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Simple Summary: Prostate cancer (PC) is the second most common cancer worldwide and steroid
hormone plays an important role in prostate carcinogenesis. Most patients with PC are initially
sensitive to androgen deprivation therapy (ADT) but eventually become hormone refractory and
reflect disease progression. The aim of the study was to investigate the genes which regulate
the steroid hormone functional pathways and associate with the disease progression of PC. We
identified a panel of eight-gene signatures that modulated steroid-hormone pathways and predicted
the prognosis of PC using integrative bioinformatics analysis of multiple datasets validated from
external cohorts. This panel could be used for predicting the prognosis of PC patients and might be
associated with the drug response of hormonal therapies. Moreover, these genes in the signature
could be potential targets to develop a novel treatment for castration-resistant PC therapy.

Abstract: The importance of anti-androgen therapy for prostate cancer (PC) has been well recognized.
However, the mechanisms underlying prostate cancer resistance to anti-androgens are not completely
understood. Therefore, identifying pharmacological targets in driving the development of castration-
resistant PC is necessary. In the present study, we sought to identify core genes in regulating steroid
hormone pathways and associating them with the disease progression of PC. The selection of steroid
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hormone-associated genes was identified from functional databases, including gene ontology, KEGG,
and Reactome. The gene expression profiles and relevant clinical information of patients with PC
were obtained from TCGA and used to examine the genes associated with steroid hormone. The
machine-learning algorithm was performed for key feature selection and signature construction. With
the integrative bioinformatics analysis, an eight-gene signature, including CA2, CYP2E1, HSD17B,
SSTR3, SULT1E1, TUBB3, UCN, and UGT2B7 was established. Patients with higher expression of this
gene signature had worse progression-free interval in both univariate and multivariate cox models
adjusted for clinical variables. The expression of the gene signatures also showed the aggressiveness
consistently in two external cohorts, PCS and PAM50. Our findings demonstrated a validated eight-
gene signature could successfully predict PC prognosis and regulate the steroid hormone pathway.

Keywords: steroid hormone; prostate cancer; machine learning; prognostic signature

1. Introduction

In 2020, prostate cancer (PC) was the second most frequent cancer and the fifth
leading cause of cancer death among males worldwide, with an estimated 1.4 million
newly diagnosed cases, causing approximately 374,000 deaths [1]. Steroid hormones,
particularly androgen, play an important role in not only the development of benign
prostatic hyperplasia, but the stimulation of prostate cancer growth as well [2]. The
mutated oncogenes appear to play a role in the modulation of androgen response, although
the exact genes have not been comprehensively defined [3].

The strategy of treating prostate cancer is based on the risk group. For lower-risk
patients, localized therapy, including surgery or radiotherapy is recommended. For higher-
risk or metastatic group, androgen deprivation therapy (ADT) plays a major key role in
the treatment [4]. Many patients initially sensitive to ADT eventually become castration-
resistant PC (CRPC), leading to disease progression and cancer death. It is believed that
CRPC results from a failure of ADT to maintain durable suppression of androgen receptor
(AR), which is a ligand-activated nuclear transcription factor belonging to the steroid
hormone receptor family and the molecular target of ADT. In the recent decade, second-
generation hormonal therapies such as abiraterone [5], apalutamide [6], enzalutamide [7],
and darolutamide [8] have been developed to re-target the AR and have significantly im-
proved the survival of PC patients. Randomized phase 3 clinical trials of abiraterone with
steroid use have also demonstrated the improvement of treatment outcome in metastatic
PC [9]. However, resistance to the second-generation AR antagonist has become chal-
lenging, and mechanisms underlying prostate cancer resistance to anti-androgens are not
well understood.

Prostate cancer is often associated with somatic mutations that occur in the tumor,
with an estimated 89% of metastatic CRPC tumors containing a potentially actionable
mutation [10]. These mutations have the potential to be the target site for precision ther-
apy. With the revolution of next-generation sequencing (NGS) technique, large sequenc-
ing datasets such as The Cancer Genome Atlas (TCGA) and the International Cancer
Genome Consortium (ICGC) have been accomplished to provide human genomics data
that has helped researchers discover cancer driver mutation genes and their regulating
pathways [11,12]. For example, DNA damage response and repair (DDR) genes, including
BRCA1, BRCA2, CDK12, ATM, FANCD2, and RAD51C were identified in 19% of tissue
samples from 333 PC patients collected in a TCGA dataset [13]. Olaparib, a poly-(adenosine
diphosphate-ribose) polymerase (PARP) inhibitor that mitigates tumor progression and
improves survival, was approved as the first targeted therapy for PC patients with certain
DDR gene mutations [14].

To identify the targeted genes related to cancer progression, Cox proportional hazard
regression is traditionally well-accepted as the standard algorithm for survival analysis.
However, in these high-throughput datasets, the number of variables is substantially higher
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than the number of samples. Compared to traditional regression statistics, machine learning
(ML) algorithm has shown the ability to detect the key features predicting cancer prognosis
from these complex datasets [15], and although ML has been applied to detect prognostic
factors of PC in a few studies [16], none of them have focused on the genes in regulating the
steroid hormone pathways, which are very important for PC morphology and progression.
In the present study, we aimed to identify steroid hormone pathway-associated genes
contributing to the progression and survival of PC by analyzing the data in several datasets
using ML algorithm. In addition, the identified gene signature was further validated
through external PC cohorts and analyzed using functional annotation to illustrate the
regulatory pathways of these key steroid hormone-associated genes. These findings will
help us more understand the underlying mechanism of CRPC and provide a potential
target to develop specific therapies.

2. Materials and Methods
2.1. Data Collection and Preparation

The processed RNA sequencing (RNA-seq) profile and the corresponding clinical
data of patients were curated from the DriverDB database [17–19]. Briefly, RNA-seq
data of primary tumor (TP) and normal tissue (NT) in DriverDB were retrieved from
the TCGA data portal in 1 January 2018 (https://portal.gdc.cancer.gov/) and genes were
annotated with ENSEMBLE v91 [18]. A total of 20,495 genes with expression values
Reads Per Kilobase per Million (RPKM) were curated. Patient’s survival data, including
progression-free interval (PFI) and overall survival (OS), was curated from the TCGA
Clinical Data Resource [12] (downloaded from: https://www.cell.com/cms/10.1016/j.cell.
2018.02.052/attachment/bbf46a06-1fb0-417a-a259-fd47591180e4/mmc1.xlsx in 1 January
2018). The RNA-seq profiles, clinical data and survival data were matched according to the
TCGA barcode. Only patients with prostate adenocarcinoma (PRAD) were retrieved for
further analysis.

2.2. Steroid Hormone-Related Gene Selection

The keyword, “steroid hormone,” was used to match the pattern occurring in the
pathway name or ontology term in 3 annotation databases: Gene Otology (GO) [20],
Kyoto Encyclopedia of Genes and Genomes (KEGG) [21], and Reactome [22]. There were
19 steroid-hormone-relevant terms/pathways found, and the genes belonging to these
terms/pathways were curated.

2.3. Differentially Expression Analysis

DEseq2 [23] was used to explore the gene that was differentially expressed between
TP and NT in the PRAD subgroup. In the study, the significant differentially expressed (DE)
gene was defined as the gene with an absolute log2 fold-change value greater than 1 and
adjusted p-values, calculated by DEseq2, smaller than 0.05.

2.4. Survival Analysis

Both univariate and multivariate survival analyses were conducted under the R
environment with Survival library package [24]. Two survival endpoints, PFI and OS, were
analyzed. Gene expression values were normalized by the z-transformation method, mean
value subtracting, and standard deviation scaling, with the normalized expression profiles
being used in the following analysis. The relationship between survival probability and
gene expression was illustrated by the Cox proportional hazards (CoxPH) model. Covariate
variables, including (1) patient’s age at diagnosis (year, a continuous variable), (2) prostate-
specific antigen (ng/mL, a continuous variable), (3) Gleason score divided by 2 groups
(smaller than 7 vs. greater than 8, a categorical variable), and (4) TNM stage divided by
2 groups (T1/T2N0M0 vs. others, a categorical variable), were considered as confounding
factors in the multivariate Cox proportional hazards model. The difference between groups

https://portal.gdc.cancer.gov/
https://www.cell.com/cms/10.1016/j.cell.2018.02.052/attachment/bbf46a06-1fb0-417a-a259-fd47591180e4/mmc1.xlsx
https://www.cell.com/cms/10.1016/j.cell.2018.02.052/attachment/bbf46a06-1fb0-417a-a259-fd47591180e4/mmc1.xlsx
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in the probability of an event was tested by the log-rank test, and Kaplan–Meier survival
curves were plotted.

2.5. Feature Selection and Signature Construction

Lasso (Least Absolute Shrinkage and Selection Operator), was a combination of ridge
regression and was used to select gene feature [25,26]. A popular ML algorithm, the R-
package “glmnet,” was used for feature (gene) selection and (gene) signature construction
in this study. The linear combination of selected gene expression values weighted by the
corresponding Lasso coefficients was used to construct the gene signature score:

∑8
i=1 Lasso_coe f f icienti ∗ Normalized_Expression_valuei

2.6. Independent Datasets Validation

The expression of the construct gene signature was examined with external cohorts.
Two PC classifiers, Prostate Cancer Classification System (PCS) and PAM 50, were used
from the public Prostate Cancer Transcriptome Atlas (PCTA, http://www.thepcta.org/;
accessed on 1 December 2021) platform.

2.7. Functional Annotation

The functions of each gene in the gene signature were annotated through our in-house
pipeline adopted in DriverDB database. In detail, function names in GO-BP (MSigDB-
C5), pathway names in KEGG, and reaction names in REACTOME, which contained
more than or equal to 3 of 8 candidate genes (Supplemental Table S1) were downloaded
and searched. Then, the major regulatory pathways observed from GO-BP, KEGG, and
REACTOME databases were identified and summarized in 2 scopes: steroid hormone-
specific functions or all functions to explore potential interactions among candidate genes
at the functional level.

3. Results
3.1. Identification of Steroid Hormone Genes Associated with Disease Progression in Prostate Cancer

In order to identify the steroid hormone genes associated with disease progression,
we conducted the project with the assistance of PICOT tool (Table S2) and developed an
integrated bioinformatics pipeline (Figure 1). Firstly, genes associated with the pathway
matching the keyword “steroid hormone” in GO, KEGG, and Reactome databases were
examined. A total of 538 genes associated with 19 steroid hormone-related pathways in
these three databases were identified (Supplemental Table S3). Secondly, the transcriptomic
profiling of these 538 genes was analyzed using RNA-seq data imported from DriverDBv3.
Individual expressions of the steroid hormone-related 538 genes were examined. Finally, the
expression levels were considered significantly different if the absolute value of log2 fold
change was greater than 1 with the p-value less than 0.05, between TP and NT. After
differential expression analysis, 92 significantly differentially expressed (DE) genes were
identified (Supplemental Table S4).

To identify the genes associated with PC progression, the univariate CoxPH model was
conducted to analyze each gene in the aspect of 5-year PFI among 497 patients from TCGA-
PRAD cohort, respectively. PFI is an endpoint including cancer progression or cancer
death. Two of 497 patients were excluded given incompatible gene expression levels, while
495 patients were stratified according to the median RNA expression levels. Genes with
a p-value smaller than 0.05 were considered to be significantly related with the patient’s
5-year PFI. Among 92 DE genes, a total of 31 genes were found to be related to clinical
prognosis and 8 genes were identified as the genes associated with poor clinical outcome
(hazard ratio > 1), with these oncogenes showing positive association with the disease
progression. As a consequence, these genes may serve as targets to improve outcome of
PC [27]. The corresponding data of the eight genes, including p-value and hazard ratio
(HR) of PFI, are shown in Table 1.

http://www.thepcta.org/
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Table 1. The differential expression and hazard ratio (HR) of progression-free interval (PFI). The log2

fold change and corresponding HR of PFI of each of the 8 genes.

Differential Expression Analysis Survival Analysis (PFI)

Gene Log2 Fold Change Adjusted p-Value HR CI95 p-Value

CA2 −4.48699 2.20 × 10−78 2.14 1.36–3.37 0.001038

CYP2E1 −1.88521 1.31 × 10−25 1.55 1.01–2.38 0.043481

HSD17B3 1.32350 4.89 × 10−11 2.19 1.40–3.40 0.000527

SSTR3 −1.21147 2.44 × 10−5 1.83 1.18–2.83 0.006554

SULT1E1 −1.23635 9.17 × 10−6 1.94 1.24–3.01 0.003371

TUBB3 1.32113 2.14 × 10−10 2.27 1.45–3.54 0.000319

UCN 2.16915 4.31 × 10−41 1.94 1.24–3.01 0.003137

UGT2B7 −5.67669 1.25 × 10−54 1.64 1.07–2.52 0.023815

3.2. Identification of an Eight-Gene Signature Predicting PC Survival

To clarify the most key genes associated with the clinical prognosis of PC, Lasso regres-
sion analysis, which is one of the popular ML algorithms, was performed for the feature
selection and coefficient training. Consequently, a panel of eight steroid hormone-related
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genes, including CA2, CYP2E1, HSD17B, SSTR3, SULT1E1, TUBB3, UCN, and UGT2B7 was
selected, and the corresponding Lasso coefficients were estimated. The linear combination
of eight gene expression values weighted by the corresponding Lasso coefficients was used
to construct the eight-gene signature score. Patients were stratified into two groups, a high-risk
group (n = 248) and a low-risk group (n = 247), according to the median gene-signature score.
The eight-gene signature was evaluated by the univariate CoxPH model, and the prognos-
tic ability of the 8-gene signature was evaluated by the log-rank test. The correspondent
Kaplan–Meier plot of the patients from TCGA-PRAD database demonstrated that the pa-
tients with higher expression of eight-gene signature had significantly worse 5-year PFI com-
pared to those with lower expression (HR = 2.93, 95% CI = 1.84–4.67, p < 0.001, Figure 2A),
while the patients with lower expression of the eight-gene signature also had marginal
significantly better 5-year overall survival (OS) compared to those with higher expression
(HR = 5.2, 95% CI = 0.61–44.54, p = 0.093 Figure 2B).

Figure 2. Progression-free interval (PFI) and overall survival (OS). Kaplan–Meier curves for (A) 5-year
progression-free interval and (B) 5-year overall survival of the 8-gene signature. Patients were
dichotomized into the “Low risk” group and the “High risk” group according to the 8-gene signature
scores. The number of patients of the two risk groups in different following time in month were
shown in the bottom tables of KM plots, respectively.

3.3. Multivariate Cox Regression Analysis with Clinical Variables

A multivariate CoxPH model was conducted to adjust possible clinical confounding
variables, including age, baseline prostate-specific antigen (PSA) level, Gleason score, and
TNM staging. As shown in Figure 3, the patients with higher expression of eight-gene
signature remained independently associated with poor PFI (HR = 2.30, 95% CI = 1.41–3.75,
p < 0.001). The higher Gleason scores (>7) also had significantly worse PFI compared to
lower Gleason score (HR = 2.92, 95% CI = 1.78–4.78, p < 0.001). Other parameters, i.e., age,
PSA level, and TNM staging, did not reach statistical significance in this model.
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3.4. Expression of the Eight-Gene Panel Based on External PC Cohort’s Validation

In this study, we examined the expression of identified eight-gene panel based on
these two well-known PC classifiers, PCS and PAM50, using data from an independent
cohort [28]. Prostate Cancer Classification System (PCS) is a validated classification system
that classifies PC into three distinct subtypes (PCS1, PCS2, and PCS3) based on a 37-gene
panel [28], whereas PAM 50 is another 50-gene panel used to categorize PC into basal,
luminal A and luminal B subtypes [29]. In short, PCS1 tumors are the most aggressive
type in PCS, while Luminal B is the most aggressive type in PAM50. The analysis of
gene expression based on PAM50 and PCS subtypes was conducted using the public
Prostate Cancer Transcriptome Atlas (PCTA) platform. The Z scores of our eight-gene panel
were significantly associated with PCS (one-way ANOVA test F value = 15.547, p < 0.001;
Ranksums test fold change = 0.385, p < 0.001, Figure 4A) and PAM50 (one-way ANOVA
test F value = 15.176, p < 0.001; Rank-sums test Fold change = 0.22, p = 0.023, Figure 4B)
subtypes. In terms of the PAM50 system, luminal B had the highest Z scores. In the
PCS system, PCS1 had the highest Z scores. To sum up, the expression of our eight-gene
signature was consistent with the aggressiveness regarding either PAM50 or PCS system.

3.5. Functional Annotation of the Steroid Hormone Genes Associated with Prognosis

As shown in Figure 5A, the identified 8 genes, CA2, CYP2E1, HSD17B, SSTR3,
SULT1E1, TUBB3, UCN, and UGT2B7 were involved in regulating “steroid hormone biosyn-
thesis” in the KEGG database; “metabolism of steroid hormones” and “HSP 90 chaperone
cycle for steroid hormone receptors” in Reactome; and “cellular response to steroid hor-
mone stimulus”, “steroid hormone biosynthetic process” and response to steroid hormone
in GO. In order to elucidate the crucial functions regulated by the identified eight genes,
functional annotation was performed using GO, KEGG, and Reactome pathway databases.
Only the pathways regulated simultaneously by at least 3 genes among the 8-gene signa-
ture were regarded as key functions. The cross interaction of these 8 genes among KEGG,
Reactome, and GO databases is shown in Figure 5B. Besides “steroid hormone” related
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pathways, the identified 8 genes also cross-linked with “metabolic pathways”, “signal
transduction,” “metabolism,” “biological oxidations,” “response to oxygen containing
compound” and “lipid metabolic process.”

Figure 4. External validation. The expression of the 8-gene signature based on (A) PCS subtypes
and (B) PAM50. The distributions of z-score transformed expression values in each group are
shown in lollipop plot (top) and box plot (bottom). Higher expression of 8-gene signature in both
aggressive subtypes (PCS1 and LumB) of two independent cohorts (PCS and PAM50) demonstrated
the consistent results in external validation.
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4. Discussion

Steroid hormone receptors, especially AR, provide a critical pathway for PC progres-
sion, and ADT remains the backbone for PC treatment. However, it has been revealed that
genetic aberrations result in the resistance of ADT, through either androgen-dependent or
androgen-independent mechanisms [30]. The first gene pathway-based therapy for PC,
i.e., olaparib, was just approved in May 2020; consequently, there is a clinically unmet
need for genomic-based biomarker and pharmacological targeting for PC. Krebs et al. dis-
covered the downregulation of miRNAs (i.e., miR-221-3p) expression regulating VEGFR2
expression, predicting the prognosis of high-risk PC and the response to tyrosine kinase
inhibitors [31]. In our study, we identified an eight-gene signature, which is related to the
steroid hormone pathways and predicts the clinical prognosis of PC. The eight genes in
this signature were CA2, CYP2E1, HSD17B, SSTR3, SULT1E1, TUBB3, UCN, and UGT2B7,
respectively. Among these eight genes, five genes, including HSD17B, SSTR3, SULT1E1,
TUBB3, and UGT2B7, were identified to be associated with both PC prognosis and hor-
mone refractoriness previously. HSD17B3, which is the key enzyme for the metabolism of
progestins to adrenal androgens and subsequent conversion to testosterone, is significantly
upregulated in castration-resistant metastases compared to untreated PC [32,33]. Among
the analogs of peptide hormones, somatostatin (SST) analogs were found to decrease tumor
cell growth and angiogenesis and increase cancer cell apoptosis. SSTR3, which is one of
the somatostatin receptor (SSTR) families, was identified as changing the expression in
the membrane components in hormone-refractory PC compared with hormone-sensitive
PC [34]. The overexpression of SSTR3 in CRPC patients detected by PET/CT was also
reported [35]. Estrogen sulfotransferase (SULT1E1) belongs to the cytosolic sulfotransferase
superfamily, which are Phase II drug-metabolizing enzymes. SULT1E1 catalyzes the sulfa-
tion of estrogens, which play a vital regulatory role in the development and propagation of
reproductive malignancies such as breast and prostate cancer [36]. Six single nucleotide
polymorphisms (SNPs) in SULT1E1 were identified to be associated with time to treatment
failure (TTF) in 68 patients with CRPC under the treatment of abiraterone [37]. Tubulin-β3
encoded by the Tubulin-β3 (TUBB3) gene is one of the seven β-microtubule proteins nor-
mally expressed in neuronal cells and testis. TUBB3 has been reported to be associated with
phosphatase and tensin homolog (PTEN) and neuroendocrine differentiation, which might
induce an aggressive type of PC [38]. The expression of TUBB3 is reported to be not only
associated with the progression of CRPC in a study enrolling 138 human prostate tumor
specimens [39] but is also able to predict the treatment response to taxene-based chemother-
apy for CRPC [40]. The UGT2B7 gene, belonging to UDP-glucuronosyltransferase (UGT)
enzymes, is known particularly for its wide spectrum of specificity for all classes of steroids,
such as conjugating (1) 5a-reduced metabolites of mineralocorticoids, glucocorticoids, pro-
gestins and androgens, and (2) 5b-reduced C21 and C19 steroids [41]. The role of UGT2B7
to expedite the progression of CRPC has been noticed by the mechanism of promoting
ligand-independent AR signaling [42]. In the remaining three genes, two of them, CYP2E1
and UCN, have shown the association with prostate carcinogenesis only but revealed no
clear role of the prognosis of PC receiving ADT. The differential expression of urocortin
(UCN) between prostate malignancy and normal tissue has been indicated [43,44]. The
polymorphisms of the CYP2E1 gene might be associated with a two-fold increased risk
for the development of PC [45]. Lastly, carbonic anhydrase II (CA2) is one of 16 forms of
human α carbonic anhydrase and has been shown to be upregulated or associated with
androgen receptors in various cancer types such as meningioma [46] and breast cancer,
but not in PC [47]. To sum up, this previous literature confirms the feasibility of our gene
candidates and the potential for further research.

Although the univariate cox analyses revealed statistical significance of our eight-gene
signature in terms of PFI, there may be clinical confounding variables that led to bias in
the analyses. To overcome this issue, a multivariate Cox regression model adjusting for
commonly seen clinical variables in PC was conducted. These clinical variables, including
age, TNM staging, PSA at diagnosis, and Gleason score, were selected given clinical
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practice guidelines using these four factors together to stratify the subgroup of PC and
further different treatments [4]. The Gleason score and TNM staging showed significant
relationship to PFI, whereas age and PSA did not in the univariate cox PH model in our
study (Supplemental Table S5). Old age at prostate cancer diagnosis has been reported
to be associated with poor prognosis in several observational studies, but some argue
the association might be explained by less treatment with curative intent rather than
disease aggressiveness [48]. Baseline PSA has been introduced to assist PC diagnosis and
management for decades, but considered to be inappropriate as a predictive biomarker
alone in recent research [49]; accordingly, our eight-gene signature, possessing statistical
significance in multivariate analysis, could be considered as improving clinical diagnosis
and management of this disease with these four traditional clinical factors.

External cohort validation is needed for bioinformatics analysis. Two well-validated
classifiers (PCS and PAM50) were used in our study. PCS is a classification system de-
rived from a large cohort (n = 1321) of human PC transcriptome profiles from 38 distinct
cohorts [28]. Analysis of subtype-specific gene expression patterns showed that PCS1
and PCS2 tumors reflect luminal subtypes, while PCS1 tumors progress more rapidly in
comparison with PCS2 or PCS3. PAM50 is a 50-gene panel that classifies breast cancer
into five intrinsic molecular subtypes and has become the basis for commercial testing
of breast cancer [50]. Furthermore, the subtypes of PAM 50 also displayed significant
differences in prognosis and response to other cancers, including PC, which is also a sex
hormone-derived cancer [29,51]. Zhao et al. successfully applied PAM 50 into a PC cohort
including 3782 samples and identified luminal B tumors exhibiting the poorest clinical out-
comes on both univariate and multivariate analyses [30]. The expressions of our eight-gene
panel highly correlated with aggressiveness in both PCS and PAM50 classifiers. This result
enables the significance of our gene signature to be more convincing.

Functional annotation has been widely applied on analyzing the biological processes
of collecting genes based on molecular function, biological role, subcellular location, and the
regulatory pathways [52,53]. The functional annotation results of the eight-gene signature
pointed out that the cross-reaction of identified eight genes were involved in regulating
steroid hormone biosynthesis and process and modulating the cellular response of steroid
hormone as well as affecting the signal transduction, biological oxidation, and metabolic
pathways. PC resistance to androgen deprivation therapies ensues when tumors engage
metabolic processes that produce sustained androgen levels in the tissue. Ablation of UGT
enzymes (UGT2B15 and UGT2B17) has been demonstrated to increase free dihydrotestos-
terone restoration, sustain androgen signaling, and develop castration resistance [54].
Although the role of UGT2B7 has not been extensively investigated, UGT2B7 has been
reported to exhibit high activity of steroid glucuronidation and is considered as a major en-
zyme responsible for the conjugation of androgens in humans [55]. Our results showed that
a decrease of UGT2B7 expression is associated with the poor prognosis of PC, suggesting
that UGT2B7 might play a critical role in driving castration resistance.

5. Conclusions

In conclusion, the mechanisms regarding PC resistance to anti-androgens are incom-
pletely understood, thus the novel and precisely targeted therapy for CRPC is still in
demand. Using the ML-based bioinformatics analysis, we successfully identified an eight-
gene signature consisting of CA2, CYP2E1, HSD17B, SSTR3, SULT1E1, TUBB3, UCN, and
UGT2B7, predicting the prognosis of PC. These signature clinical and biological associa-
tions are consistent among multiple datasets, including TCGA, DriverDBv3, PCS, PAM50
GO, KEGG, and Reactome. These genes not only regulate the pathways related to steroid
hormone but modulate the function of metabolism and signal transduction as well. This
eight-gene signature could become a promising panel of biomarkers to screen the progno-
sis of PC patients and might be pharmacological targets to develop therapies for CRPC.
Further large prospective cohort studies are required for further validation, and additional
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experimental studies in vivo are also needed to provide robust evidence of the role of
anti-cancer therapy.
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8-gene signature and clinical variables.
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