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1  |  INTRODUC TION

Developing biomarkers that can quantify or approximate biologi-
cal aging holds enormous promise for both basic and translational 
biomedical research (Kennedy et al., 2014; Lopez-Otin, Blasco, 

Partridge, Serrano, & Kroemer, 2013; Sierra & Kohanski, 2017). One 
of the most promising biomarkers of aging that has emerged is the 
epigenetic clock. Some subset of DNA methylation (DNAm) has been 
shown to change predictably over the life span (Florath, Butterbach, 
Muller, Bewerunge-Hudler, & Brenner, 2014; Johansson, Enroth, & 
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Abstract
Epigenetic clocks, developed using DNA methylation data, have been widely used to 
quantify biological aging in multiple tissues/cells. However, many existing epigenetic 
clocks are weakly correlated with each other, suggesting they may capture different 
biological processes. We utilize multi-omics data from diverse human tissue/cells to 
identify shared features across eleven existing epigenetic clocks. Despite the strik-
ing lack of overlap in CpGs, multi-omics analysis suggested five clocks (Horvath1, 
Horvath2, Levine, Hannum, and Lin) share transcriptional associations conserved 
across purified CD14+ monocytes and dorsolateral prefrontal cortex. The pathways 
enriched in the shared transcriptional association suggested links between epigenetic 
aging and metabolism, immunity, and autophagy. Results from in vitro experiments 
showed that two clocks (Levine and Lin) were accelerated in accordance with two 
hallmarks of aging—cellular senescence and mitochondrial dysfunction. Finally, using 
multi-tissue data to deconstruct the epigenetic clock signals, we developed a meta-
clock that demonstrated improved prediction for mortality and robustly related to hall-
marks of aging in vitro than single clocks.
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Gyllensten, 2013; Rakyan et al., 2010; Teschendorff et al., 2010). 
Utilizing this observation, epigenetic clocks quantitatively combine 
DNAm levels at tens to hundreds of genomic locations into composite 
methylation-based age predictors that often exhibit extremely high 
correlations with chronological age, upwards of r = 0.98 in full age 
range samples (a brief review of various epigenetic clocks (Table S1) 
can be found in Appendix S1 and other literature (Field et al., 2018)). 
Epigenetic clocks can also be contrasted against individuals' chrono-
logical ages to assess inter-individual and/or inter-tissue variability in 
the rate of aging (Horvath & Raj, 2018), and for a number of clocks, 
divergence between epigenetic and chronological age (referred to 
as age acceleration) has been shown to translate to differential sus-
ceptibility to death (Chen et al., 2016; Levine et al., 2018; Marioni 
et	al.,	2015;	Zhang	et	al.,	2017)	and	disease	(Ambatipudi	et	al.,	2017;	
Levine,	Hosgood,	et	al.,	2015;	Levine,	Lu,	Bennett,	&	Horvath,	2015;	
Levine et al., 2018; Yang et al., 2016; Zheng et al., 2016).

Despite their shared theoretical interpretation, epigenetic clocks 
vary in their associations with health outcomes and each other. This 
does not seem to simply reflect a difference in the validity of the 
various clocks, but instead may suggest that they capture different 
aspects of the biological aging process, which likely stems from the 
differences in the outcomes and populations used to train them. 
For instance, most clocks were trained exclusively using samples in 
whole blood, whereas two clocks comprised multi-tissue samples 
(Appendix S1). Additionally, while most were developed as “chrono-
logical age predictors,” three were trained using other phenotypes 
that reflect the effect of aging on health characteristics. The clock 
by Zhang et al. (2017) was developed as a predictor of all-cause mor-
tality; the clock by Yang et al. (2016) was trained to approximate 
mitotic rate; and the clock by Levine et al. (2018) was developed to 
approximate a multi-system clinical aging measure that strongly cor-
relates with age, but differentiates same-aged individuals based on 
morbidity and mortality risk.

While the clocks share both similarities and differences, we lack 
an understanding of the underlying processes that they capture. We 
hypothesized that multiple distinct epigenetic aging phenomena 
exist, which are captured by the various clocks to varying degrees 
and accuracies, and that by identifying these overlapping signals we 
could construct a more reliable and valid biomarker of aging. In this 
study, we first used multi-omics data from diverse human tissue/cell 
types, coupled with in vitro experiments focusing on hallmarks of 
aging, to delineate a comprehensive picture of the shared and con-
trasting features captured across eleven existing epigenetic clocks 
(Figure 1). Building on these observations, we decomposed these 
existing epigenetic clocks and recombined their conserved features 
into a single “meta-clock,” for which we demonstrated improved pre-
diction for mortality and more robust aging associations in vivo and 
in vitro.

2  |  RESULTS

2.1  |  Contrasting clock characteristics across 
tissues/cells

The eleven epigenetic clocks considered in this study comprise 
1600 CpGs, the majority of which (n = 1427) are specific to only one 
clock (Table S2). The lack of overlap in genomic locations between 
the clocks remains even when considering larger genomic regions 
(Figure S1), suggesting that clocks are not simply selecting adjacent 
CpGs and instead are drawing markers from entirely different re-
gions. However, one CpG (cg09809672 in EDARADD) was included 
in	seven	of	the	eleven	clocks.	Surprisingly,	the	CpG	(cg16867657)	in	
ELOVL2 was only included in three clocks—Hannum, Horvath2, and 
Garagnani (the single CpG clock).

CpGs in the various clocks are also distinct in terms of their 
multi-tissue age associations (Figure S2). Despite the fact that the 
Hannum clock was trained exclusively in whole blood, the CpGs 
comprising it show the strongest and most consistent age correla-
tions across tissue and cell types—with approximately half of CpGs 
showing strong positive age correlations and the other half show-
ing strong negative age correlations. Interestingly, CpGs in the orig-
inal pan-tissue clock by Horvath (which we refer to as Horvath1) 
show moderate tissue consistency, with a large proportion of CpGs 
exhibiting very weak to no age correlation. Given that Horvath1 
was	trained	using	52	distinct	tissues	and	cell	types,	we	hypothesize	
that many of these non-age-related CpGs may actually be reflect-
ing (and adjusting out) tissue differences. Similarly, the Levine clock 
also contains an abundance of CpGs with weak age correlations. 
The Levine clock—trained in whole blood—aimed to capture aging 
differences among individuals of the same chronological age. Thus, 
many CpGs in the Levine clock may reflect more stable differences 
in processes that influence aging, but do not themselves change 
with age in a predictable manner. Examples may include innate or 
acquired differences in resilience mechanisms (Levine & Crimmins, 
2016), mTOR signaling (Kennedy & Lamming, 2016), inherent in-
flammatory/immune responsiveness (Brodin & Davis, 2017), etc.

When considering the overall clock scores, rather than the individual 
CpGs that comprise them, we get a slightly different picture. As shown in 
Figure 2, Horvath1 exhibits the strongest age correlation across pooled 
tissues and cells (r = 0.94), which is not entirely surprising given that it 
was trained to do just that. This is followed by Horvath2 (r	=	0.85),	which	
was the only other age predictor trained on more than one tissue type. 
While it is often misstated that the clocks developed using DNAm from 
whole blood do not “work” in other tissue and cell types, we found that 
the clocks by Hannum, Levine, Lin, and Weidner also exhibit fairly robust 
multi-tissue age correlations (r	=	0.68,	0.53,	0.67,	and	0.46,	respectively).	
Further, the reduced correlations appear to be due to tissue differences 

F I G U R E  1   Roadmap of this comparative analysis. To simplify the description, we used the last name of the first author to refer to 
each clock. The upper part shows the timeline of eleven epigenetic clocks included in this study. The next two parts include hypothesis 
development and testing. In hypothesis development part, we did comparative analysis for eleven epigenetic clocks mainly in four aspects. 
In hypothesis test part, we deconstructed the core signals across them, and developed and validated a novel meta-clock
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in the slope and intercept, rather than a lack of age correlations within 
tissues (Figure S3). This does not suggest that epigenetic changes are 
tissue-specific, but perhaps that tissues have innate differences in vul-
nerability to epigenetic changes that manifest as differences in the rate 

of epigenetic aging as a function of chronological age. Interestingly, age 
slopes in these clocks appear to be most distinct when comparing brain 
to other tissues—with brain showing a much slower increase in epigene-
tic age over chronological age.

F I G U R E  2   Age correlations for the clock scores across tissue and cell types. Pearson's correlations were used to assess associations 
between chronological age (x-axis) and DNAmAge (y-axis) by pooling 16 distinct tissue and cell types. Epigenetic clocks are denoted using 
the last name of the first author. DLPFX, dorsolateral prefrontal cortex

F I G U R E  3   Transcriptomic pattern of 11 existing epigenetic clocks. Hieratical clustering of epigenetic clocks was performed based on the 
log2FC	values	for	age-adjusted	associations	with	8589	genes	in	monocytes	(a)	and	DLPFC	(b).	(c)	Comparisons	of	the	strength	of	differential	
expression associations between clocks, for five clocks (reference clock = Horvath1) in monocytes. The x-axis represents the log2FC for 
the	association	between	Horvath1	and	8589	genes.	The	y-axis represents the log2FC for the association between five epigenetic clocks 
(Yang,	Hannum,	Lin,	Levine,	and	Horvath2)	and	8589	genes,	with	clocks	distinguished	by	colors.	The	slope	represents	the	fitted	line	of	the	
association between the log2FC for Horvath1 and the log2FC for each of the other five clocks, respectively. Thus, slope > 1 suggests the 
respective clock has stronger gene expression signals compared to Horvath1; a slope < 1 suggests Horvath1 has stronger gene expression 
signals compared to the respective clock; and a slope = 1 suggests comparable gene expression associations between Horvath1 and the 
respective clock. (d) Comparisons of the strength of differential methylation for six clocks (Levine, Weidner, VidalBralo, Hannum, Lin, and 
Horvath2) in DLPFC relative to Horvath1. Selected GO terms (e) and KEGG pathways (f) by the enrichment analysis for co-expression 
modules (identified via WGCNA) that were shown to be associated with multiple epigenetic clocks in monocytes and/or DLPFC. Modules 
are denoted by color (turquoise, yellow, green, and red). For each module, the five most enriched biological processes are shown, based on q 
value (FDR). DLPFX, dorsolateral prefrontal cortex
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2.2  |  Conserved transcriptional signature across six 
epigenetic clocks

To examine the potential functional implications of epigenetic aging 
assessed by various clocks, we linked the clocks to differential gene 
expression. As an initial step, clocks were clustered based on their 
shared transcriptomic expression patterns in both purified CD14+ 
monocytes and dorsolateral prefrontal cortex (DLPFC) using the 

log2FC	values	 from	8589	genes	 as	 input	 (Figure	3a,b).	Results	 sug-
gested that the accelerations (i.e., chronological age-adjusted residu-
als) of five clocks (Hannum, Lin, Levine, Horvath1, and Horvath2) have 
similar transcriptional signals in both monocytes and DLPFC. When 
comparing the relative levels of differential expression associated 
with these five clocks, we found associations to be strongest for the 
Hannum clock in monocytes (Figure 3c), and the Horvath2 clock in 
DLPFC (Figure 3d).
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Next, we employed consensus weighted gene co-expression 
network analysis (WGCNA), to identify gene co-expression mod-
ules shared across monocytes and DLPFC. Modules can be thought 
of as tightly clustered genes that appear to operate as a network. 
We identified 16 co-consensus expression modules (CM, Figure 
S4) shared in monocytes and DLPFC. We then calculated a sum-
mary value for each module, known as the eigengene, and tested 
the associations between module eigengenes and epigenetic clocks 
(accounting for age). Several module eigengenes displayed robust 
and	consistent	clock	correlations	across	the	two	tissues	(Figure	S5).	
The co-expression modules with the most robust clock associations 
after adjusting for age were the turquoise module (inverse associ-
ation), green module (inverse association), yellow module (positive 
association), and red module (positive association). We then per-
formed Gene Ontology (GO) enrichment analysis using the genes 
assigned to each of these modules, individually. We find that the 
turquoise module is enriched for genes involved in “cellular respi-
ration” and “mitochondrial translation,” suggesting that epigenetic 
aging is associated with decreased transcription for genes involved 
in these biological processes. The green module, for which de-
creased transcription was also associated with epigenetic clocks 
was enriched for genes involved in “neutrophil-mediated immu-
nity.” Two modules for which increased expression was associated 
with epigenetic aging were the yellow module and the red module. 
The yellow module was enriched for genes involved in ‘chromatin 
organization’ and “histone modifications,” while the red module 
was enriched for genes involved in “regulation of autophagosome 
maturation” and “negative regulation of autophagy” (Figure 3e). 
Complete results for associations of eigengenes with epigenetic 

clocks, as well as module-specific GO and KEGG enrichment are 
available in Tables S3 and S4.

2.3  |  Epigenetic clocks distinguish cancer 
vs normal tissues

Given the link between epigenetics aging and cancer (Ambatipudi 
et	al.,	2017;	Levine,	Hosgood,	et	al.,	2015;	Teschendorff	et	al.,	2010;	
Yang et al., 2016; Zheng et al., 2016), we examined whether epige-
netic clocks differ in terms of distinguishing tumor vs. normal tis-
sues	using	data	(GSE53051)	from	four	different	tumor/tissue	types	
(breast, colon, lung, and pancreas cancer) (Timp et al., 2014). Results 
(Figure 4) showed that tumor samples had accelerated epigenetic 
aging relative to normal tissue using two (Levine and Yang) of the 
six epigenetic clocks shown to have conserved transcriptional sig-
nals in monocytes. Hannum showed slight acceleration in tumor vs 
normal for all tissues, except lung, while the other three clocks did 
not show consistent patterning for tumor vs. normal samples. The 
findings were replicable in two independent datasets for breast and 
colon	cancer	(Table	S5).

2.4  |  In vitro evidence linking epigenetic clocks, 
cellular senescence, and mitochondrial depletion

To link epigenetic clocks to two well-known hallmarks of aging—
cellular senescence and mitochondrial dysfunction—we examined 
DNAm data from both cultured fibroblasts (GSE91069) and 143B 

F I G U R E  4   Epigenetic clocks distinguish cancer vs. normal tissues. DNAmAge (adjusted for tissue type and age of the donor) was 
compared between tumor (red color) and normal tissue (blue color) for breast, colon, lung, and pancreas. Bars indicate standard errors

(a) (b) (c)

(d) (e) (f)
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F I G U R E  5   Epigenetic clocks, cellular senescence, and mitochondrial DNA depletion. (a–f) DNAmAge was estimated in BJ fibroblasts 
using early passage (EP) control samples, near senescent cells (NS), terminally passaged replicative senescent cells (RS), and oncogene-
induced senescent (OIS) cells via HRAS. (g–l) DNAmAge was estimated and compared between control (rho+) and mitochondrial DNA 
depleted	(rho−)	143B	cells.	Bars	indicate	standard	errors
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cells	 (GSE100249).	Results	 showed	 (Figure	5a–f)	 that	 the	clocks	by	
Lin and Levine displayed a sequential increase as cells transition from 
early passage (EP) to near senescent (NS), and finally to replicative 
senescence (RS)—NS vs. EP (p-value	=	6.8E−8,	1.3E−4,	and	9.7E−4,	
respectively), and RS vs. EP (p-value	=	4.5E−9,	6.5E−7,	and	1.9E−6,	re-
spectively). Of these, only Levine showed a suggestive increase when 
comparing oncogene-induced senescence (OIS) vs. EP (p	 =	 0.056).	
Conversely, the only clock to show significant increase in OIS vs. 
EP was Hannum (p	=	4.0E−3);	however,	paradoxically,	Hannum	sug-
gested RS and NS had lower epigenetic acceleration relative to EP.

Given the enrichment for mitochondrial processes observed in 
our co-expression modules of interest, we examined the relation-
ship between mitochondrial DNA (mtDNA) depletion and epigenetic 
clocks using in vitro DNAm data from 143B cells [30]. Clock scores 
were estimated and then compared between 143B cells with chron-
ically	depleted	mtDNA	(rho0)	and	143B	controls	(Figure	5g–l),	using	
three independent biological replicates for each. Linear regression 
revealed that rho0 cells had increased epigenetic ages according to 
Levine (p	=	0.005),	Lin	(p = 0.012), and Yang (p = 0.012). A slightly 
weaker increase was also observed for Horvath2 (p = 0.048).

2.5  |  Identify shared central signals by 
decomposing epigenetic clock and re-assembling into 
a novel “meta-clock”

Our results up to this point suggested the epigenetic clocks captured 
both convergent and divergent signals, which was reflected in their 
patterning with age, associations with transcriptional signatures, 
age-related outcomes, and response to in vitro conditions. To iden-
tify the shared signals, we used data from diverse tissues with di-
verse cell types and compositions (whole blood, DLPFC, epidermis/
dermis, and breast) to cluster the clock CpGs into co-methylation 
modules/networks.	Using	consensus	WGCNA,	we	identified	15	co-
methylation modules containing 878 CpGs out of the 1600 clock 
CpGs (Figure S6).

Next,	we	compared	the	proportions	of	CpGs	in	the	15	modules	
across the various clocks. While most clocks differed, Horvath1 and 
Levine appeared to be composed of similar distributions of module 
CpGs. However, even though they may include similar numbers, 
the signals captured by CpGs in the modules may be differentially 
weighted when it comes to the overall clock scores.

F I G U R E  6   Meta-clock validation. (a) Results for mortality prediction using the validation sample from the Framingham Heart Study 
(FHS),	in	comparison	with	two	robust	mortality	prediction	clocks.	Bars	represent	95%	confidence	intervals	for	hazard	ratios	(green	point).	
(b) Biweight midcorrelations between the meta-clock and chronological age when pooling four tissues, denoted by color. Tissue-specific 
biweight midcorrelations and p-values are shown in the legend. (c) Meta-clock estimates comparing tumor (red) versus normal (blue) tissue 
across four cancer/tissue types (breast, colon, lung, and pancreas). Bars indicate standard errors. (d) Meta-clock estimates in BJ fibroblasts, 
comparing early passage (EP) control samples, near senescent cells (NS), terminally passaged replicative senescent cells (RS), and oncogene-
induced senescent (OIS) cells via HRAS. Bars indicate standard errors. DLPFC, dorsolateral prefrontal cortex

(a)

(b)

(c)

(d)
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To test this, we borrowed the weights from the original clock cal-
culations to estimate the portion of that clock (subclocks) captured 
by each module. For example, the turquoise subclock for Horvath1 
was calculated by setting all CpGs not in the turquoise module to 
0 and then calculating the Horvath1 clock in accordance with pub-
lished methods. This produced a score that represents the portion 
of the Horvath1 clock that turquoise CpGs were responsible for. 
Repeating this for all module-clock combinations produced a total 
of	85	subclocks—16	modules	by	six	clocks,	with	some	missing	pairs	
given that not all clocks contained CpGs from all modules.

To test whether the module CpGs were being similarly weighted 
across the clocks, we examined the associations between subclocks 
within each module. In doing so, we found that for about half of the 
modules, clocks were estimating the same, or similar, signals (Figure 
S7), whereas for the other half, the signals were often inversely 
weighted, for example, in some clocks they confer accelerated aging, 
while in others they signal decelerated aging.

How to best combine different epigenetic aging phenomenon 
to predict chronological vs. biological age is currently unknown. 
Additionally, it is likely that each of the clocks has both weaknesses 
and strengths and that combining the best “parts” across them may 
produce a better overall aging measure. To test this, we used data 
from the Framingham Heart Study (FHS) to rebuild a new aging pre-
dictor. Elastic net cox regression was used to train an all-cause mor-
tality predictor (n	=	2993,	with	256	deaths)	using	the	85	subclocks	as	
input. Of these, fourteen were selected by the model for inclusion in 
what we call the “meta-clock” (Table S6). Using an independent val-
idation sample (n = 943, with 63 deaths), the meta-clock was found 
to be a better mortality predictor than all the original clock scores 
(Figure 6a). For instance, the meta-clock had a standardized hazard 
ratios (HRs) of 6.19 (p	=	2.5E−15),	higher	than	the	two	best	mortal-
ity predictors considered herein—Levine (HR, 3.17, p	=	1.61E−5)	and	
Zhang clock (HR, 2.60, p	=	4.5E−13).	Another	epigenetic	age	mea-
sure, GrimAge, has been shown to be a robust mortality predictor 
and should be compared. However, because GrimAge was trained 
in the FHS cohort, we were not able to conduct a comparison using 
independent data that would not be over-fit.

To further validate the meta-clock, we repeated the above 
comparative analysis: testing for associations with age, age-related 
outcomes, and aging hallmarks (Figure 6b–d). We found that it was 
highly correlated with age across diverse tissues (bicor = 0.63) and 
exhibited higher age correlations within tissues (bicor = 0.63–0.84). 
It also showed deceleration of brain, similar to many of the original 
clocks. We observed very significant acceleration of this meta-clock 
in tumor vs. normal tissue (p	=	6.4E−11),	adjusting	for	tissue	and	age	
of the donor. The meta-clock is also significantly accelerated in both 
RS (p	=	3.9E−5)	and	OIS	(p	=	1.5E−3),	which	was	not	seen	for	any	of	
the original clocks. However, unlike some of the original clocks, the 
acceleration in rho0 cells is not significant (p = 0.13, Figure S8). This 
may be due to issues of power, given the small samples size (n = 6)—
observation that trends were as expected. Additionally, given that 
the meta-clock was optimized to predict mortality from whole blood, 
there may be modules that were selected that are blood or immune 

specific and thus may not distinguish aging hallmarks in other cell 
types. In moving forward, it will be important to map the specific 
signals captured by distinct clock modules.

Finally, using DLPFC data from the Religious Order Study and the 
Memory and Aging project (ROSMAP), we found that the meta-clock 
is significantly associated with Alzheimer's disease (AD) neuropa-
thology and clinical diagnosis (Table S7). This is particularly true in 
terms of the associations with neurofibrillary tangles (p	 =	 7.0E−3)	
and tangle load (p	=	7.7E−4).

3  |  DISCUSSION

Since the advent of the first epigenetic clock, new measures con-
tinue to be developed. However, there is a lack of understanding 
regarding how these measures compare or what they differentially 
capture. This is the first comprehensive comparative analysis of 
eleven existing epigenetic clocks, which were all developed with the 
fundamental purpose of capturing aging-related alterations in the 
methylation landscape. Using data from diverse human tissues and 
cells, we compared and contrasted the clocks on the basis of their 
CpG characteristics, age trends, transcriptomic signals, and associa-
tions with aging hallmarks in vitro. Our data support the hypothesis 
that despite their distinctions, there exists a core signal captured 
across many of them.

Results suggested that many of the epigenetic clocks are captur-
ing shared transcriptional signal/s, some of which have been impli-
cated in aging. For instance, in both purified monocytes and DLPFC 
decreased expression of metabolism and/or immunity-related genes, 
and increased expression of genes involved in chromatin modifica-
tions and/or negative regulation of autophagy were generally asso-
ciated with higher epigenetic age across clocks. The links between 
mitochondrial function and aging were described more than half a 
century ago (Rockstein & Brandt, 1963), and mitochondrial dysfunc-
tion is still considered a well-established hallmark of aging (Kennedy 
et al., 2014; Lopez-Otin et al., 2013). However, it is unclear whether 
epigenetic aging influences mitochondrial functioning, whether im-
paired mitochondria contribute to epigenetic aging, and/or whether 
epigenetic aging is a readout of a dysregulated system for which im-
paired mitochondria is a contributor. Interestingly, using an exper-
imental in vitro model we observed that the Levine clock—and to 
some extent the Lin, Yang, and Horvath2 clocks—was accelerated 
in 143B cells with chronically depleted mtDNA (rho0). Such cells are 
unable to carry out oxidative phosphorylation, suggesting that the 
causal	pathway	may	go	from	mitochondrial	dysfunction	→	epigen-
etic aging.

Interesting results were also observed for an experimental model 
of cellular senescence in human fibroblast cultures. Building on our 
findings, we hypothesize that some of the signal being captured by 
the epigenetic clocks may reflect cellular states, such as stemness 
or senescent cell accumulation in various tissues with age. This is 
further demonstrated in another cell state—tumorigenesis, which 
exhibits known epigenetic modifications. As with senescence, some 
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clocks (Yang and Levine) were clearly accelerated in tumor vs. nor-
mal adjacent tissue.

The striking difference between the clocks is the limited over-
lap and/or target regions for CpGs included in their calculations. 
This may not be surprising given the redundancy of the methylome. 
Our consensus network analysis results suggest that there may 
be regions that have either shared vulnerabilities to aging-related 
changes or are involved in similar biological processes. The lack of 
CpG overlap may be due to the possibility that each clock randomly 
selects a small subset of these highly related CpGs, which may rep-
resent different pathways or hallmarks of aging.

Given the complexity of the aging process, a hypothesis sup-
ported by our results is that there exist distinct phenomena of epi-
genetic aging, and the use of different outcome measures, tissues, 
and populations in developing the clocks may influence the pro-
portions and weights placed on each one in the construction of the 
overall clocks. In doing so, the clocks differentially capture various 
aging pathways and hallmarks, contributing to the lack of correlation 
and differential associations with aging outcomes. By deconstruct-
ing the clocks into submodules and recombining them into a more 
robust epigenetic aging measure, we showed that in comparison 
with the original eleven clocks, this new clock is significantly better 
at predicting mortality risk based on DNAm in blood, and also bet-
ter captures aging cell states, such as tumorigenesis and senescence 
via multiple diverse inducers. This new clock also tracks with age in 
various tissues and relates to tissue-specific aging outcomes, such as 
neurodegeneration in brain—above and beyond what is captured by 
chronological age alone.

In summary, our results suggest that while clocks differ in their 
CpG components and associations, there are core signals across 
them, which, when modeled, produce a more robust epigenetic aging 
measure. These findings are a first step in uncovering the underlying 
biology of epigenetic clocks, which will facilitate the development of 
more reliable and valid biomarkers of aging for clinical and transla-
tional research, but more importantly will be essential for discover-
ing the drivers of aging and developing interventions to target them.

4  |  E XPERIMENTAL PROCEDURES

Experimental procedures including data analysis are described in the 
Appendix S1.
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