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Abstract
Objectives The coronavirus disease 2019 (COVID-19), caused by the novel betacoronavirus severe acute respiratory syn-
drome 2 (SARS-CoV-2), was declared a pandemic in March 2020. Due to the continuing surge in incidence and mortality 
globally, determining whether protective, long-term immunity develops after initial infection or vaccination has become 
critical.
Methods/Results  In this narrative review, we evaluate the latest understanding of antibody-mediated immunity to SARS-
CoV-2 and to other coronaviruses (SARS-CoV, Middle East respiratory syndrome coronavirus and the four endemic human 
coronaviruses) in order to predict the consequences of antibody waning on long-term immunity against SARS-CoV-2. We 
summarise their antibody dynamics, including the potential effects of cross-reactivity and antibody waning on vaccination 
and other public health strategies. At present, based on our comparison with other coronaviruses we estimate that natural 
antibody-mediated protection for SARS-CoV-2 is likely to last for 1–2 years and therefore, if vaccine-induced antibodies 
follow a similar course, booster doses may be required. However, other factors such as memory B- and T-cells and new viral 
strains will also affect the duration of both natural and vaccine-mediated immunity.
Conclusion Overall, antibody titres required for protection are yet to be established and inaccuracies of serological meth-
ods may be affecting this. We expect that with standardisation of serological testing and studies with longer follow-up, the 
implications of antibody waning will become clearer.
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Abbreviations
COVID-19  Coronavirus disease 2019
SARS-CoV-2  Severe acute respiratory syndrome corona-

virus 2
SARS-CoV  Severe acute respiratory syndrome 

coronavirus
MERS-CoV  Middle East respiratory syndrome 

coronavirus
HCoVs  Human coronaviruses (HCoV-

229E, HCoV-OC43, HCoV-NL63, 
HCoV-HKU1)

nAb  Neutralising antibody
RBD  Receptor-binding domain
MBC  Memory B-cell
MTC  Memory T-cell

ART   Antiretroviral therapy
BCG  Bacillus Calmette–Guérin
CPTT  Convalescent plasma transfer therapy
ADE  Antibody-dependent enhancement
ELISA  Enzyme-linked immunosorbent assay
PRNT  Plaque reduction neutralisation test

Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) was declared a pandemic in March 2020 by the 
World Health Organization. As of June 2021, it has caused 
over 3.8 million deaths and almost 180 million confirmed 
infections [1]. After intensive efforts from the scientific 
community over the past year, vaccines are now available. 
Almost all routine vaccinations rely on antibody responses 
[2], especially neutralising antibodies (nAbs), which are 
thought to be the best correlate of protection [3]. These can 
reduce infectivity by preventing attachment of the virion to 
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the target cell, thereby blocking viral entry and therefore, 
replication [3].

Progression of some phase I/II trials of COVID-19 vac-
cines has depended solely on the magnitude of antibody 
response elicited, e.g. the immunogenicity endpoint of the 
BNT162b1 vaccine included nAb and receptor-binding 
domain (RBD)-binding IgG antibody titres [4] with no 
reports of B- or T-cell levels. However, recent studies have 
reported the rapid waning of antibodies following SARS-
CoV-2 infection [5–7]. There is limited knowledge about 
the implications of this on long-term immunity, which is 
pertinent to address to ensure the success of public health 
strategies.

Seven coronaviruses are known to infect humans to date. 
Four of these are human coronaviruses (HCoVs) 229E, 
NL63, OC43 and HKU1, which cause relatively mild symp-
toms and circulate as endemic strains of the common cold. 
The other three, Middle East respiratory syndrome coronavi-
rus (MERS-CoV), SARS-CoV and SARS-CoV-2 can cause 
life-threatening respiratory infections [8]. However, even 
the HCoVs may have started as more severe infections, e.g. 
OC43 has been stated as a possible aetiological agent for the 
“Russian flu” pandemic [9]. Their clinical and non-clinical 
characteristics have been summarised below (Table 1).

Coronaviruses are composed of four structural proteins 
including spike, envelope, membrane and nucleocapsid 
[13]. Cellular infection occurs when the RBD of the spike 
protein’s S1 subunit attaches to its host cellular receptor, 
causing a conformational change in the S2 subunit which 
mediates fusion and entry into the cell [26]. Antibodies 
to this spike protein have been shown to be most impor-
tant in providing protective immunity in SARS-CoV [27]. 
Given the genetic homology and similarity in spike proteins 
between MERS-CoV, SARS-CoV and SARS-CoV-2, anti-
body responses to these viruses may demonstrate a certain 
degree of similarity and parallels may be drawn between 
their pathogenicity [12, 13].

This narrative review aims to compare the antibody 
responses to different human coronaviruses to further our 
understanding of long-term immunity in SARS-CoV-2. We 
critically summarise the evidence for the duration and effi-
cacy of antibodies in protective immunity and explore the 
implications of antibody waning on public health strategies. 
We also discuss some links between antibody waning, cross-
reactivity and vaccine efficacy which may be important in 
future research.

Methods

After deciding the title and subtitles, we conducted searches 
on the PubMed and Embase databases up to June 20, 2021. 
Ahead-of-print publications and those on preprint servers 

were included given the fast developments in the COVID-
19 pandemic. The search included keywords such as: 
“antibod*”, “seropositiv*”, “cross-reacti*” and “immun*” 
alongside “COVID-19” (OR “SARS-CoV-2”), “HCoV-*” 
(OR “seasonal coronavirus”), “MERS*” or “SARS-CoV” 
(OR “SARS”). Most articles retrieved were primary research 
papers. We also identified articles from the reference lists of 
other papers. We did not contact authors to obtain unpub-
lished data. Figures of antibody kinetics are solely a graphi-
cal representation of the estimated trend in nAb titres based 
on severity and waning over time, generated using various 
studies.

Antibody waning in coronavirus infections

SARS‑CoV

IgM antibodies reach peak titres ~ 1  month post-
symptom onset [28–30]. whereas IgG and nAb reach 
theirs ~ 2–4  months [28–32] and 1–4  months [29, 31], 
respectively. Subsequent titres of IgM begin a relatively 
rapid decline, decreasing steadily to undetectable lev-
els ~ 6 months post-symptom onset [29, 32]. IgG and nAb 
display a more gradual and closely correlated pattern in their 
waning, approaching values for seronegativity ~ 2 years post-
symptom onset (Fig. 1a) [28, 29, 31]. At ~ 3 years, close to 
half of initially IgG positive patients revert to seronegative 
status [29] and by 6 years, almost all patients revert to IgG 
seronegativity to SARS-CoV [33].

Higher titres of nAb are positively correlated with 
symptomatic and more severe clinical disease [34–36] but 
whether the severity of disease affects subsequent antibody 
waning is not clear, with conflicting results found in different 
studies [31, 34, 37]. The presence of underlying comorbidi-
ties, age and steroid use does not appear to be associated 
with different antibody kinetics [31, 37], though it has been 
noted that men exhibit a more pronounced decrease in nAb 
titres compared to women [31, 34].

MERS‑CoV

Robust antibody responses to MERS-CoV develop by 
week 3 [38–41]. IgG titres decline during weeks 4–5 and 
though the IgM titres start decreasing earlier, they are sero-
positive for > 1 month, albeit at a lower titre than IgG [39]. 
Observations have been made that while a more severe 
disease is associated with higher antibody titre peaks [38, 
42–44], a delayed nAb response has been observed [40, 42]. 
Although antibody waning occurs, IgG and nAbs are detect-
able > 1 year post-symptom onset [41, 43–45], with cases 
of antibody persistence for up to 34 months in recovered 
individuals [45]. Importantly, antibodies wane at a slower 
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Fig. 1  Graphical representation 
of the longevity and magnitude 
of the nAb antibody response to 
coronaviruses. a Shows trends 
in antibody kinetics to SARS-
CoV, MERS-CoV and HCoVs, 
highlighting the relatively rapid 
waning of HCoV nAbs as well 
as higher titres generated in 
severe SARS-CoV/MERS-CoV 
infection [28–32, 34–38, 40–42, 
44, 52]. The dotted line indi-
cates a lack of serological data 
for common cold coronavirus 
infections in individuals naïve 
to the infection. b Compares 
antibody titre trends in severe 
and mild SARS-CoV-2 and their 
waning over time, highlight-
ing the higher titres generated 
in severe infection [56–58, 60, 
62–64]. Neither graph drawn to 
scale. SARS-CoV severe acute 
respiratory syndrome corona-
virus, MERS-CoV Middle East 
respiratory syndrome coronavi-
rus, HCoV human coronavirus
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rate during months 6–12 compared to the first 6 months 
post-symptom onset (Fig. 1a) [44]. Additionally, antibody 
response longevity correlates with disease severity [43, 44] 
such that most patients with severe disease have detectable 
IgG and nAb after 1 year compared to 33% of individuals 
who experienced mild disease [44]. On the other hand, age 
does not seem to be correlated with nAb response [46], how-
ever, few studies have investigated this factor.

HCoVs

Antibodies to HCoV infections may be protective but wane 
quickly. Seroepidemiological studies have shown HCoV 
IgM to be present in children but absent in adults, indicat-
ing that first infection occurs during childhood [47]. The 
majority of seroconversion is reported to occur before the 
age of 3.5 years [48]. Persistence of antibodies in the adult 
population is likely related to frequent reinfection [49–51]. 
Experimental infection with HCoV-229E has shown that 
peaks of total IgM, IgG and nAb titres occur 12–14 days 
after inoculation, falling considerably by 12 weeks and to 
near baseline levels by 52 weeks (Fig. 1a) [52]. However, 
unlike serological studies of SARS-CoV, SARS-CoV-2 and 
MERS-CoV, where patients are most likely naïve to the 
infection, population seropositivity to HCoVs is high which 
affects the conclusions which can be drawn from human 
challenge studies [53]. In one study, antibodies to the four 
HCoVs were detectable in > 70% of the adult population 
[48]. Reinfections after challenge may not be due to a lack 
of immunity but rather due to the unusually high inoculum 
dose [54].

SARS‑CoV‑2

In a SARS-CoV-2 study, three different patterns of serocon-
version have been observed. In some, IgM appears before 
IgG as expected, in others they occur simultaneously and 
sometimes IgM appears after IgG [5]. Overall, IgM, IgG and 
nAb titres peak ~ 2–3 weeks post-symptom onset and decline 
to undetectable levels by 6 weeks for IgM, whereas IgG and 
nAb reach a plateau before declining within 2–3 months 
(Fig. 1b) [6, 55–57]. Mathematical modelling estimates that 
within 1 year IgG antibodies to nucleocapsid, spike protein 
and RBD wane to 7%, 36% and 31% of their titres at 2 weeks 
post-symptom onset, respectively [58]. Additionally, nAb 
responses seem to correlate with disease severity [7, 56, 59], 
with antibody half-lives of 31 and 69 days in asymptomatic 
and severe infections, respectively [60].

IgG titres to SARS-CoV-2 infection are negatively cor-
related with age for those < 18 years but positively corre-
lated with age in adults [61]. Within 6 months post-symp-
tom onset, older adults (44–66-year-olds) seem to maintain 

higher IgG levels than younger adults (18- to 44-year-olds) 
but no difference is observed at 12 months post-symptom 
onset [62]. In children, the narrower breadth of anti-SARS-
CoV-2-specific antibodies, specifically with reduced genera-
tion of anti-nucleocapsid IgG and nAb compared to adults, 
has been associated with a milder disease course [63].

Implications of waning antibodies 
on COVID‑19

Underlying mechanisms of antibody waning

In SARS-CoV-2 the initial rapid waning of antibodies is 
thought to be due to the loss of short-lived plasma cells, 
while the plateau in antibody levels occurs due to establish-
ment of long-lived plasma cells [65]. The underlying causes 
of waning were investigated in a recent paper by Kaneko 
et al., which found the absence of germinal centres in the 
thoracic lymph nodes of deceased SARS-CoV-2 patients 
[66]. They proposed this lack of germinal centres was due 
to defective Bcl6+ follicular T-cells, which are unable to 
activate memory B-cells (MBCs). In turn this would impair 
the production of long-lasting and high-affinity antibod-
ies, which could explain the rapid waning of antibodies in 
SARS-CoV-2 [66]. A similar mechanism for rapid waning 
of antibodies was proposed in SARS-CoV, where it was 
found that the virus depleted key lymphocytes involved in 
immune signalling and affected germinal centre responses 
[67]. However, since both studies were done on deceased 
patients, these mechanisms only explain waning in the most 
severe cases.

Duration of antibody‑mediated immunity

Time to reinfection can help determine the duration of pro-
tective immunity. Unlike other coronaviruses, reinfections 
with HCoVs have been widely observed. These usually 
occur within 12 months of the preceding infection, though 
some manifest as early as 6 months with no association with 
waning antibodies [52, 53, 68]. It is important to note that 
reinfection with HCoVs may be associated with less severe 
disease and a shorter duration of shedding, but results have 
been contradicting [51, 52, 69].

Furthermore, a lack of genotypic difference between 
reinfecting HCoV-NL63 strains has been confirmed which 
means mutations may not be responsible for reinfections and 
therefore, antibody-mediated immunity to HCoVs is short-
lasting if at all protective [70]. In two rhesus macaque trials, 
previous SARS-CoV-2 infection was protective against rein-
fection when re-exposed at 28 and 35 days, showing greater 
nAb titre production upon re-challenge in comparison to pri-
mary challenge [71, 72]. While SARS-CoV-2 reinfection 
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cases are rare, they have occurred, with one study reporting 
a reinfection rate of 0.02% and median time to reinfection of 
64.5 days [73]; this is shorter than what is seen with HCoVs, 
suggesting a relatively short period of protective immunity. 
However, this study may have overestimated the reinfection 
rate due to diagnostic error and a small sample size [73].

A correlation between severity of illness and magnitude 
of humoral response in MERS-CoV, SARS-CoV and SARS-
CoV-2 has been reported [7, 34–36, 43, 59]. In the case of 
SARS-CoV and MERS-CoV, this has been associated with a 
longer time to seronegativity, but results have been conflict-
ing [20, 23, 26, 33, 34]. Therefore, whether severe cases of 
SARS-CoV-2 will have longer lasting immunity remains to 
be confirmed.

Efficacy of antibodies

The efficacy of antibodies is a crucial aspect of immu-
nity. Some studies have suggested that antibodies are not 
sufficient for viral clearance [74]; this is supported by the 
absence of an abrupt decline in viral load after seroconver-
sion [75]. One way of assessing the efficacy of antibodies 
may be through the observation of patient response to con-
valescent plasma transfer therapy (CPTT). Studies of CPTT 
in SARS-CoV-2 have shown varied results on the protec-
tive role of nAbs. Initially, CPTT demonstrated encourag-
ing results in case–control studies for severe SARS-CoV-2 
[76, 77], with some studies proposing earlier therapy being 
more beneficial [77, 78]. Early CPTT was also found to be 
beneficial in SARS-CoV [79]. However, recently published 
data from large-scale randomised controlled trials did not 
identify any significant reduction in mortality or improve-
ments in clinical outcomes for those with mild or severe 
SARS-CoV-2 receiving CPTT [80, 81]. This suggests that 
the antibody response alone may not be as important as once 
thought in SARS-CoV-2 immunity.

In cases of recovered COVID-19, assessing the efficacy 
of antibodies against reinfection is difficult. For example, a 
large COVID-19 outbreak on a Seattle fishery vessel infect-
ing over 85% of the crew on board showed that those who 
were positive for nAbs (titres ranging from 1:161 to 1:3082), 
prior to departure successfully remained infection-free [82]. 
However, this correlation of antibodies and protection does 
not necessarily imply a causative relationship.

Previous in vivo and in vitro studies with MERS-CoV 
and SARS-CoV have cautioned of antibody-dependent 
enhancement (ADE) in SARS-CoV-2 [83]. While ADE has 
not been noted in COVID-19 patients so far, preliminary 
findings from an in vitro analysis of COVID-19 convalescent 
plasma identified a significantly greater likelihood of ADE 
for patients who were older, had a more severe infection 
and a longer disease duration [84]. ADE was greatest in 

plasma with high titres of SARS-CoV-2-specific anti-RBD 
and anti-S1 antibodies [84]. Importantly, cross-reactive 
antibodies from other coronaviruses were excluded as the 
cause of ADE [84]. While the mechanism of ADE here is not 
clear, it could suggest a less efficacious antibody response 
in certain cohorts.

B‑ and T‑cell immunity

In 10–30% of recovered COVID-19 cases, antibody titres 
are low or undetectable [85, 86]. Therefore, other aspects 
of humoral immunity are likely at play [87, 88]. For exam-
ple, MBCs are thought to be maintained independently of 
antibody levels, which means B-cell immunity may persist 
even if antibodies wane [89]. Though, it has been noted that 
MBCs in SARS-CoV are undetectable 6 years after infection 
[33]. In SARS-CoV-2, MBCs (specific to spike and nucle-
ocapsid proteins) and memory T-cells (MTCs) have been 
shown to persist for at least 3 months when antibody levels 
decline, but follow-up has been limited due to the ongoing 
pandemic [87, 88].

Promisingly, MTCs in MERS-CoV and SARS-CoV have 
been shown to persist for 10 years [90] and 17 years [91], 
respectively, which shows potential for long-lasting immu-
nity against SARS-CoV-2. However, whether T-cells can 
form protective immunity without an antibody response 
is still uncertain and cannot be deduced from SARS-CoV, 
as this no longer circulates to cause reinfection [15, 92]. 
Furthermore, levels of IgG and IgA have been shown to 
correlate with the number of specific  CD4+ T-cells, there-
fore it may be that T-cells can wane in a similar manner to 
antibodies [93].

It is known that cellular immunity is important in protec-
tion against viral infection, given that children without it 
have worse outcomes than those with low or absent anti-
body titres in conditions such as hypogammaglobulinae-
mia or agammaglobulinaemia [94]. Additionally, a report 
of COVID-19 in two patients with agammaglobulinaemia 
showed recovery without severe disease suggesting T-cells 
may be more important in overcoming SARS-CoV-2 infec-
tion than B-cells [95]. The importance of T-cells has also 
been highlighted in studies showing worse COVID-19 out-
comes in HIV patients not on antiretroviral therapy (ART) 
compared to those on ART; worse outcomes potentially 
being attributed to increased T-cell exhaustion in these 
patients [96, 97]. However, reports of reinfection or possible 
persistence of SARS-CoV-2 in patients on B-cell deplet-
ing immunosuppressants, e.g. rituximab, which prevent the 
generation of an antibody response to SARS-CoV-2, suggest 
that antibodies are likely to be vital in protection against 
reinfection [98, 99].
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Cross‑reactivity and trained immunity

In serological studies of SARS-CoV-2 it is widely assumed 
that the antibody response mounted is against a novel virus. 
However, HCoV cross-reactivity may be affecting the anti-
body dynamics [100] and it has been suggested to be the 
reason for lower disease severity in children and lower death 
rates in low- and middle-income countries [101, 102]. Nev-
ertheless, in vitro, pre-existing cross-reactive antibodies 
were not protective against SARS-CoV-2 infection of Vero 
E6 cells [100].

Some have suggested a possible anamnestic response 
in SARS-CoV-2 from pre-existing MBCs. A study [103] 
identified that > 80% of low-affinity antibodies which cross-
reacted to SARS-CoV and SARS-CoV-2 also reacted to 
spike protein components of HCoV. These cross-reactive 
antibodies had higher levels of clonal expansion than those 
which only reacted to SARS-CoV and SARS-CoV-2, pos-
sibly suggesting a boosted response from pre-existing MBCs 
[103]. This cross-reactivity may mean that initial immunity 
for SARS-CoV-2 is higher than expected, which could have 
positive implications for herd immunity [104]. Furthermore, 
when examining cross-reactivity, the observed results may 
be due to defective assays and more studies need to make the 
distinction between cross-reactivity and cross-binding [105].

A pre-existing nAb response has also been noted in 
MERS-CoV and SARS-CoV-2 vaccine clinical trials [106, 
107], likely due to antibody cross-reactivity with HCoVs. 
However, in both groups this did not alter the vaccine 
immunogenicity profile or subsequent antibody dynam-
ics, indicating SARS-CoV-2 vaccinations would not have 
reduced immunogenicity despite interactions with other sea-
sonal coronaviruses. This has positive implications in the 
scenario where SARS-CoV-2 outbreaks become a yearly 
phenomenon.

Innate immunity can also be “trained” using vaccines 
such as Bacillus Calmette–Guérin (BCG) and microbial 
elements, e.g. lipopolysaccharides, inducing epigenetic and 
metabolic changes in myeloid cells [108]. BCG vaccinations 
have previously been shown to be protective through the 
enhancement of antibody release in influenza A (H1N1), 
reduction in clinical manifestations of herpes simplex virus 
infections and the decrease in yellow fever vaccine virae-
mia [109]. Recent epidemiological studies suggest that BCG 
vaccination may be protective against severe COVID-19 
[110], though this may be affected by various confound-
ing factors. Clinical trials to confirm potential benefits in 
response to SARS-CoV-2 are ongoing, e.g. NCT04659941, 
NCT04537663 and NCT04327206.

Vaccines

Viral vector vaccines

The relatively rapid resolution of SARS-CoV and MERS-
CoV, and lack of interest in HCoV research has resulted 
in limited vaccination experience for coronaviruses [111]. 
However, the ChAdOx1 MERS trial has guided much of the 
current approach to the ChAdOx1 nCoV-19 vaccine [106, 
107]. Similarly to ChAdOx1 MERS, ChAdOx1 nCoV-19 
produced a strong IgG and nAb response, with a peak in 
antibody titres by day 28 that remained elevated at day 56 
[106, 107, 112]. In the ChAdOx1 MERS trial, waning of 
antibodies continued to day 182, though levels plateaued 
after this point, remaining detectable even at the end of the 
346-day follow-up period [106]. However, it is unclear if 
such low titres are protective against infection.

Furthermore, antibodies to the viral vector ChAdOx1 
have the potential to impact vaccine efficacy, hence the 
use of a simian virus with rare pre-existing immunity in 
the aforementioned trials [113, 114]. After prime vaccina-
tion in the ChAdOx1 nCoV-19 trial, anti-ChAdOx1 nAb 
increased in both low and standard dosages, peaking by day 
28. Antibodies plateaued at this level even after the booster 
dose until the end of follow-up at day 56 [112]. Studies have 
noted that low levels of pre-existing nAb to simian adeno-
virus vectors do not reduce the vaccine-induced immuno-
logical response [114, 115]. However, higher levels of vec-
tor nAb triggered by prime vaccination may interfere with 
subsequent booster doses, as indicated in the phase II/III 
ChAdOx1 nCoV-19 trial which noted a weak inverse corre-
lation between anti-ChAdOx1 nAb and anti-spike IgG [112]. 
This might explain the greater efficacy of the ChAdOx1 
nCoV-19 vaccine with greater interval between the priming 
and booster doses [84, 116].

In the case of Sputnik-V, the heterologous combination 
of the rAd26-S and rAd5-S adenovirus vectors mitigated 
the issue of primer-induced anti-vector antibodies and could 
be why a higher efficacy of 91.6% (95% confidence inter-
val, CI 85.6–95.2%) was seen [117] compared to the 66.7% 
(95% CI 57.4–74.0%) of ChAdOx1 nCoV-19 [116] at pre-
venting symptomatic COVID-19. Importantly, models have 
predicted that as variants arise which are less susceptible 
to pre-existing vaccine-induced nAb, vaccines with higher 
initial efficacy against the wild-type would similarly provide 
higher efficacy against variants [112, 118].

mRNA vaccines

Despite their novelty, the BNT162b2 and mRNA-1273 
mRNA vaccines have successfully demonstrated robust 
ability at generating nAb titres at levels superior to most 
other vaccines, including viral vector approaches [118]. 
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Expectedly, the increased titre correlates with increased 
vaccine-mediated protection from COVID-19 of 95% 
(95% CI 90.3–97.6%) and 94.1% (95% CI 89.3–96.8%) for 
the BNT162b2 and mRNA-1273 vaccines, respectively 
[118–120]. Similarly to ChAdOx1 nCoV-19, increased 
intervals between primer and booster mRNA vaccine doses 
have yielded superior nAb titres. However, a study by Parry 
et al. noted that this may come at the cost of a reduced cel-
lular immune response [121]. Additionally, an age-related 
decrease in mRNA vaccine-induced antibodies and cellular 
responses were noted by several studies [122–126], with 
some reporting faster waning in older age groups [122]. 
Therefore, additional investigation on the impact of dos-
ing schedules for different age groups is warranted. Waning 
of mRNA vaccine-induced nAb responses have also been 
reported as early as 6 weeks post-booster dose, continuing 
at 12 weeks [122], but longer follow-up is crucial.

Natural infection and vaccination

Vaccines generally induce comparable or greater antibody 
titres against SARS-CoV-2 than natural infection, which is 
differentiated from vaccine-acquired immunity by the pres-
ence of anti-nucleocapsid antibodies. Three weeks after a 
single dose of the BNT162b2 vaccine, comparable anti-spike 
IgG titres to convalescent patients are induced, rising sig-
nificantly 1 week after the subsequent booster dose [122]. 
Similarly, nAb levels induced after complete regimens of 
NVX-CoV2373, mRNA-1273 and Sputnik-V have all shown 
higher nAb titres than convalescent samples [118]. Results 
of ChAdOx1 nCoV-19 trials have shown nAb titres near 
or below convalescent patients, corresponding to the lower 
protection offered than from some other vaccines [107, 118].

Single-dose vaccination of patients with previous SARS-
CoV-2 exposure has been found to induce dramatic increases 
in titres of anti-spike IgG and nAbs [127], rivalling titres 
generated after booster doses in infection-naïve subjects 
[128, 129]. Antibody responses after a single vaccine dose in 
those previously infected develop quicker and reach higher 
titres [123], a phenomenon occurring even when anti-spike 
IgG from previous SARS-CoV-2 infection had waned to low 
or undetectable levels [124], indicating immune memory 
despite waning of antibodies. This may be important in 
rationing vaccines [125], especially considering ongoing 
shortages around the world. However, despite the enhanced 
peak antibody response following vaccination post-infection, 
the subsequent 8 weeks of follow-up have shown a faster 
decline in antibody titres compared to infection-naïve vac-
cinated patients. Therefore, longer follow-up is needed to see 
if a higher plateau is finally reached [121].

Vaccine mixing

Studies into the immunogenicity of heterologous prime-
boost vaccination using the ChAdOx1 nCoV-19 and 
BNT162b2 vaccines have been initiated. This combination 
of vaccines generated a stronger antibody response [126] 
than two doses of the ChAdOx1 nCoV-19 vaccine, likely as 
the neutralising effects of anti-vector nAbs were avoided, as 
with Sputnik-V [117, 130], although a comparison to two 
doses of the BNT162b2 vaccine is yet to be done.

Despite the positive antibody response with vaccine com-
binations, preliminary data suggest that mild–moderate side 
effects increase in frequency with mixed vaccines compared 
to two doses of the same vaccine [131]. All in all, further 
research is needed to determine the best vaccine regimen for 
long-term protection against SARS-CoV-2.

Herd immunity and SARS‑CoV‑2 variants

For SARS-CoV-2, it was initially estimated that at least 
50–66.7% of the population needs to be immune [132] in 
order to achieve herd immunity. Assuming this level of 
immunity can be reached, the length of time and effective-
ness of the immune response is an important consideration 
[132], as transient immunity from antibody waning would 
mean COVID-19 outbreaks could become biennial or annual 
[104]. Achieving this through natural infection is unlikely 
to be a viable option due to unacceptably high morbidity 
and mortality rates. This was evident in an uncontrolled 
outbreak of SARS-CoV-2 infection in the Amazon area of 
Manaus, which experienced a 4.5-fold increase in excess 
deaths when three quarters of the population were infected 
[133]. Theoretically, this should have been enough for herd 
immunity (> 67%) but Manaus unexpectedly experienced 
a second resurgence in January 2021 [134], just months 
after the first peak in June 2020 despite high seropositivity. 
Although other epidemiological studies show that naturally 
acquired immunity should be as protective against reinfec-
tion as vaccination for at least 5 months [135], achieving 
herd immunity through vaccinations appears more desirable.

The percentage required for herd immunity may be an 
underestimation due to under-reporting of cases [132] and 
the potentially lower transmissibility [136] of infection in 
children. Moreover, mutations conferring greater transmis-
sibility, such as N501Y (found in B.1.1.7 and B.1.351 vari-
ants), E484K (found in the B.1.351 variant), and L452R and 
E484Q (found in the B.1.617.2 variant), increase the basic 
reproduction number [137–139] which in turn increases the 
percentage needed to achieve herd immunity [132].

Based on early results from in vitro studies of recovered 
SARS-CoV-2 patients’ CPTT and neutralising monoclo-
nal antibodies, it appears these mutations may result in 
decreased effectiveness of pre-existing antibodies [140]. 
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Despite this possibility, recently a study [141] published 
that the B.1.1.7 variant has no significant impact on vac-
cine-induced immunity. Comparing the B.1.617.2 variant to 
the B.1.1.7 variant, only a small decrease in vaccine effec-
tiveness 2 weeks after the second dose was seen for both 
the BNT162b2 (93.4% to 87.9%) and ChAdOx1 nCoV-19 
(66.1% to 59.8%) vaccines [142]. However, a decrease in 
effectiveness of either vaccine against B.1.617.2 was sig-
nificantly more pronounced after only a single dose [142], 
stressing the importance of vaccine regimen completion. In 
addition, although the neutralisation titres reduce by 6.4-fold 
for the B.1.351 variant, the titres remain high with the ability 
to neutralise pseudoviruses [140].

Interestingly, mRNA vaccines induce disproportionately 
more anti-RBD antibodies compared to natural infection, 
which tend to target other portions of the spike protein [143]. 
Vaccine-induced antibodies also target a broader range of 
areas on the RBD, meaning those antibodies are better able 
to respond potently against new variants even when they 
carry mutations in the RBD [143]. Therefore, while the 
emergence of new SARS-CoV-2 variants remains a threat 
to herd immunity, current vaccines remain effective and pro-
vide superior protection to natural disease.

Vaccine hesitancy, however, is a major challenge to 
achieving herd immunity and modelling suggests that coun-
tries with lower vaccine uptake may experience eightfold 
greater deaths over a 2-year period [144]. Promisingly, a 
recent study by Milman et al. has found that high levels 
of vaccine uptake reduce transmission of SARS-CoV-2 
even in the unvaccinated cohorts [145], which may curb the 
pandemic. Given the presence of unvaccinated individuals, 
varying levels of immunological protection from vaccina-
tion/natural infection, potentially lower efficacy of vaccines 
against new variants and reports of reinfection, low-level 
transmission is expected to continue after the end of the 
pandemic. However, severity of these infections is likely 
to be much lower even with low nAb titres [118]. Endemic 
circulation such as that of HCoVs, which probably caused 
similar pandemics in the past, will likely maintain popula-
tion immunity against SARS-CoV-2 [146]. This may elimi-
nate the need for booster vaccinations.

Limitations and future

Given the low case fatality seen in HCoVs as well as the 
relatively small outbreaks of SARS-CoV and MERS-CoV, 
prior research into coronaviruses has been lacking. Addition-
ally, the most genetically homologous coronavirus, SARS-
CoV, no longer circulates [15] which puts limits on what 
we can deduce about the long-term efficacy of the immune 
response against it. Moreover, due to the fast-evolving nature 

and high volume of scientific publishing on COVID-19, this 
review may lack inclusion of more recent studies.

Studies have also noted that antibodies specific to cer-
tain viral antigen, such as nucleocapsid or spike protein 
may wane at different rates [147–149], though it is unclear 
to what extent this may be due to inaccuracies in the sero-
logical method employed. The limited research addressing 
antibody targets for SARS-CoV, MERS-CoV and HCoVs 
makes it difficult to contextualise their importance. Enzyme-
linked immunosorbent assay (ELISA) is one of the most 
frequently used assays in determining antibody-specific IgG 
titres though substantial variations exist in its sensitivity and 
specificity [150]. Furthermore, while the plaque reduction 
neutralisation test (PRNT) is considered the “gold standard” 
[12, 151] in assessing the functional ability of antibodies 
in viral neutralisation, other simpler assays have frequently 
been used. These generally correlate well to PRNT [12], 
though this heterogeneity of platforms remains an important 
caveat when comparing results.

A further limitation of the current body of research is 
the lack of focus on mucosal immunity and the waning of 
secretory IgA. Secretory IgA is known to have a crucially 
protective function at the mucosal surface [152] and is 
possibly an even more potent neutraliser of SARS-CoV-2 
than IgG [153]. If further research into this proves fruitful, 
the mucosal route of vaccine delivery could be of greater 
interest.

Existing literature shows that antibodies to coronavirus 
infections wane over time but is difficult to quantify what 
antibody titre conveys protection from SARS-CoV-2 and for 
how long titres can be maintained above this threshold. To 
address these points, animal re-challenge studies of SARS-
CoV-2 could be initiated with a longer time interval to rein-
fection, as only a short-time window of ~ 30 days has been 
tested [71, 72].

Conclusion

The last 20 years have taught us that coronaviruses have 
immense pandemic potential and should be monitored care-
fully. By reviewing the literature on SARS-CoV, MERS-
CoV and HCoVs, we have concluded that high antibody 
titres to SARS-CoV-2 are unlikely to be maintained in 
the long-term; antibodies to most coronaviruses wane to 
undetectable titres within 2 years of infection and within 
6–12 months following HCoV infections. Furthermore, 
although various vaccine platforms have proven their ability 
to induce robust antibody responses, this is accompanied by 
subsequent waning, making reinfection a possibility unless 
“booster” doses are administered. Therefore, public health 
measures relying on the induction and monitoring of anti-
bodies for herd immunity should be considered carefully. 
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Nevertheless, there is evidence that B- and T-cells persist 
for longer than antibodies and vaccines targeting these may 
be a promising strategy for long-term immunity. However, 
these also require further research to determine their protec-
tive capacity.
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