 
range from intermediate to mesenchymal in their EMT scores—
HCC1143, HCC38, Cal-51, and MDA-MB-231 (MLR EMT score: 
0.26, 0.76, 1.06, and 1.93, respectively; Fig. 1H). All four cell lines 
are composed of heterogeneous subpopulations along the epithelial- 
mesenchymal spectrum to varying degrees, as revealed by their 
coexpression of E-cadherin, vimentin, and Keratin 8 (KRT8), match-
ing those observed in the SUM149PT parental cell line (Fig. 1I and 
fig. S1H). Our model, thus, highlights the presence of multiple dis-
tinct intermediate EMT states that are also found in other breast 
cancer cell lines, validating the suitability of this model and fur-
ther investigation of each state’s role in tumor development and 
metastasis.

Characterizing in vivo roles of multiple EMT states
Intermediate clones possess high tumor-initiating cell frequencies
In vivo tumor initiation and growth further highlighted the individual-
ity of these EMT clones. Upon orthotopic injection, the parental cell 
line was able to initiate and form tumors more rapidly than the other 

clones (Fig.  2A). Tumor growth analysis with a bimodal linear 
mixed model (31) revealed that the three intermediate clones were 
able to initiate tumors at the same rate as the parental line (initial- 
phase Holm adjusted P value <0.05) (Fig. 2, A and C) but exhibited 
a lag in growth (exponential-phase Holm adjusted P value <0.003). 
The epithelial (E) and two mesenchymal (M1 and M2) clones both 
failed to initiate tumors as readily or, in the case of the mesenchymal 
clones, grow as rapidly as the parental and intermediate clones 
(Holm adjusted P value <0.01). Increased tumor growth corre-
sponded with decreased survival, with the parental line exhibiting 
shortest survival after injection and the mesenchymal clones exhibiting 
the longest (Fig. 2B). Limiting dilution analyses revealed a high 
tumor-initiating cell (TIC) frequency in the parental and inter-
mediate clones, with all mice forming tumors by 8 weeks (Fig. 2C). 
The two mesenchymal clones (M1and M2) had the lowest TIC fre-
quencies at 8 weeks (0 and 1 of 75,975, respectively) despite ex-
pressing high levels of CD44 expression, a marker frequently 
correlated with increased stemness and tumor-initiating ability 
(figs. S1D and S2B) (11, 12, 32). All clones generated high-grade, 
poorly differentiated, invasive ductal carcinomas of no special type 
(ductal). Clone M1 tumors notably exhibited 50% squamous differ-
entiation, and clone M2 showed abundant spindle-cell morphology 
(fig. S2A). Tumor growth and TIC frequencies indicate that, while 
the intermediate EMT clones may represent a population with high 
tumor-initiating potential, a heterogeneous population such as the 
parental line is able to enter an exponential growth phase more rapidly. 
Notably, as with the clonal cell lines, flow cytometry was not able to 
distinguish between tumors of different clonal origin despite signifi-
cant differences in growth and survival (fig. S2B).
EMT state affects outgrowth of metastasis
For the purposes of monitoring metastatic outgrowth in vivo, deriva-
tives of each EMT cell line stably expressing a luciferase-IRES- 
ZsGreen construct were generated, which allowed for both live 
and postmortem detection of tumor cells. As has been observed 
previously for SUM149PT (33), the parental line and all clones 
metastasized to the lung, with varying success, as seen by fluores-
cence (Fig. 2D). No other metastatic lesions could be detected by 
luciferase or fluorescence.

To precisely delineate the propensity of the clones to form 
micro- and macrometastasis, lungs from animals bearing orthotopic 
tumors were fixed and stained with hematoxylin and eosin (H&E) and 
counted for micrometastases (<10 adjacent cells) and macrometastases 
(>10 adjacent cells) (Fig. 2, E and F). The three intermediate (EM1 to EM3) 
clones seeded higher numbers of micrometastatic lesions per lung, 
compared to the most epithelial (E) and most mesenchymal (M2) 
(P value <0.05). Within this group, clones EM1 and EM3 seeded 
higher numbers of macrometastases compared to EM2 (Fig. 2E), 
although differences between the intermediate clones were not 
statistically significant. While exhibiting the highest rate of tumor 
growth and poorest survival, the parental line seeded fewer lung 
metastases than the intermediate clones, suggesting that other 
mechanisms could be contributing to mortality.

Identification of transcriptional networks that sustain 
EMT states
Transcriptomic profiles reveal shared intermediate 
gene signature
Given the lack of genetic differences between the clones, we hypothe-
sized that the clonal variations in the EMT state were driven by 



Brown et al., Sci. Adv. 8, eabj8002 (2022)     3 August 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

4 of 19

alterations in their transcriptional profiles. Using the bulk RNA-seq 
of each clone, alterations in the expression levels of various tran-
scription factors were analyzed using the epithelial clone E as a 
benchmark. Principal components analysis (PCA) demonstrates 
clustering of the parental line, intermediate EM, and E clones 
(Fig. 3, A and B), whereas the two mesenchymal clones (M1 and 
M2) share no overlap between themselves or any other cluster. This 
indicates that the EMT clones do not reside in a linear spectrum but 
rather embark upon multiple distinct trajectories. Unsupervised 
hierarchical clustering of the 500 most variable genes across all 
clones reveals distinct transcriptional programs separating the three 
intermediate clones from the epithelial (E) and mesenchymal (M1 
and M2) ones (Fig. 3D). Within this intermediate cluster, EM2 and 
E are again distinct from the remaining intermediates and parental 
line (Fig. 3, B and D). Differential expression analysis revealed that 

581 shared genes were significantly differentially expressed (adjusted 
P < 0.05) in all clones when compared to E, with 1881 genes shared 
between the two mesenchymal clones and 178 shared between the 
three intermediate clones (Fig.  3C, fig. S3A, and table S2). In 
comparison to the epithelial baseline clone E, more differentially 
expressed genes are exclusive to each clone than are shared between 
two or more clones (Fig. 3C), further corroborating the unique EMT 
states represented by this model. Gene set enrichment analysis 
(GSEA) (34) of the differentially expressed genes confirms activation 
of the hallmark EMT gene set in all intermediate and mesenchymal 
clones, as well as other gene sets corresponding to cell division and 
chromatin remodeling, as expected (fig. S3B).

To further explore the epigenetic landscape of these clones, we 
used Assay for Transposase-Accessible Chromatin using sequencing 
(ATAC-seq) (35) to determine the differential chromatin accessibility 
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across EMT clones in comparison to the epithelial clone E, which 
exhibits the most closed chromatin profile (Fig. 3E). Notably, the 
chromatin landscape is similarly diverse between mesenchymal 
and intermediate clones (fig. S3, C and D), as seen in the RNA-seq 
(Fig. 3D). To identify transcription factors (TFs) with a significant 
enrichment of motifs among peaks that were uniquely accessible in 
each clone (relative to E), the presence of transcription factor bind-
ing motifs was scanned for using motifmatchr (36) and tested for 
enrichment against the background set of all identified peaks (hyper-
geometric test, adjusted P < 0.05) (Fig. 3F). The three intermediate 
and early mesenchymal clones were highly enriched for motifs of 
the Runt-related transcription factor (RUNX) family (Fig. 3F). The 
Transcription factor AP-2 (TFAP2) family also exhibit enriched 
binding accessibility in these intermediate and early mesenchy-
mal clones, albeit less significantly than the RUNX family. All three 
RUNX transcription factors and their cofactor CBF have been 
previously implicated in various cancers (37–39) as well as in 
metastatic progression of lung adenocarcinoma (40) and triple- 
negative breast cancer (TNBC) (41, 42). Enrichment of these RUNX 
TF motifs is unique to the intermediate (EM1, EM2, and EM3) and 
early mesenchymal (M1) clones, those that seeded the highest number 
of lung metastases (Fig. 2E).
Combined RNA-seq and ATAC-seq identifies EMT 
and MET networks
To provide a more comprehensive picture of the epigenetic and 
regulatory landscape of EMT, we used a new multiomics approach, 
DiffTF (43), to quantify TF activity and regulatory state by integrating 
RNA-seq and ATAC-seq data for each clone. Similar to motifmatchr, 
TF activity was inferred by computing the fold change in chromatin 
accessibility between each clone at each binding site of a given TF, 
once again using clone E as a baseline reference. Inferred TF activity 
was visualized against RNA-seq log2 fold change for each transcrip-
tion factor (Fig. 4A and fig. S4A), facilitating simultaneous detection 
of TFs with increased expression and TF activity (top right quadrant). 
Analysis of the directional changes of TF expression from RNA-seq 
also indicated whether the TF in question acts as an activator 
(green) or repressor (red). The two mesenchymal clones revealed 
much larger shifts in both fold-change expression and TF activity, 
indicative of larger changes in their overall transcriptional and 
chromatin profiles relative to E. In the three intermediate and early 
mesenchymal clones, RUNX2 and RUNX3 are both among the 
most highly expressed and exhibit the highest TF activity of all 
significant transcription factors (Fig. 4A and fig. S4A). A list of all 
significant transcription factors, their relative TF activity, and fold-
change expression are included in table S3. In addition, of the tran-
scription factors that are more accessible in the intermediate state, 
the expression of RUNX2 positively correlated and that of TFAP2C 
negatively correlated with CCLE breast line EMT scores with high 
significance (fig. S4, B and C).

Unsupervised clustering analysis presents a clearer picture of 
how these TFs act in a transcriptional network, highlighting TFs 
that exhibit significant changes in their activity in at least one clone 
(adjusted P value <1 × 10−15) (Fig. 4B). Cluster 1 is composed of tran-
scription factors that are up-regulated and function as activators 
in the clones that exhibit increased metastatic potential (EM1 to 
EM3 and M1)—the RUNX TF family and cofactor CBF. Cluster 2 
includes factors that increase in activity with the progression of 
EMT, e.g., ETS1 and related factors, nuclear factor B, RelB, and Friend 
leukemia integration 1 (FLI1). Cluster 3 identifies transcription factors 

that are activated and remain consistently active after entrance into 
the EMT, e.g., members and regulators of the Activator protein 1 
(AP1) complex. Multiple members of the Krüppel-like factor (KLF) 
family of transcription factors and CCCTC-binding factor (CTCF) 
are found in cluster 4, which exhibit a consistent decrease in TF 
activity following entrance into an EMT. Cluster 5 highlights tran-
scription factors that may be uniquely active in M2 while remaining 
inactive in the other EMT clones, including Forkhead box protein 
J2 (FOXJ2) and Forkhead box protein D3, CCAAT-enhancer-binding 
protein (CEBP) complex members, and Activating transcription 
factor 4 (ATF4). Last, cluster 6 delineates the transcription factors 
that have an overall and graded decrease in activity as the EMT pro-
gresses. This cluster contains multiple EMT TFs such as Snail, Slug, 
and ZEB1 as well as known mesenchymal- to-epithelial transition 
(MET)-promoting TFs such as Grainyhead like transcription factor 1 
and 2 (GRHL1/2). Although these and other canonical EMT tran-
scription factors such as Twist and Paired related homeobox 1 
(PRRX1) are expressed at significantly high levels (P < 0.05), non-
significant or decreased TF activity indicates no change in chroma-
tin accessibility compared to clone E (table S3 and fig. S4A). These 
TFs decrease in activity, while their overall expression remains high 
(fig. S4A) likely resulting from strong repression of chromatin ac-
cessibility at their epithelial target genes, potentially through histone 
deacetylase recruitment (44, 45) or other mechanisms at ZEB1 target 
promoters CDH1, EPCAM, and GRHL2 (Fig. 4C).
CBF knockdown destabilizes EMT states
RUNX2 and its coactivator CBF have been implicated in mammary 
development (46), mammary stemness (47), and increased metastatic 
capacity in breast cancer (41, 48). To further examine the roles that 
these transcription factors play in EMT and the propagation of a 
metastatic state, we tested the effects of CRISPR-Cas9– mediated 
knockout of RUNX2 and CBF, which are uniquely expressed and 
active in the intermediate and early mesenchymal clones, as well as a 
nontargeting LacZ control (Figs. 3F and 4, A and B). Knockout of 
RUNX2 in the intermediate clones did not result in any significant 
alterations to the levels of canonical EMT markers, except a minor 
reduction in VIM expression in EM2 (Fig. 4D). On the other hand, 
knockout of CBF led to a down-regulation of SNAI1 and VIM 
expression in EM2 and EM3, as well as a more subtle reduction in 
FN1 levels, indicating a shift to a more epithelial state. The expression 
of all three RUNX TFs was reduced upon loss of CBF, likely due 
to its role as an essential cofactor (Fig. 4D).

To determine the effect of destabilizing EMT on tumor forma-
tion and metastasis, clone EM2 and EM3 bearing CBF knockout or 
LacZ nontargeting guide RNAs were injected orthotopically into 
NOD scid gamma (NSG) mice. These cell lines express high levels 
of both RUNX2 and CBF in comparison to clone E (Fig. 4B) and 
form predominantly either micro- or macrometastases, respective-
ly, in the lung (Fig. 2E). In EM2 and, to a lesser extent, EM3, CBF 
knockout accelerated the time point at which tumors were first ob-
served (initial-phase Holm adjusted P < 0.001) and time to tumor 
burden (Fig. 4E). However, these tumors had a near-complete 
absence of metastasis to the lung (Fig. 4F). In contrast, RUNX2 
knockout did not appear to have any significant effects on tumor 
formation or metastasis, likely due to compensation from the other 
RUNX transcription factors. Thus, we conclude that loss of CBF 
destabilizes the intermediate EMT state in clones EM2 and EM3, 
leading them to acquire a more epithelial state that, despite being 
more proliferative, lacks lung- metastatic capacity.
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We then leveraged data from The Cancer Genome Atlas (TCGA) 
to determine whether CBF expression could, on its own, serve as a 
single gene biomarker for patient prognosis. However, like many 
other single markers that have not been strong predictors of out-
come (49, 50), CBF expression alone is not associated with any 
differences in patient overall survival in the TCGA-BRCA cohort, 
adjusting for age, stage, and PAM50 molecular subtype [(Hazard 
Ratio (HR): 1.03, P = 0.834] (fig. S4E). Other biomarkers such as 
ZEB1, Snail, and Twist have been tested as prognostic biomarkers 
across multiple cohorts with varying success and predictive power 
(51); however, no single biomarker has proven robust enough to be 
adopted into the clinic to predict metastatic disease outcome. This 
further indicates the need for a more nuanced multimodal metric to 
describe and identify intermediate EMT states within patient sam-
ples if EMT is to be leveraged as a diagnostic and prognostic tool.

Exploration of tumor heterogeneity in EMT  
clone-derived tumors
To better understand the role that EMH plays on tumor progres-
sion and metastasis, we used a multiround, multiplexed tyramide 
signal amplification (TSA) approach (52) to assess protein levels of 
EMT markers, segregating out stromal cells that could obfuscate 
EMT scoring. To capture the full spectrum of EMT states, we de-
signed a panel of six EMT markers, containing three intermediate 
filament proteins (KRT8, KRT14, and Vimentin), two EMT tran-
scription factors (ZEB1 and Snail), and an adherens junction protein 
that serves as a hallmark epithelial marker (E-cadherin). Tumors 
from each of the clones were stained and divided into 50 regions of 
interest (ROIs) and processed with the inForm analysis software 
(Akoya Biosciences) to generate composite images (Fig. 5A). inForm 
image training algorithms were used to discern tumor and stromal 
composition, as well as conduct cell segmentation (fig. S5A). 
Normalized percentile distributions of the arbitrary fluorescent 
units of each EMT marker, per cell, across all images provided an 
overview of the overall composition of these tumors (fig. S5B), indi-
cating that no one unique marker signature defined any individual 
tumor. Overall, clone M2 tumors expressed less E-cadherin and 
more ZEB1, while clone E tumors contain less Vimentin, indicative 
of their initial EMT states in vitro. To determine the extent of EMH 
within the stained images, a scoring metric was developed using the 
SUM149PT clones as a training set. Tumor images were scored on 
the basis of a rubric of low (one major cell trait with up to one minor 
trait), mid (two major cell traits with up to three minor traits), and 
high (three or more major cell traits present with two or more 
minor traits) (Fig. 5C). Scoring based on these criteria revealed that 
the intermediate EMT clones form tumors that contain more 
regions of higher heterogeneity than the parental cell line (Fig. 5C). 
Thus, increasing levels of heterogeneity may not linearly correlate 
with tumor growth or metastasis, but rather, there exists an optimal 
ratio of cell traits within the tumor that determines its growth and 
metastatic potential. The requirement for this optimal ratio may 
explain the growth lag observed in the intermediate clones when 
compared to the parental line (Fig. 2A), which likely results from 
constraints in the generation of a requisite level of heterogeneity 
from a homogeneous cell culture.
Composition of EMT phenotypes and EMH varies by EMT clone
In a parallel method to assess tumor diversity and phenotypic com-
position, the inForm analysis software was trained on a subset of tumor 
images to recognize eight distinct cell phenotypes encompassing 

the majority cell states present in all tumor images (fig. S5A). These 
phenotypes, spanning from most epithelial to most mesenchymal, 
are E-cadherin only, KRT8 and E-cadherin, KRT8 and KRT14 
(KRT), triple positive (KRT8 + E-cadherin + vimentin), KRT8/14 
and vimentin, Snail only, vimentin only, and vimentin and ZEB1. 
Phenotypes were validated manually and by fluorescent marker 
distribution (fig. S5C). Similar to EMT marker distribution, there 
were no phenotypes unique to any individual state, indicating that 
optimal tumor progression may be determined by global ratios of 
cell states rather than the presence or absence of an individual cell 
type. On either end of the spectrum, clone E– and clone M2–derived 
tumors are made up of more than 75% epithelial (E-cad only, 
KRT8 + E-cad, KRT, or Triple positive) or mesenchymal (KRT & 
vimentin, Snail only, vimentin only, or vimentin + ZEB1) pheno-
types, respectively. Tumors derived from the intermediate clone 
and the parental line, meanwhile, all contained a roughly equal dis-
tribution of epithelial and mesenchymal phenotypes (Fig.  5C). 
These data further support the notion that the ratio of EMT states 
(phenotypes), rather than the presence of any particular state, is 
more reflective of tumor growth and metastatic potential.

To develop a scoring algorithm to assess EMH, three feature 
extraction methods were tested using the segmented cell data files 
(fig. S5A). These three approaches sought to determine the best 
method to assess heterogeneity: (i) an entropy-based approach 
(53, 54) using mean marker expression of cells per image, (ii) a 
nearest neighbor analysis approach (55) using cell phenotypes as 
determined above (Fig. 4C), and (iii) a hybrid approach combining 
approaches 1 and 2 (fig. S5D). All three approaches were developed 
and evaluated using a randomized subset of clone tumor images 
and their corresponding heterogeneity scores according to the 
rubric outlined in Fig. 5B as ground truths. Logistic regression 
performance on unseen test data indicated a 78% accuracy for 
entropy-based features of mean marker cell expressions. Fivefold 
cross-validation determined that the entropy-based approach 1 
(F1 score = 0.78, Wilcoxon ranking test P = 0.004) proved to be the 
most robust at correctly assessing tumor heterogeneity (fig. S5D). 
This shows that E and M2 clones consisted largely of areas of low- or 
mid-level heterogeneity, whereas all intermediate clones were com-
posed of regions of high heterogeneity (Fig. 5B).

In addition to scoring EMH, we sought to assign EMT scores to 
tumors based on the ratios of epithelial and mesenchymal traits 
they exhibit. EMT scores were generated by calculating the compo-
sition of cell phenotypes per image (50 images per clone) using the 
linearly weighted average of cell ratios expressing each phenotype 
from epithelial to mesenchymal. EMT scores range from 0 to 1, with 
zero being composed of all epithelial phenotypes and one composed 
of all mesenchymal phenotypes. Rather than attaining an equili-
brated EMT state, clonal tumors held true to the EMT state of their 
starting populations, with clone E tumors being predominantly 
epithelial (mean = 0.25), intermediate (EM1, EM2, and EM3) and 
parental tumors maintaining an intermediate EMT score (mean = 0.4 
to 0.6), and the most mesenchymal (M2) scoring >0.7 (mean = 0.7) 
(Fig. 5D). Clone M1 tumors also scored as intermediate despite 
starting as a quasi-mesenchymal, further validating this clone as a 
late intermediate (Fig. 5D). The variation in EMT scores between 
images in the intermediate clones (EM1, EM2, EM3, and M1) and 
the parental line was the highest of all of the groups, indicating 
higher intratumoral heterogeneity among tumor regions (Fig. 5D). 
In exploring the connection between heterogeneity and EMT scores, 
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we found a correlation between the two scores upon splitting the 
EMT score into terciles (epithelial = 0 to 0.29, intermediate = 0.3 to 
0.69, and mesenchymal = 0.7 to 1; chi-squared P = 1.1 × 10−11). 
Low-heterogeneity tumor regions correlated with more mesenchy-
mal EMT scores, as can be seen in M2 tumors, and epithelial EMT 
scores correlate with mostly mid heterogeneity, seen in E tumors 
(Fig. 5A and fig. S5E). Mid- and high-heterogeneity regions were 
characterized by intermediate EMT scores despite encompassing a 
more diverse array of possible EMT states (Fig. 5E and fig. S5E).
Knockout of CBF in intermediate SUM149 clones reduces EMH 
and EMT score
Upon developing a metric to calculate EMH and EMT score, we 
questioned whether the decrease in metastasis observed upon loss 
of CBF (Fig. 4, E and F) resulted from alterations to overall EMT 
state or from a change in EMH. When tumors generated from EM2 
and EM3 CBF knockout clones were stained with the multiplexed 
immunofluorescence panel, loss of CBF led to the formation of 
tumors with overall lower, more epithelial EMT scores (EM2 Fisher’s 
P = 3.5 × 10−7 and EM2 Fisher’s P = 4.0 × 10−5; Fig. 5F and fig. S5F). 
Clone EM2 additionally had decreased EMH in knockout conditions 
(EM2 Fisher’s P = 0.05 and EM3 Fisher’s P = 0.5; fig. S5G). This 
reduction arises from an increased presence of more epithelial phe-
notypes such as E-cadherin only and KRT8 and E-cadherin coex-
pressing cells, which are associated with a more proliferative state 
(56, 57), and concurrent decrease in mesenchymal phenotypes such 
as vimentin, which are more invasive (Fig. 5F and fig. S5H).
Lung metastases contain predominately late intermediate 
and mesenchymal phenotypes
To further understand the roles of tumor cell EMH and EMT score 
on the metastatic cascade, we resected the primary tumors to allow 
for maximal metastatic outgrowth beyond the primary tumor bur-
den. Briefly, intermediate and parental cell lines were orthotopically 
injected and allowed to grow to a volume of 1 cm3 before surgical 
resection. Lungs were harvested, and metastases were quantified 
at 2.5 months after resection, determined by the burden of the 
relapsed ipsilateral tumor. Micro- and macrometastasis trends were 
maintained in this later growth model, with EM1 forming a mixture 
of micro- and macrometastases, EM2 forming predominantly 
micrometastases, and EM3 predominantly macrometastases.

We subsequently used the multiplexed immunofluorescence 
approach to stain these lung metastases to determine their het-
erogeneity and EMT phenotypes (Fig. 5G). To our surprise, all 
metastases, regardless of size or clone, were predominantly mesen-
chymal in composition, expressing very little E-cadherin or KRT8 
(Fig. 5, G and H). EMT and heterogeneity scores calculated from 
this staining revealed overall low heterogeneity and high EMT 
scores, features that were infrequently exhibited in the primary 
tumors (Fig. 5I). These results suggest that, in contrast to trends 
observed in other models (58), the SUM149PT tumors give rise to 
metastases that are predominantly mesenchymal in nature.
High heterogeneity score and intermediate EMT states are 
predictive of poor survival outcomes in patients
To assess whether the EMT phenotypes observed in our model were 
representative of those observed in human breast cancer specimens, 
we carried out TSA immunostaining of a tumor microarray of the 
Cancer Diagnosis Program (CDP) Breast Cancer Stage III Prognostic 
Tissue Microarray collected and indexed by the Cooperative Human 
Tissue Network (CHTN) (Fig. 6A). Following staining with our 
six-marker EMT panel, we recovered and analyzed 124 cores from 

both hormone-positive (n = 86) and hormone-negative (n = 38) 
patients with long-term survival follow-up spanning 250 months. 
All eight phenotypes were reproducibly represented across all patient 
tumors (Fig. 6A and fig. S6A), and ratios of epithelial and mesen-
chymal phenotypes follow similar trends to the SUM149PT clonal 
model (fig. S6B). These data serve to validate the SUM149PT clones 
as a model to study various states along the EMT spectrum.

Cores were phenotyped and analyzed as previously described to 
generate a heterogeneity score and EMT score, again segregated 
into terciles, for each patient (Fig. 6B and fig. S6C). Overall, high 
heterogeneity is associated with a more mesenchymal EMT score, 
while low heterogeneity is associated with an epithelial EMT score 
(Fisher’s exact test P = 4.4 × 10−5; Fig. 6, B and C, and fig. S6C). 
While this differs from trends seen in the SUM149PT model 
(Fig. 5E and fig. S5E), the samples in this cohort better represent the 
population distribution of stage III breast tumors. In survival models 
adjusting for patient age and hormone receptor status with all sam-
ples that passed quality control (QC) (n = 124), patients with a high 
heterogeneity score had significantly worse overall survival [HR: 
5.2, 95% confidence interval (CI): 2.6 to 10.6, P = 5.2 × 10−6], as did 
patients with intermediate EMT scores (HR: 1.7, 95% CI: 1.0 to 3.0, 
P = 0.05) (Fig. 6, D and E). While high heterogeneity score on its 
own remained predictive of poor patient outcome, EMT score alone 
was not associated with survival [fig. S6D; HR (high): 3.9, 95% CI: 
2.00 to 7.61, P = 6.04 × 10−5]. As these metrics describe associated 
yet independent metrics of tumor complexity and EMT status, our 
results further demonstrate nuances of tumor heterogeneity in 
disease progression. When subsetting for hormone-negative disease 
(n = 36), which is known to exhibit increased intratumoral hetero-
geneity (2), high and low heterogeneity were both associated with 
significantly worse overall survival [HR (high): 16.7, 95% CI: 4.2 to 
66.6, P = 6.5 × 10−5; HR (low): 7.9, 95% CI: 2.3 to 27.1, P = 0.001] 
(Fig. 6F and fig. S6E), as was an intermediate EMT score (HR: 3.43, 
95% CI: 1.04 to 11.3, P = 0.042). While the correlation between low 
heterogeneity and outcomes was unexpected, it could be a result of 
a subset of HR− patients whose tumors score as low heterogeneity/
mesenchymal EMT (fig. S6F), similar to the M2 clone in our HR− 
SUM149 clonal model (fig. S5E). In the context of these patient 
tumors, poor survival outcomes could be a result of a bottlenecking 
event following chemotherapy administered to patients, which typi-
cally results in the outgrowth of more homogeneous resistant clones 
that are more aggressive and difficult to treat (59). Hormone-positive 
disease showed similar trends to the overall model (fig. S6G).

We then sought to explore whether the CBF cofactor, which we 
identify as a key regulator of the intermediate state, could hold 
predictive value for survival outcomes as a single marker. Sequential 
slides matching those used for the multiplexed immunofluorescence 
approach above were stained for CBF using immunohistochemistry 
and scored as negative, weak, moderate, or strong for CBF expres-
sion and penetrance within the sample core, noting nuclear or cyto-
plasmic localization (fig. S6H). An H score such as those used to 
define ER expression (60) was calculated using the strength of 
expression (0 to 3) multiplied by percentage of positively stained cells. 
The presence or absence of CBF (negative versus any staining) was 
not found to be associated with overall survival in these patient 
samples [HR (CBF+): 1.42, 95% CI: 0.89 to 2.25, P = 0.132; fig. S6I], 
nor was H score, adjusting for age and hormone receptor status 
(HR: 0.1, 95% CI: 0.1 to 1.0, P = 0.845). While CBF plays an 
important role in metastasis through stabilization of the intermediate 
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EMT state and may represent a potential molecular target for future 
therapeutics, its expression alone is not predictive as a biomarker 
for patient survival.

Overall, these analyses demonstrate a novel method for scoring 
patient samples, displaying an increased risk of death in patients 

with highly heterogeneous tumors that are composed of intermediate 
EMT phenotypes. Moreover, they display the power of a multiplexed 
marker panel over a single biomarker, which was unable to correlate 
with patient survival. Together, this highlights the importance of 
tumor heterogeneity and EMT state in understanding and predicting 
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patient prognosis as well as the benefit of combinatorial approaches 
in describing tumor heterogeneity.

DISCUSSION
Our study encompasses a comprehensive analysis of the spectrum 
of EMT states represented within a breast cancer cell line to inter-
rogate the nuances of each state, their respective contributions to 
tumor initiation and metastasis, and their epigenetic regulatory 
networks. We uncover the presence of multiple unique EMT states 
within the intermediate EMT category, as well as two distinct 
mesenchymal-like states, suggesting multiple, nonlinear trajectories 
for EMT as has been previously shown (30, 61). These states were 
verified by flow cytometry (CD44 and CD104) and ranked by EMT 
scores among other CCLE breast cancer cell lines, where they fell 
between an early intermediate and mesenchymal. While this model 
does not span from one extreme state to the other, it represents the 
EMT spectrum within SUM149PT, a cell line that is classified as 
Basal-like 2 molecular subtype of TNBC (62), reflecting the hetero-
geneous nature of this subtype. We used the relative EMT states 
between the clones to study the epigenetic heterogeneity of meta-
static breast cancer within an isogenic background and interrogate the 
fitness of each individual state. While the three intermediate EMT 
clones have the highest migratory and invasive potential in vitro, 
they are outperformed in tumor-initiating ability and growth by the 
parental cell line, which, by RNA-seq clustering, most closely re-
sembles the epithelial clone.

A concern when studying heterogeneous cell subpopulations is 
the retention of their initial EMT state following their isolation and 
culture. All six of our clones retained their morphological and phe-
notypic traits through multiple passages in culture, although we did 
observe clone E drifting to acquire a more spindle-shaped morphology 
upon extended periods of culture. All single-cell clones retained 
their initial CD44/CD104 expression profiles except for the most 
mesenchymal clone, M2, which gained the expression of CD104 
following its culture as an isolated single-cell clone. Given that the 
maintenance of EMT state is regulated by a complex set of paracrine 
and autocrine signals (63), it is plausible, albeit speculative, that the 
loss of specific paracrine signals upon isolated culture could have 
resulted in an altered state in the M2 clone that allowed expression 
of CD104. Nevertheless, to ensure that all clones retain their 
original EMT states upon culture, their passage numbers were 
restricted to below 20.

We further confirm that the intermediate EMT state exhibits 
higher levels of cellular plasticity, manifesting in tumors that grow 
more quickly than solely epithelial or mesenchymal cell states and 
exhibit high levels of EMH. Moreover, this plasticity-induced 
heterogeneity plays a key role in the metastatic propensity and 
tumor-initiating potential of these clones. However, no one indi-
vidual EMT state is capable of recapitulating the aggressive growth 
and decrease in survival of the parental line. The intermediate 
clones, upon xenotransplantation, experience a growth lag followed 
by an overdiversification, resulting in high EMH-scored tumors 
compared to the parental line, indicating that their high levels of 
plasticity enable them to attain higher levels of heterogeneity that 
propel tumor growth and metastasis. In contrast, the extreme clones 
exhibit less plasticity, taking longer periods of time to generate 
tumors that are less heterogeneous with weaker metastatic poten-
tial. The intermediate population in isolation appears to be the most 

potent tumor initiator; however, the presence of multiple states (i.e., 
heterogeneity) within the parental line imparts additional fitness 
that provides robust and exponential tumor growth. This suggests 
that the presence of heterogeneous subpopulations within a tumor 
confer a greater tumor growth advantage than the presence of more 
homogeneous subpopulations that exhibit higher levels of plasticity. 
A corollary assessment would be that a tumor benefits from harbor-
ing heterogeneous subpopulations, only a small subpopulation of 
which are required to exhibit high levels of plasticity. Future studies 
investigating the dynamics of expansion of this intratumoral hetero-
geneity may elucidate how EMT phenotypes work cooperatively to 
support tumor growth and progression to metastasis.

Through a multiomics approach, we identify distinct transcrip-
tional programs across the EMT spectrum. The intermediate state 
was found to be maintained and stabilized by a subset of transcrip-
tion factors, including the RUNX family. Knockout of the coactivator 
of this RUNX family of transcription factors, CBF, results in de-
creased expression of all RUNX TFs in the intermediate EMT clones 
that leads to tumors that metastasize at lower rates as a result of 
reduced heterogeneity and increased presence of epithelial cells 
within the tumor. These observations are in line with other studies 
that have outlined a role for RUNX2 in metastasis (40) but provide 
additional granularity to this work by identifying specific cell states 
that benefit from the presence of active RUNX-CBF. This study 
also underscores the importance of combining the study of the 
transcriptional and chromatin state of cells as a means of uncovering 
their underlying regulatory networks, which particularly enabled 
the delineation between similar EMT states; the transcriptional 
analysis of these clones alone was not sensitive enough to identify 
differences in many of the canonical EMT transcription factors, 
let alone other less variable TFs. This is likely because TF gene 
expression is tightly regulated by multiple factors (64), and differ-
ences in TF activity would benefit from a higher-resolution study at 
the chromatin level.

Last, we develop an approach to quantifying EMH and “EMTness” 
within human tumors, the former showing promise in its ability to 
inform disease prognosis. A previous work has sought to elucidate 
phenotypic intratumoral heterogeneity in a manner of different 
contexts and analyses using an array of multiplexed staining methods 
(65, 66) as well as through single-cell approaches (67). Here, we 
sought to specifically delineate intratumoral heterogeneity across 
the EMT spectrum, which has strong prognostic value for predict-
ing invasion and metastasis in our model. A significant challenge in 
the quantification of EMH has been the ability to discern carcinoma 
cells that exhibit mesenchymal traits from stromal cell types such as 
fibroblasts that express similar markers. Previous approaches to 
quantifying EMH have considered morphological features (68) and 
analyzed gene expression profiles from publicly available datasets 
that identify cells that have undergone EMT (26, 27). These ap-
proaches, while being highly useful to study tumor cell EMT status, 
have been unable to segregate stromal infiltrates and their contribu-
tions to aggregate EMT scoring. Our multiplexed immunostaining 
approach, which uses a set of six EMT markers to assess EMH and 
EMT score, incorporates a segmentation step, which ensures that 
the quantification excludes stromal elements. We were able to 
distinguish eight phenotypes within these EMT clone-derived 
tumors with high reproducibility, which were all present in a cohort 
of patient tumors, validating our approach to quantifying EMT in 
patient samples. We found that patients with high heterogeneity 
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and overall intermediate EMT state had significantly worse overall 
survival than any other group, independent of patient age and 
clinical subtype. Notably, CBF expression alone was not a successful 
predictor of overall survival in this patient sample cohort, empha-
sizing the need for a more nuanced metric, such as the one presented 
here, that uses a combination of markers to assess tumor diversity 
and complexity. Moreover, the inability of a key regulator of tumori-
genic and metastatic potential such as CBF to predict survival is in 
line with studies that identify many such proteins that play key roles 
in oncogenesis and remain important drug targets but are not asso-
ciated with shorter survival times (69). Thus, identifying novel ways 
of assessing heterogeneity and EMT parameters within a patient 
tumor through the use of combinatorial predictive biomarkers 
could prove useful in the clinical assessment these features and 
inform therapeutic decision-making.

MATERIALS AND METHODS
Cell culture
The human-derived SUM149PT cell line was obtained from the 
Weinberg laboratory, which, in turn acquired it from S. P. Ethier 
(Michigan). All derivative cell lines were maintained in an F12 
medium (Gibco, #11765-054) supplemented with 5% fetal bovine 
serum (FBS) (Gibco, #10438-026), insulin (1 mg/ml) (Gibco, 
#12585-014), hydrocortisone (1 mg/ml) (Sigma-Aldrich, #H4001), 
and 5% penicillin-streptomycin (Corning, #10-002-cl). All cell lines 
were incubated at 37°C with 5% CO2-air atmosphere with constant 
humidity. Cells were passaged with 0.25% trypsin (Corning, 25-053-
Cl); passage number was kept on all cell lines, and cultures were 
discarded past a total of 20 passages to maintain their respective 
EMT phenotypes. The 293T cell line was maintained in Dulbecco’s 
modified Eagle’s medium + 10% FBS (Gibco, #10438-026) + 5% 
penicillin-streptomycin (Corning, #10-002-cl).

Lentiviral vectors
Lentivirus was made with 293T cells plated at 60% confluency in 10-cm 
tissue culture–treated plates and transfected using X-tremeGENE 
HP DNA Transfection Reagent (Sigma-Aldrich, # 6365779001) with 
lentiviral vectors, psPAX2 (1.5 g; Addgene, #12260), pCMV-VSV-G 
(1.5 g; Addgene, #8454), and pcDNA3–enhanced green fluores-
cent protein (0.5 g; Addgene, #13031) plus the lentiviral vector 
of interest (3 g). The supernatant was collected at 48 and 72 hours 
after transfection, concentrated using a Lenti-X concentrator 
(TakaraBio, #631232), and titer was determined with Lenti-X GoStix 
(TakaraBio, #631243).

Cell line generation
The parental cell line SUM149PT was maintained in standard 
media. To generate single-cell clones, fluorescence-activated cell 
sorting (FACS) was performed on SUM149PT with the FACSAria 
III Cell Sorter. Cells were stained with CD44-PeCy7 (1:100; BioLegend, 
103030), CD104-APC (1:200; Invitrogen, #50-1049-82), or Epcam- 
BV510 (1:100; BioLegend, #324235) for 30  min on ice before the 
addition of 4′,6-diamidino-2-phenylindole (DAPI) (1:1000; Sigma- 
Aldrich 10236276001; 10 mM stock). Gating and compensation 
were done on single-stained controls, and cells were sorted into 
collection tubes and immediately plated at a dilution of 0.5 cells per 
well into a 96-well plate. Single-cell clones were then expanded and 
assessed for EMT characteristics.

ZsGreen-expressing cells
All SUM149PT clones and the parental line were infected with 
high-titer pHIV-Luc-ZsGreen (Addgene, #39196) virus so as to 
generate ZsGreen and luciferase-expressing tumor cells for metas-
tasis tracking in mouse. A total of 6 × 105 cells were infected in 
six-well plates with 125 l of high-titer virus in standard media with 
Polybrene (5 g/ml) (Sigma-Aldrich). Media were changed after 
24 hours, and cells were allowed to expand for 48 hours before sort-
ing for ZsGreen-positive population on the FACSAria III Cell 
Sorter, as above.

Flow cytometry
Flow experiments were performed in the same manner as above, 
on a 10-color Gallios FACS cytometer (Beckman Coulter). Com-
pensation, file analysis, and plot generation were conducted using 
FlowJo (BD Biosciences).

Reverse transcription quantitative polymerase  
chain reaction 
RNA was harvested from six-well plates of cells at confluency, 
extracted using the Qiagen RNeasy Plus Kit (Qiagen, 74034) and 
quantified using a NanoDrop (Thermo Fisher Scientific, ND-2000-
US-CAN). Reverse transcription polymerase chain reaction (RT-PCR) 
(Applied Biosystems, #4368814) was performed to generate com-
plementary DNA (cDNA), and Power SYBR Green PCR Master 
Mix (Applied Biosystems) was used for quantitative polymerase 
chain reaction (qPCR) (Box 1).

Western blot
For Western blot, lysates were collected on-plate with 1× radio-
immunoprecipitation assay buffer (EMD Millipore, #20-188) with 
protease and phosphatase inhibitors (Thermo Fisher Scientific, 
#1861280). Lysates were sonicated and cleared before quantifica-
tion with a Bradford Protein assay (Bio-Rad) and loaded at 50 g 
per lane and run on a NuPage bis-tris gel (Thermo Fisher Scientific) 
and transferred to nitrocellulose membrane with the iBlot semidry 
transfer system (Thermo Fisher Scientific) and blocked in 5% milk 
in Tris Buffered Saline + Tween 20 (TBST) before staining with 
fibronectin (BD Biosciences, #610078; 1:10,000), ZEB1 (LSBio, 
#LS-C288694; 1:2000), E-cadherin (BD Biosciences, #610182; 1:1000), 
vimentin [Cell Signaling Technology (CST), #5741; 1:2000], RUNX1 
(CST, #4336; 1:2000), RUNX2 (CST, #12556; 1:2000), RUNX3 
(CST, #9647; 1:2000), CBF (Abcam, ab33516; 1:2000), Snail (CST, 
#3879; 1:1000), Twist1/2 (Abcam, ab50887: 1:50), and CoxIV (CST, 
#11967; 1:2000) overnight in 5% milk in TBST. LI-COR secondary anti-
bodies, IRDye goat anti-rabbit and goat anti-mouse, 800CW (LI-COR, 
#925-32219), and 680RD (LI-COR, #925-68076), were applied at 
1:10,000 for 1 hour at room temperature in 5% milk in TBST be-
fore imaging on the LI-COR Odyssey CLx Digital Imager.

Transwell assay
Transwell assays were conducted using Costar Transwell plates 
(#3422, 8.0 m) in triplicate. For migration assays, 2.5 × 105 cells 
were added to the top of each well in 10% complete medium, with 
100% complete medium beneath the transwell. Cells were incubated 
for 16 to 18 hours at 37°C. Media were aspirated, and cells were 
permeabilized with 100% methanol for 5 min at room temperature, 
followed by staining with crystal violet (0.5% crystal violet in 20% 
methanol). Transwells were imaged on a Nikon Eclipse TS100 
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microscope, and migrated cells were counted using ImageJ. Invasion 
assays were conducted as above on plates that were coated with 100 l 
of 5% Matrigel to the top of each transwell and allowed to set at 
37°C for 2 hours before seeding.

RUNX2 and CBF knockout
CRISPR-Cas9–mediated knockout was achieved through lentiviral 
infection of lentiCRISPR V2 (Addgene, #52961) containing guides 
targeting RUNX2, CBF, or a LacZ nontargeting control guide 
(Box 2, sequence acquired from Sigma predesigned CRISPR guide 
RNA). Constructs were confirmed by Sanger sequencing and used 
as vectors in lentivirus production as stated above. Cells were in-
fected with 1/8th lentiviral product from a 10-cm plate in six-well 
plates. Media were changed after 24 hours, and puromycin selection 
(2 g/ml) was applied at 48 hours until stable cell lines were 
generated. Cell lines were checked for knockout by Western blot, 
and LacZ #1, RUNX2 #2, and CBFb #2 were used for further analysis 
based on the level of knockout. Cell lines used for Western blotting 
are as described above, and orthotopic injection into the mammary 
fat pad of NSG mice is as described below.

Cell imaging
Bright field
Images were taken on a Nikon Eclipse TS100 microscope under ×20 
magnification to determine cell morphology.
Immunofluorescence
Cells were grown to 60% confluency in chamber slides (Falcon 
354118) with standard media. Cells were fixed and permeabilized 
before staining with primary antibody (vimentin, CST; 1:100; and 
E-cadherin, BD Biosciences; 1:100) overnight, followed by secondary 
antibody (anti-rabbit, Thermo Fisher Scientific, #31466; 1:10,000; anti- 
mouse, Thermo Fisher Scientific, #31431; 1:10,000) for 1 hour. Slides 
were washed and mounted using ProLong Diamond (Invitrogen, 
P36961) before imaging on Zeiss LSM 800 with Airyscan (63×).

In vivo studies
Cell lines were resuspended in 30% Matrigel (VWR, 47743-706) 
and injected in limiting dilutions (250,000, 25,000, and 2500 cells 
per flank) orthotopically into the inguinal mammary fat pat (no. 4) 
of NOD scid interleukin-2Rnull (stock no. 005557, the Jackson 
Laboratory). Tumor growth was monitored weekly, and tumor volume 
was measured along three axes with calipers (VWR, 62379-531). 
Tumors and lungs were harvested at the time of tumor burden 
(total tumor volume of 2 cm3) and fixed overnight with 10% neutral- 
buffered formalin. Tumor growth curves and survival were statisti-
cally analyzed using TumGrowth (31). Tumor-initiating potential 
was calculated with extreme limiting dilution analysis (70).

Late metastasis models were obtained through primary tumor 
resection at 1 cm3. Mice were allowed to recover, and lungs were 
harvested at 2.5 months after surgery. This interval was determined 
by noticeable recurrence at the ipsilateral site and deteriorating 
health in the mice.

Tumor and lung staining
Tumors and lungs were extracted at the time of tumor burden (total 
tumor volume of 2 cm3) and fixed overnight with 10% neutral-buffered 
formalin. All samples were then processed and stained for H&E by 
the Dartmouth Hitchcock Pathology Shared Resource. Lungs bearing 

Box 1. A list of qPCR primers for EMT-related genes.  

ZEB2 F CAAGAGGCGCAAACAAGC Zeb1 F TGCACTGAGTGTGGAAAAGC

ZEB2 R GGTTGGCAATACCGTCATCC Zeb1 R TGGTGATGCTGAAAGAGACG

PRRX1 F CTGATGCTTTTGTGCGAGAA Ecad F TTGCACCGGTCGACAAAGGAC

PRRX1 R ACTTGGCTCTTCGGTTCTGA Ecad R TGGATTCCAGAAACGGAGGCC

Twist2 F GCAAGAAGTCGAGCGAAGAT Fibronectin1 F GAGAATGGACCTGCAAGCCCA

Twist2 R GCTCTGCAGCTCCTCGAA Fibronectin1 R AGTGCAAGTGATGCGTCCGC

OVOL1 F CCGTGCGTCTCCACGTGCAA Vimentin F ACCCGCACCAACGAGAAGGT

OVOL1 R GGCTGTGGTGGGCAGAAGCC Vimentin R ATTCTGCTGCTCCAGGAAGCG

OVOL2 F CCGATGGACACCTGGCGACC RUNX1 F CAGCTGCGGCGCACA

OVOL2 R GACGGTTCAGCATGCGCTGC RUNX1 R GGATCTGCCTTGTATCCTGCAT

Twist1 F TGCGGAAGATCATCCCCACG RUNX2 F AGCCCTCGGAGAGGTACCA

Twist1 R GCTGCAGCTTGCCATCTTGGA RUNX2 R CGGAGCTCAGCAGAATAATTTTC

Snai1 F CTGGGTGCCCTCAAGATGCA RUNX3 F GTTCAACGACCTTCGCTTC

Snai1 R CCGGACATGGCCTTGTAGCA RUNX3 R GTCCACGGTCACCTTGATG

Snai2 F TACCGCTGCTCCATTCCACG CBFB F CTTAGAAAGAGAAGCAGGCAAGG

Snai2 R CATGGGGGTCTGAAAGCTTGG CBFB R AACTCCAGACAGCCCATACCA

Box 2. A list of CRISPR-Cas9 guides targeting RUNX family members.  

LacZ CACCGTGCGAATACGCCCACGCGAT

RUNX2 #1 CACCGGCGGACGAGTTCGGCCGGG

RUNX2 #2 CACCGATGAGCGACGTGAGCCCGG

CBFb #1 CACCGTCCAGAACGCCTGCCGCGA

CBFb #2 CACCGAGTCGACATACTCTCGGCT
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ZsGreen-positive EMT clones were counted by eye on a Nikon 
Eclipse TS100 microscope, and select images were taken at ×74 
magnification.

Metastasis counting
H&E-stained lung slides were scanned on a PerkinElmer Vectra3 
slide scanner at 10× and counted by eye for micrometastatic (>10 adja-
cent cells) and macrometastatic (10+ adjacent cells) tumors.

Whole-exome sequencing
Whole-exome sequencing and subsequent single-nucleotide poly-
morphism (SNP) and insertion and deletion (INDEL) alignment 
and discovery were performed by BGISeq on all EMT clones. They 
obtained 9242.46 Mb raw bases. After removing low-quality reads, 
we obtained, on average, 91,977,846 clean reads (9197.79 Mb). The 
clean reads of each sample had high Q20 and Q30, which showed 
high-sequencing quality. The average GC content was 50.63%. 
Reads were aligned with a Burrows-Wheeler Aligner. The Haplo-
TypeCaller of GATK (v3.6) was used to call and identified 190,503 
SNPs and 33,385 INDELs between all samples. SNPs and INDELs 
for each clone were tested against the consensus set for clone E to 
determine possible genetic mutations with a Fisher’s exact test and 
plotted as odds ratios.

TCGA survival analysis
The results shown here are in whole based on data generated by 
the TCGA Research Network: https://cancer.gov/tcga using the 
TCGA-BRCA cohort of patient samples. CBF raw counts were 
normalized using variance-stabilizing transformation, and subjects 
were stratified into high- versus low-expression groups based on 
50th percentile CBFb (ENSG00000067955). Expression was modeled 
as a continuous variable in the Cox proportional hazards model 
adjusting for age, stage (low versus high), and molecular sub-
type (PAM50).

RNA-seq data processing
RNA was collected using a Qiagen RNeasy plus kit (Qiagen, 74034) 
and quantified using a NanoDrop (Thermo Fisher Scientific, 
ND-2000-US-CAN). Library preparation was performed with the 
Kapa mRNA HyperPrep Kit.

The quality of raw single-end RNA-seq data was confirmed 
using FastQC (v0.11.8) (71) before read trimming of polyA sequences 
and low-quality bases using Cutadapt (v2.4) (72). Reads were aligned 
to human genome hg38 using STAR (v2.7.2b) (73) with parameters 
“--outSAMattributes NH HI AS NM MD --outFilterMultimap-
Nmax 10 --outFilterMismatchNmax 999 --outFilterMismatch-
NoverReadLmax 0.04 --alignIntronMin 20 --alignIntronMax 
1000000 --alignMatesGapMax 1000000 --alignSJoverhangMin 
8 --alignSJDBoverhangMin 1.” The quality of the alignments was 
assessed using CollectRNASeqMetrics [Picard Tools (74)], and 
duplicate reads were identified (but retained) with MarkDuplicates 
[Picard Tools (74)]. Gene-level abundance estimates were generated 
using RSEM (v1.3.2) (75) using the rsem-calculate-expression 
command with the parameters “--strandedness reverse --fragment-
length-mean 313 --fragment-length-sd 91.”

Downstream RNA-seq data analysis
Gene-level abundance estimates generated with RSEM were im-
ported into R and analyzed using the R package DESeq2 (76). To 

perform exploratory analysis of global transcriptional profiles, 
abundance was transformed using the regularized logarithm ap-
proach (76) implemented in the R package DESeq2, and the top 500 
most variable genes across all clones were supplied to the prcomp() 
command in R to perform PCA. The 500 most variable genes were 
also used to perform unsupervised hierarchical clustering with the 
R package ComplexHeatmap. A differential expression analysis was 
performed on the raw gene-level abundance estimates assuming a 
negative binomial distribution, with clone E used as the reference 
group in all comparisons. Gene-wise dispersion estimates were 
reviewed in all analyses to confirm that the selected model was an 
appropriate fit for the data. Genes with a Benjamini-Hochberg 
adjusted P value <0.05 (Wald test) were considered statistically 
significant. GSEA was done on differential gene lists for each clone 
relative to clone E using the clusterProfiler (32) to determine over-
laps with the hallmark gene sets at a threshold of 0.05.

ATAC-seq data processing
Tagmented DNA and library prep for ATAC sequencing was per-
formed according to the protocol detailed in Buenrostro et al. (35). 
Before analysis, the quality of raw DNA sequences (in FASTQ format) 
was confirmed using FastQC (v0.11.8) (71). ATAC-seq data were 
then processed using the publicly available ENCODE ATAC-seq 
pipeline (https://encodeproject.org/pipelines/ENCPL792NWO/), 
and relevant commands and options used are described in detail 
below. Illumina adapter and transposase sequences were trimmed 
using Cutadapt (v1.9.1) (72) with parameters “--minimum-length 
5 -e 0.1.” Trimmed reads were then aligned to human genome hg38 
using Bowtie2 (v2.2.6) (77) in “--local” mode with parameters 
“-X 2000 -k 2.” Duplicate reads were identified using MarkDuplicates 
[Picard Tools (74)] and filtered from final alignments, in addition 
to unmapped reads and reads aligning to mitochondrial DNA, 
retaining only alignments formed by properly paired reads. For 
multimapping reads, one paired-end alignment was randomly 
selected as the primary alignment, while the remaining alignments 
were discarded. Alignments (in BAM format) were converted to 
tagAlign files and shifted +4 base pairs (bp) and −5 bp on the + 
and – strands, respectively, to account for insertion of adapter 
sequences by Tn5 transposase. Peaks were called for each replicate 
using the MACS2 (v2.1.1) (78) callpeak command with parameters 
“--shift -75 --extsize 150 --nomodel --keep-dup all --call-summits -p 
1.0E-10” and filtered against the ENCODE hg38 blacklist. The 
irreproducible discovery rate (IDR) method was used to identify a 
set of reproducible peaks across biological replicates using an IDR 
threshold of 0.05. For visualization purposes, position-shifted (to 
account for Tn5 insertion) BAM files for biological replicates were 
merged MergeSamFiles [Picard Tools; (74)] and used to generate counts 
per million (CPM)–normalized signal tracks (in BigWig format) 
via the deepTools (v3.4.3) (79) bamCoverage command with pa-
rameters “--binSize 5 --normalizeUsing CPM --effectiveGenomeSize 
2913022398 --ignoreForNormalization chrX.” Heatmaps of 
normalized Tn5 insertions in peak regions or specific regions 
were generated using deepTools commands computeMatrix and 
plotHeatmap.

Several metrics were used to confirm ATAC-seq data quality. To 
confirm whether sequencing libraries were of sufficient complexity, 
three specific quality control metrics were evaluated: nonredundant 
fraction (number of uniquely mapping reads/total read num-
ber), PCR bottlenecking coefficient 1 (PBC1, number of genomic 

https://cancer.gov/tcga
https://encodeproject.org/pipelines/ENCPL792NWO/
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positions with at least one read mapped/number of distinct genom-
ics position to which a read maps uniquely), and PCR bottleneck-
ing coefficient 2 (PBC2, number of locations where one read maps 
uniquely/number of genomic regions where two reads map 
uniquely). Fragment length distributions were generated and 
reviewed in R using the “Rsamtools” package. The fraction of reads 
in nucleosome- free regions (NFRs) was calculated to confirm that a 
sufficient fraction of reads were located in NFRs. Fraction of reads 
in peak regions (FRiP score) was calculated to assess the quality of 
the final IDR peak set. Enrichment of accessibility over transcrip-
tional start sites (TSSs), calculated as the maximum number of 
normalized Tn5 insertions across a ±2-kb region flanking hg38 
TSS regions, was used to confirm data quality in a peak agnostic 
fashion.

Downstream ATAC-seq data analysis
Basic peak annotation was performed using the annotatePeak() 
function from the ChIPseeker (80) package, using a range of ±3 kb 
to define promoter-associated regions. The R-package TxDb.Hsapiens.
UCSC.hg38.knownGene was used to define gene models and coor-
dinates of genomic features. To create a set of consensus peaks, 
the IDR peak sets for each sample groups were merged using the 
R package GenomicRanges. Tn5 insertions occurring in each peak 
of the consensus peak set were counted from position-shifted BAM files 
using the featureCounts() function (from the Rsubread package) with 
options “isPairedEnd = TRUE, countMultiMappingReads = FALSE.” 
To perform exploratory analyses of global chromatin accessibility 
profiles, raw counts were transformed using the regularized loga-
rithm approach (76) implemented in the R package DESeq2. PCA 
was performed on the 3000 most variable consensus peak regions 
using the prcomp() function in R. The most variable peaks were 
defined as those with the greatest SD across all samples. Unsupervised 
hierarchical clustering was performed with the R package Complex-
Heatmap, also using the 3000 most variable consensus peaks. 
Differential accessibility analysis of the consensus peak was also 
performed using the R package DESeq2, modeling raw counts using 
a negative binomial distribution, with clone E used as the reference 
group in all comparisons. Peaks with a Benjamini-Hochberg– 
corrected P value <0.05 (Wald test) were considered statistically 
significant.

Enrichment of Transcription Factor Binding Sites in  
clone-specific peak sets
To identify potential TFs responsible for mediating clone-specific 
phenotypes, we tested the differentially accessible peaks between 
clone E and each clone for overrepresentation of TF binding site 
motifs. We first restricted each peak set to regions that demonstrated 
statistically significant increases in chromatin accessibility com-
pared to clone E (see description of differential accessibility analy-
ses above) and scanned these peaks for TF motif occurrences using 
the R package motifmatchr (36). Position frequency matrices for 
human TF motifs used as input to motifmatchr were downloaded 
from the JASPAR database (81) using R packages JASPAR2018 and 
TFBSTools (82). Overrepresented TF motifs in each peak set were iden-
tified through hypergeometric testing using the R function phyper(), 
with all peaks identified in that clone used as the background set. TF 
motifs with a Bonferroni-corrected hypergeometric P value <0.05 
were deemed as overrepresented. To identify potential groups of coor-
dinately regulated TFs across the respective clones, −log10- transformed 

P values from hypergeometric testing were subjected to hierarchi-
cal clustering and visualized using the R package pheatmap. To pre-
vent extreme motif enrichments from dominating the heatmap 
scale, −log10-transformed P values were capped at a maximum value 
of 20 (highlighted with an asterisk).

Differential TF activity analyses
Differential TF activity between single cell–derived clones, as well 
as TF mode of action (i.e., activator and repressor), was estimated 
using diffTF (43). Briefly, when used with ATAC-seq data, diffTF 
computes the fold change in chromatin accessibility between two 
conditions at each binding site of a given TF, and the distribution of 
fold changes is compared to a set of background fold-change values 
to assess statistical significance of differences in TF activity between 
the conditions. DiffTF was used in conjunction with matched RNA-seq 
(classification mode) to classify each TF into one of the four modes of 
action (activator, repressor, not expressed, and undetermined) through 
correlation of TF expression levels with target site accessibility. 
DiffTF was used with options “pairedEnd” and “RNASeqIntegration” 
set to “true,” with all remaining options using default settings. In 
silico–predicted binding sites based on the HOCOMOCO v11 data-
base (83) and PWMScan (84) for hg38 across 768 human TFs was 
used to define the atlas of TFBS for diffTF analyses. To concentrate 
on the TFs with the most confidently estimated TF activity scores 
(weighted_meanDifference), we restricted our downstream analy-
sis to TFs that achieved an adjusted P value of 1 × 10−15. To identify 
modules of cooperatively regulated TFs, unsupervised hierarchical 
clustering was performed on the diffTF activity scores using R pack-
age ComplexHeatmap.

Multiplexed TSA staining
Tumors were selected from each EMT clone at approximately 1 cm3 
and stained with (in order) Snail (CST, #3895; 1:400), KRT8 
(Invitrogen, PA5-29607; 1:300), KRT14 (Invitrogen, MA5-11599; 
1:1000), vimentin (CST, #5741; 1:500), E-cadherin (BD Biosciences, 
#610182; 1:500), and ZEB1 (Invitrogen, PA5-82982; 1:1000). Antibody 
optimization and multiplexed staining were done according to the 
PerkinElmer OPAL Assay Development Guide (August 2017) and 
previous literature (52, 85). Briefly, slides were baked to remove 
paraffin wax and then sequentially washed with xylene and rehydrated 
with decreasing concentrations of ethanol and, finally, ddH2O 
before blocking. Then, slides were incubated with primary antibody 
and then secondary antibodies for 30 min at room temperature. 
Following washes, the selected OPAL fluorophore was applied to 
slides for precisely 6  min at room temperature in the dark and 
washed off, and slides were microwaved at 20% power for 15 min to 
affix OPAL to target regions and remove primary and secondary 
antibodies. Slides were blocked again, the staining process was 
repeated for each marker (Box 3), and, last, spectral DAPI (Perkin-
Elmer, two drops/ml) was added before mounting on coverslips 
with ProLong Diamond (Invitrogen, P36961).
Image analysis
Whole-slide scans were captured at 10× with the PerkinElmer 
Vectra3 Slide Scanner, and  ~50 ROIs per tumor were chosen 
manually with PhenoChart (PerkinElmer). ROIs were imaged 
at 20× resolution and imported into InForm analysis software 
(PerkinElmer). Spectral unmixing single stains and background 
fluorescence slides were generated from the parental tumor accord-
ing to the OPAL Assay Development Guide. ROIs were spectrally 
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unmixed and assigned colors and exported as composite images 
(Fig. 4A). Tissue segmentation (trainable to 98% accuracy) and cell 
segmentation were performed (nuclear compartment —DAPI; 
cytoplasm—vimentin and KRT8; and membrane—E-cadherin), and cells 
were phenotyped on the basis of expression of one or multiple markers 
[E-cadherin only, KRT8/14 and E-cadherin, KRT8 and/or KRT14, triple 
positive (KRT8 + E-cadherin + vimentin), KRT8/14 and vimentin, 
Snail only, vimentin only, and vimentin + ZEB1] and validated 
by marker distribution (fig. S5, A and B). Entire cell mean fluo-
rescent units were extracted for each marker and normalized as a 
percentile of maximum and minimum fluorescence across all cells 
in all images.
Heterogeneity and EMT scores
Approach 1: Heterogeneity scores were generated using penalized 
logistic regression based on entropies of mean marker cell expres-
sions to identify markers and cellular compartments (nucleus, cyto-
plasm, and membrane) that contributed most to the variability in 
the ranked tumor images (fig. S5C). In total, 134 entropy-based 
features were extracted, and 13 of them were selected by recursive 
feature elimination (86) as the most relevant. Logistic regression 
classified sample heterogeneity into levels mid, low, and high. 
Ground truths were determined from the rubric: low (one major 
cell trait with up to one minor trait), mid (two major cell traits with 
up to three minor traits), and high (three or more major cell traits 
present with two or more minor traits). These were used to train 
and validate the algorithm using 70% training and 30% test images 
(n = 409) in a fivefold cross-validation.

Approach 2: Nearest neighbor analysis was conducted with the 
scikit-learn Python package (55) using cell phenotypes determined 
from InForm. Similar feature selection methods were applied to 
nearest neighbors, with 26 of 49 features selected.

Approach 3: A hybrid approach used combined the 134 and 
49 features from approaches 1 and 2 and selected 18 of 183 
features.

To generate the EMT score, the seven derived phenotypes were 
weighted from epithelial to mesenchymal (E-cadherin only −3, 
KRT8 and E-cadherin −2, KRT14 only −1, triple positive +1, Snail 
only +2, vimentin only +3, and vimentin and ZEB1 + 4) and applied 
to a multivariate logistic regression. The code is available in GitHub 
(https://github.com/BMIRDS/cell-heterogeneity-emtscore).

Human patient tumors
Human patient samples were obtained from the CHTN CPD Breast 
Cancer Stage III Prognostic Tissue Microarray. Details on this 
tissue microarray can be found at https://chtn.org/. TMAs were 
stained as detailed above and unmixed as described. After QC, 124 
sample cores were used for further analysis including phenotyping, 
as well as heterogeneity and EMT score calculation, both described 
above. Hazard ratios were calculated with a multivariate Cox 
proportional hazard model, adjusting for patient age and tumor 
hormone status (HR+ or HR−).

CBF staining was conducted on sequential CHTN TMAs, as above, 
by immunohistochemical methods (Abcam, ab33516; 1:2000). 
Following staining, TMAs were scored by a licensed pathologist and 
marked as negative, weak, moderate, or strong for nuclear and/or 
cytoplasmic staining, as well as percentage of cells per core. H scores, 
such as those used to define ER expression (60), were calculated 
using the strength of expression (negative  =  0, weak  =  1, 
moderate = 2, and strong = 3) multiplied by percentage of positively 
stained cells (top estimate). Hazard ratios are calculated as above.

Survival analysis
Survival analysis was performed on patient data gathered from the 
CHTN. Overall survival was used to plot Kaplan-Meier and Cox 
proportional hazard models adjusting for patient age and patient 
subtype (HR+ or HR−). HR status was determined from ER and PR 
score (negative or positive) based on ASCO CAP Guidelines for ER 
and PR scoring.

Research animals
All animal experiments were carried out under ethical regulations 
approved by the Dartmouth College Institutional Animal Care and 
Use Committee.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abj8002

View/request a protocol for this paper from Bio-protocol.
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